
Topology and its Applications 220 (2017) 14–30
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Cancellation for 4-manifolds with virtually abelian fundamental 
group

Qayum Khan
Department of Mathematics, Saint Louis University, St Louis MO 63103, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 June 2016
Accepted 26 January 2017
Available online 30 January 2017

Keywords:
Topological 4-manifold
Stable homeomorphism
Cancellation
Virtually abelian

Suppose X and Y are compact connected topological 4-manifolds with fundamental 
group π. For any r � 0, X is r-stably homeomorphic to Y if X#r(S2 × S2)
is homeomorphic to Y #r(S2 × S2). How close is stable homeomorphism to 
homeomorphism?
When the common fundamental group π is virtually abelian, we show that large r
can be diminished to n + 2, where π has a finite-index subgroup that is free-abelian 
of rank n. In particular, if π is finite then n = 0, hence X and Y are 2-stably 
homeomorphic, which is one S2×S2 summand in excess of the cancellation theorem 
of Hambleton–Kreck [12].
The last section is a case study of the homeomorphism classification of closed 
manifolds in the tangential homotopy type of X = X−#X+, where X± are closed 
nonorientable topological 4-manifolds with order-two fundamental groups [13].

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Suppose X is a compact connected smooth 4-manifold, with fundamental group π and orientation char-
acter ω : π → {±1}. Our motivation herein is the Cappell–Shaneson stable surgery sequence [7, 3.1], whose 
construction involves certain stable diffeomorphisms. These explicit self-diffeomorphisms lead to a modified 
version of Wall realization rel ∂X:

Ls
5(Z[πω]) × Ss

DIFF(X) −−−−→ Ss

DIFF(X), (1)

where S is the simple smooth structure set and S is the stable structure set. Recall that the equivalence 
relation on these structure sets is smooth s-bordism of smooth manifold homotopy structures. The actual 
statement of [7, Theorem 3.1] is sharper in that the amount of stabilization, that is, the number of connected 
summands of S2 × S2, depends only on the rank of a representative of a given element of the odd L-group.
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In the case X is sufficiently large, in that it contains a two-sided incompressible smooth 3-submanifold 
Σ, a periodicity argument using Cappell’s decomposition [6, 7] shows that the restriction of the above 
action on Ss

DIFF(X) to the summand UNils5 of Ls
5(Z[πω]) is free. Therefore for each nonzero element of 

this exotic UNil-group, there exists a distinct, stable, smooth homotopy structure on X, restricting to a 
diffeomorphism on ∂X, which is not Z[π1(Σ)]-homology splittable along Σ. If Σ is the 3-sphere, the TOP
case is [17]. Furthermore, when X is a connected sum of two copies of RP4, see [15] and [5].

For any r � 0, denote the r-stabilization of X by

Xr := X#r(S2 × S2).

2. On the topological classification of 4-manifolds

The main result (2.4) of this section is an upper bound on the number of S2 × S2 connected summands 
sufficient for a stable homeomorphism, where the fundamental group of X lies in a certain class of good 
groups. By using Freedman–Quinn surgery [10, §11], if X is also sufficiently large (2.3 for example), each 
nonzero element ϑ of the UNil-group and simple DIFF homotopy structure (Y, h : Y → X) pair to form a 
distinct TOP homotopy structure (Yϑ, hϑ) that represents the DIFF homotopy structure ϑ · (Y, h) obtained 
from (1).

2.1. Statement of results

For finite groups π, the theorem’s conclusion and the proof’s topology are similar to Hambleton–Kreck 
[12]. However, the algebra is quite different.

Theorem 2.1. Suppose π is a good group (in the sense of [10]) with orientation character ω : π → {±1}. 
Consider A := Z[πω], a group ring with involution: g = ω(g)g−1. Select an involution-invariant subring R
of the commutative Center(A). Its norm subring is

R0 :=
{∑

i

xixi

∣∣∣∣ xi ∈ R

}
.

Suppose A is a finitely generated R0-module, R0 is noetherian, and the dimension d is finite:

d := dim(maxspecR0) < ∞.

Now suppose that X is a compact connected TOP 4-manifold with

(π1(X), w1) = (π, ω)

and that it has the form

(X, ∂X) = (X−1, ∂X)#(S2 × S2).

If Xr is homeomorphic to Yr for some r � 0, then Xd is homeomorphic to Yd.

Here are the class of examples of good fundamental groups promised in the paper’s title.

Proposition 2.2. Suppose π is a finitely generated, virtually abelian group, with any homomorphism ω :
π → {±1}. For some R, the pair (π, ω) satisfies the above hypotheses: π is good, A is a finitely generated 
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R0-module, R0 is noetherian, and d is finite. Furthermore, d = n + 1, where π contains a finite-index 
subgroup that is free-abelian of finite rank n � 0.

The author’s original motivations are infinite virtually cyclic groups of the second kind.

Corollary 2.3. Let X be a compact connected TOP 4-manifold whose fundamental group is an amalgamated 
product G− ∗F G+ with F a finite common subgroup of G± of index two. If Y is stably homeomorphic to X, 
then Y #3(S2 × S2) is homeomorphic to X#3(S2 × S2).

Proof. Division of G± by the normal subgroup F yields a short exact sequence of groups:

1 −−−−→ F −−−−→ G− ∗F G+ −−−−→ C2 ∗ C2 ∼= C∞ �−1 C2 −−−−→ 1.

So π1(X) contains an infinite cyclic group of finite index (namely, twice the order of F ). Now apply Propo-
sition 2.2 with n = 1 (d = 2). Then apply Theorem 2.1 to X#(S2 × S2). �

Given the full strength of the proposition, we generalize the above specialized corollary.

Corollary 2.4. Let X be a compact connected TOP 4-manifold whose fundamental group is virtually abelian: 
say π1(X) contains a finite-index subgroup that is free-abelian of rank n < ∞. If Y is stably homeomorphic 
to X, then Y is (n + 2)-stably homeomorphic to X. �

More generally, can we reach the same conclusion if π has a finite-index subgroup Γ that is polycyclic of 
Hirsch length n? The example π = Z2

�
( 2 1

1 1

) Z is not virtually abelian.

2.2. Definitions and lemmas

The following concepts with applications are more fully expounded in Bak’s book [1], though below we 
refer to Bass’s book [3] as they first appeared there. We assume the reader knows the more standard notions.

Definition 2.5 ([3, I:4.1]). A unitary ring (A, λ, Λ) consists of a ring with involution A, an element

λ ∈ Center(A) satisfying λλ = 1,

and a form parameter Λ. This is an abelian subgroup of A satisfying

{ a + λa | a ∈ A } ⊆ Λ ⊆ { a ∈ A | a− λa = 0 }

and

rar ∈ Λ for all r ∈ A and a ∈ Λ.

Here is a left-handed classical definition discussed in the equivalence after its reference.

Definition 2.6 ([3, I:4.4]). We regard a quadratic module over a unitary ring (A, λ, Λ) as a triple (M, 〈·, ·〉 , μ)
consisting of a left A-module M , a bi-additive function

〈·, ·〉 : M ×M −−→ A such that 〈ax, by〉 = a 〈x, y〉 b and 〈y, x〉 = λ 〈x, y〉

(called a λ-hermitian form), and a function (called a Λ-quadratic refinement)
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μ : M −−→ A/Λ such that μ(ax) = aμ(x) a and [〈x, y〉] = μ(x + y) − μ(x) − μ(y).

The following unitary automorphisms can be realized by diffeomorphisms [7, 1.5].

Definition 2.7 ([3, I:5.1]). Let (M, 〈·, ·〉 , μ) be a quadratic module over a unitary ring (A, λ, Λ). A transvec-
tion σu,a,v is an isometry of this structure defined by the formula

σu,a,v : M −−→ M ; x 
−→ x + 〈v, x〉u− λ 〈u, x〉 v − λ 〈u, x〉 au

where u, v ∈ M and a ∈ A are elements satisfying

〈u, v〉 = 0 ∈ A and μ(u) = 0 ∈ A/Λ and μ(v) = [a] ∈ A/Λ.

The following lemmas involve, for any finitely generated projective A-module P = P ∗∗, a nonsingular 
(+1)-quadratic form over A called the hyperbolic construction

H (P ) := (P ⊕ P ∗, 〈·, ·〉 , μ) where 〈x + f, y + g〉 := f(y) + g(x) and μ(x + f) := [f(x)].

Topologically, H (A) is the equivariant intersection form of S2 × S2 with coefficients in A.

Lemma 2.8. Consider a compact connected TOP 4-manifold X with good fundamental group π and orienta-
tion character ω : π → {±1}. Define a ring with involution A := Z[πω]. Suppose that there is an orthogonal 
decomposition

K := Kerw2(X) = V0 ⊥ V1

as quadratic submodules of the intersection form of X over A, with a nonsingular restriction to V0. Define 
a homology class and a free A-module

p+ := [S2
+ × pt]

P+ := Ap+.

Consider the summand

H (P+) = H2(S2
+ × S2;A)

of

H2(X#(S2
+ × S2)#(S2

− × S2);A).

Then for any transvection σp,a,v on the quadratic module K ⊥ H (P+) with p ∈ V0 ⊕ P+ and v ∈ K, the 
stabilized isometry σp,a,v ⊕1H2(2(S2×S2);A) can be realized by a self-homeomorphism of X#3(S2×S2) which 
restricts to the identity on ∂X.

Remark 2.9. In the case that ∂X is empty and π1(X) is finite, then Lemma 2.8 is exactly [12, Corollary 2.3]. 
Although it turns out that their proof works in our generality, we include a full exposition, providing details 
absent from Hambleton–Kreck [12].

Lemma 2.10. Suppose X and p satisfy the hypotheses of Lemma 2.8. If p is unimodular in V0 ⊕ P+, then 
the summand X1 = X#(S2

+ × S2) of X2 can be topologically re-split so that S2 × pt represents p.
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Proof. Since V0 ⊥ H (P+) is nonsingular, there exists an element q ∈ V0 ⊥ H (P+) such that (p, q) is a 
hyperbolic pair. Since p, q ∈ Kerw2(X1) and w2 is the sole obstruction to framing the normal bundle in 
the universal cover, each homology class is represented by a canonical regular homotopy class of framed 
immersion

α, β : S2 × R2 −−→ X1

with transverse double-points. Since the self-intersection number of α vanishes, all its double-points pair to 
yield framed immersed Whitney discs; consider each disc separately:

W : D2 × R2 −−→ X1.

Upon performing finger-moves to regularly homotope W , assume that one component of

α(S2 × 0) \W (∂D2 × R2)

is a framed embedded disc

V : D2 × R2 −−→ X1

and, by an arbitrarily small regular homotopy of β, that β|S2×0 is transverse to W |intD2×0 with algebraic 
intersection number 1 in Z[π1(X1)]. Hence W is a framed properly immersed disc in

X1 := X1 \ Im V.

So, since π1(X1) ∼= π1(X) is a good group, by Freedman’s disc theorem [10, 5.1A], there exists a framed 
properly TOP embedded disc

W ′ : D2 × R2 −−→ X1

such that

W ′ = W on ∂D2 × R2 and ImW ′ ⊂ ImW.

Therefore, by performing a Whitney move along W ′, we obtain that α is regularly homotopic to a framed 
immersion with one fewer pair of self-intersection points. Thus α is regularly homotopic to a framed TOP
embedding α′. A similar argument, allowing an arbitrarily small regular homotopy of α′, shows that β is 
regularly homotopic to a framed TOP embedding β′ transverse to α′, with a single intersection point

α′(x0 × 0) = β′(y0 × 0)

such that the open disc

Δ := β′(y0 × R2) ⊂ α′(S2 × 0).

Define a closed disc

Δ′ := S2 \ (α′)−1(Δ).

Surgery on X1 along β′ yields a compact connected TOP 4-manifold X ′. Hence X1 is recovered by surgery 
on X ′ along the framed embedded circle
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γ : S1 × R3 ≈ nbhdS2(∂Δ′) × R2 α′
−−−→ X1 \ Im β′ ⊂ X ′.

But the circle γ is trivial in X ′, since it extends via α′ to a framed embedding of the disc Δ′ in X ′. Therefore 
we obtain a TOP re-splitting of the connected sum

X1 ≈ X ′#(S2 × S2)

so that S2 × pt of the right-hand side represents the image of p. �
The next algebraic lemma decomposes certain transvections so that the pieces fit into the previous 

topological lemma.

Lemma 2.11. Suppose (A, λ, Λ) is a unitary ring such that: the additive monoid of A is generated by a subset 
S of the unit group (A×, ·). Let K = V0 ⊥ V1 be a quadratic module over (A, λ, Λ) with a nonsingular 
restriction to V0, and let P± be free left A-modules of rank one. Then any stabilized transvection

σp,a,v ⊕ 1H (P−) on K ⊥ H (P+) ⊥ H (P−)

with p ∈ V0 ⊕ P+ and v ∈ K is a composite of transvections σpi,0,vj with unimodular pi ∈ V0 ⊕ P+ and 
isotropic vj ∈ K ⊕ H (P−).

Proof. Using a symplectic basis { p±, q± } of each hyperbolic plane H (P±), define elements of K⊕H (P+⊕
P−):

v0 := v + p− − aq−

v1 := −p−

v2 := aq−.

Then

v =
2∑

i=0
vi.

Observe that each vi ∈ K ⊕ H (P−) is isotropic with 〈vi, p〉 = 0. So transvections σp,0,vj are defined. Note, 
by Definition 2.7, for all x ∈ K ⊕ H (P+ ⊕ P−), that

(σp,0,v2 ◦ σp,0,v1 ◦ σp,0,v0)(x) = x +
∑
i

〈vi, x〉 p−
∑
i

λ 〈p, x〉 vi − λ 〈p, x〉
∑
i<j

〈vj , vi〉 p

= x + 〈v, x〉 p− λ 〈p, x〉 v − λ 〈p, x〉 ap
= σp,a,v(x) ⊕ 1H (P−).

Therefore it suffices to consider the case that v ∈ K ⊕ H (P−) is isotropic. Write

p = p′ ⊕ p′′ ∈ V0 ⊕ P+.

Define a unimodular element

p0 := p′ ⊕ 1p+.
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Note, since P+ has rank one and by hypothesis, there exist n ∈ Z�0 and unimodular elements p1, . . . , pn ∈
Sp+ ⊆ P+ such that

p− p0 = p′′ − 1p+ =
n∑

i=1
pi.

For each 1 � i � n, write

pi := sip+ for some si ∈ S.

Observe for all 1 � i, j � n that

〈v, pi〉 = 0

μ(pi) = siμ(p+)si = 0

〈pi, pj〉 = si 〈p+, p+〉 sj = 0.

Hence, we also have

〈v, p0〉 = 0

μ(p0) = 0.

Then transvections σpi,0,v are defined and commute, so note

σp,0,v =
n∏

i=0
σpi,0,v. �

Proof of Lemma 2.8. Define a homology class and a free A-module

p− := [S2
− × pt]

P− := Ap−.

Consider the A-module decomposition

H2(X2;A) = H2(X;A) ⊕ H (P+) ⊕ H (P−).

Observe that the unitary ring

(A, λ,Λ) = (Z[πω],+1, { a− a | a ∈ A })

satisfies the hypothesis of Lemma 2.11 with the multiplicative subset

S = π ∪ −π.

Therefore the stabilized transvection

σp,a,v ⊕ 1H (P−)

is a composite of transvections σpi,0,vi with unimodular pi ∈ V0 ⊕P+ and isotropic vi ∈ K ⊕H (P−). Then 
by Lemma 2.10, for each i, a TOP re-splitting
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fi : X1 ≈ Xi#(S2 × S2)

of the connected sum, for some 4-manifold Xi, can be chosen so that S2×pt represents pi. So by the Cappell–
Shaneson realization theorem [7, 1.5],1 for each i, the pullback under (fi)∗ of the stabilized transvection

σpi,0,vi ⊕ 1H2(S2×S2;A) = σpi⊕0,0,vi⊕0

is an isometry induced by a self-diffeomorphism of

(Xi#(S2 × S2))#(S2 × S2).

Hence, by conjugation with the homeomorphism fi, this isometry is induced by a self-homeomorphism of

X2 = X1#(S2 × S2).

Thus the stabilized transvection

(σp,a,v ⊕ 1H (P−)) ⊕ 1H2(S2×S2;A)

is induced by the stabilized composite self-homeomorphism of

X3 = X2#(S2 × S2). �
2.3. Proof of the main theorem

Now we modify the induction of [12, Proof B]; our result will be one S2 × S2 connected summand less 
efficient than Hambleton–Kreck [12] in the case that π is finite. The main algebraic technique is a theorem 
of Bass [3, IV:3.4] on the transitivity of a certain subgroup of isometries on the set of hyperbolic planes. 
We refer the reader to [3, §IV:3] for the terminology used in our proof. The main topological technique is a 
certain clutching construction of an s-cobordism.

Proof of Theorem 2.1. We may assume r � d + 1. Let

f : X#r(S2 × S2) −−→ Y #r(S2 × S2)

be a homeomorphism. We show that

X := X#(r − 1)(S2 × S2)

is homeomorphic to

Y := Y #(r − 1)(S2 × S2),

thus the result follows by backwards induction on r.
Consider Definition 2.15 and [3, Hypotheses IV:3.1]. By our hypothesis and Lemma 2.16, the minimal 

form parameter

Λ := { a− a | a ∈ A }

1 Their theorem realizes any transvection of the form σp+,a,v by a diffeomorphism of the 1-stabilization.
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makes (A, Λ) a quasi-finite unitary (R, +1)-algebra. Note, since

X = X−1#((S′)2 × S2)

by hypothesis, that the rank r + 1 free A-module summand

P := H2
(
(S′)2 × pt � r(S2 × pt);A

)
of

Kerw2(X#(S2 × S2))

satisfies [3, Case IV:3.2(a)]. Then, by [3, Theorem IV:3.4], the subgroup G of the group U(H (P )) of unitary 
automorphisms defined by

G := 〈 H (E(P )), EU(H (P )) 〉

acts transitively on the set of hyperbolic pairs in H (P ). So, by [3, Corollary IV:3.5] applied to the quadratic 
module

V := Kerw2(X−1),

the subgroup G1 of U(V ⊥ H (P )) defined by

G1 :=
〈

1V ⊥ G, EU(H (P ), P ;V ), EU(H (P ), P ;V )
〉

acts transitively on the set of hyperbolic pairs in V ⊥ H (P ). Let

(p0, q0) and (p′0, q′0)

be the standard basis of the summand H2(S2 × S2; A) of

H2(X#(S2 × S2);A) and H2(Y #(S2 × S2);A).

Therefore there exists an isometry ϕ ∈ G1 of

V ⊥ H (P ) = Kerw2(X#(S2 × S2))

such that

ϕ(p0, q0) = (f∗)−1(p′0, q′0).

Lemma 2.12. The isometry

ϕ⊕ 1H2(3(S2×S2);A)

is induced by a self-homeomorphism g of

X#4(S2 × S2).
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Then the homeomorphism

h := (f#13(S2×S2)) ◦ g : X#4(S2 × S2) −−→ Y #4(S2 × S2)

satisfies the equation

h∗(pi, qi) = (p′i, q′i) for all 0 � i � 3.

Here the hyperbolic pairs

{ (pi, qi) }3
i=1 and { (p′i, q′i) }

3
i=1

in the last three S2 × S2 summands are defined similarly to (p0, q0) and (p′0, q′0).

Lemma 2.13. The manifold triad (W ; X, Y ) is a compact TOP s-cobordism rel ∂X:

W 5 := X × [0, 1] � 4(S2 ×D3)
⋃
h

Y × [0, 1] � 4(S2 ×D3).

Therefore, since π1(X) ∼= π1(X) is a good group, by the TOP s-cobordism theorem [10, 7.1A], X is 
homeomorphic to Y . This proves the theorem by induction on r. �
Remark 2.14. The reason for restriction to the A-submodule

K = Kerw2(X#(S2 × S2))

is two-fold. Geometrically [7, p. 504], a unique quadratic refinement of the intersection form exists on K, 
hence K is maximal. Also, the inverse image of (p′0, q′0) under the isometry f∗ is guaranteed to be a hyperbolic 
pair in K, hence K is simultaneously minimal.

2.4. Remaining lemmas and proofs

Definition 2.15 ([3, IV:1.3]). An R0-algebra A is quasi-finite if, for each maximal ideal m ∈ maxspec(R0), 
the following containment holds:

mAm ⊆ radAm

and that the following ring is left artinian:

A[m] := Am/radAm.

Here

Am := (R0)m ⊗R0 A

is the localization of A at m, and radAm is its Jacobson radical. The pair (A, Λ) is a quasi-finite unitary 
(R, λ)-algebra if (A, λ, Λ) is a unitary ring, A is an R-algebra with involution, and A is a quasi-finite 
R0-algebra. Here R0 is the subring of R generated by norms:

R0 =
{∑

i

riri

∣∣∣∣ ri ∈ R

}
.
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Lemma 2.16. Suppose A is an algebra over a ring R0 such that A is a finitely generated left R0-module. 
Then A is a quasi-finite R0-algebra.

Proof. Let m ∈ maxspec(R0). By [2, Corollary III:2.5] to Nakayama’s lemma,

Am ·m = Am · rad (R0)m ⊆ radAm.

Then

A[m] = (Am/mAm)/ ((radAm)/mAm)

and is a finitely generated module over the field

(R0)m/m(R0)m,

by hypothesis. Therefore A[m] is left artinian, hence A is quasi-finite. �
The existence of the realization g is proven algebraically; refer to [3, §II:3].

Proof of Lemma 2.12. Consider Lemma 2.8 applied to

X#(S2 × S2) V0 = H (P ) V1 = V.

It suffices to show that the group G1 is generated by a subset of the transvections σp,a,v with p ∈ H (P )
and v ∈ V ⊕ H (P ).

By [3, Cases II:3.10(1–2)], the group

EU(H (P ))

is generated by all transvections σu,a,v with u, v ∈ P or u, v ∈ P . By [3, Case II:3.10(3)], the group

H (E(P ))

is generated by a subset of the transvections σu,a,v with u ∈ P, v ∈ P or u ∈ P , v ∈ P . By [12, Definition 
1.4], the group

EU(H (P ), P ;V )

is generated by all transvections σu,a,v with u ∈ P, v ∈ V , and the group

EU(H (P ), P ;V )

is generated by all σu,a,v with u ∈ P , v ∈ V . In any case, p ∈ H (P ) and v ∈ V ⊕ H (P ). �
The assertion is essentially that (W ; X, Y ) is a h-cobordism with zero Whitehead torsion.

Proof of Lemma 2.13. By the Seifert–vanKampen theorem, we have a pushout diagram

π1
(
X × 1 # 4(S2 × S2)

) h∗

∼=

1

π1
(
Y × [0, 1] � 4(S2 ×D3)

)

π1
(
X × [0, 1] � 4(S2 ×D3)

)
π1(W ).
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So the maps induced by the inclusion X � Y → W are isomorphisms:

i∗ : π1(X × 0) −−→ π1(W )

j∗ : π1(Y × 0) −−→ π1(W ).

Denote π as the common fundamental group using these identifications.
Observe that the nontrivial boundary map ∂3 of the cellular chain complex

C∗(j;Z[π]) : 0 −−→
⊕

0�k<4

Z[π] · (S2 ×D3) h#◦∂−−−−−→
⊕

0�l<4

Z[π] · (S2 × S2) −−→ 0

is obtained as follows. First, attach thickened 2-cells to kill 4 copies of the trivial circle in Y . Then, onto 
the resultant manifold

Y # 4(S2 × S2),

attach thickened 3-cells to kill certain belt 2-spheres, which are the images under h of the normal 2-spheres 
to the 4 copies of the trivial circle in X. Hence, as morphisms of based left Z[π]-modules, the boundary 
map

∂3 = h# ◦ ∂

is canonically identified with the morphism

h∗ = 1 : H2(4(S2 × S2);Z[π]) −−→ H2(4(S2 × S2);Z[π])

on homology induced by the attaching map h. This last equality holds by the construction of h, since

h∗(pi, qi) = (p′i, q′i) for all 0 � i < 4.

So the inclusion j : Y → W has torsion

τ(C∗(j;Z[π])) = [h#] = [h∗] = [1] = 0 ∈ Wh(π).

A similar argument using h−1 shows that the inclusion i : X → W has zero torsion in Wh(π). Therefore 
(W ; X, Y ) is a compact TOP s-cobordism rel ∂X. �

The final proof of this section employs the theory of commutative rings and subrings (including invariant 
theory), as well as language from algebraic geometry (spec and maxspec).

Proof of Proposition 2.2. Since π is virtually polycyclic, it is a good group [10, 5.1A]. Since π is virtually 
abelian, by intersection with finitely many conjugates of a finite-index abelian subgroup, we find an exact 
sequence of groups with Γ normal abelian and G finite:

1 −−−−→ Γ −−−−→ π −−−−→ G −−−−→ 1.

This induces an action G � Γ. Consider these rings with involution and norm subring R0:
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A := Z[πω] where ∀g ∈ π : g = ω(g)g−1

A0 := Z[Γω] which is a commutative ring

R := (A0)G = {x ∈ A0 | ∀g ∈ G : gx = x}

R0 :=
{∑

i xixi

∣∣ xi ∈ R
}
.

Note Z[ΓG] ⊆ R ⊆ Center(A). Since π is finitely generated, by Schreier’s lemma, so is Γ. So, by enlarging 
G as needed, we may assume Γ is a free-abelian group of a finite rank n.

First, we show that A is a finitely generated R0-module. Since Γ has only finitely many right cosets 
in π, the group ring A is a finitely generated A0-module. Since G is finite and A0 is a finitely generated 
commutative ring and Z is a noetherian ring, by Bourbaki [4, §V.1: Theorem 9.2], A0 is a finitely generated 
R-module and R is a finitely generated ring. By Bass [3, Intro IV:1.1], the commutative ring R is integral 
over its norm subring R0. So, since R is a finitely generated integral R0-algebra, it follows that R is a finitely 
generated R0-module [9, Corollary 4.5]. Therefore, A is a finitely generated R0-module.

Second, we show that R0 is a noetherian ring. It follows from Hilbert’s basis theorem [9, Corollary 1.3]
that the finitely generated commutative Z-alegebra A0 is noetherian. So R0 is too, by Eakin’s theorem [9, 
A3.7a], since A0 is a finitely generated R0-module.

Third, we show that the irreducible-dimension of the Zariski topology on P := spec(R0) is n + 1. Here, 
by irreducible-dimension of a topological space, we mean the supremum of the lengths of proper chains of 
closed irreducible subsets, where reducible means being the union of two nonempty closed proper subsets 
[14, §I:1]. Krull dimension of a ring equals irreducible-dimension of its spec [14, II:3.2.7]; in particular 
dim(P) = dim(R0). Since A0 is a finitely generated R0-module, A0 is integral over R0 by [9, Corollary 4.5]. 
So dim(R0) = dim(A0), by the Cohen–Seidenberg theorems [9, 4.15, 4.18; Axiom D3]. Note dim(A0) = n +1
since dim(Z) = 1, by [9, Exercise 10.1]. Thus dim(P) = n + 1.

Last, we show the topological space P = spec(R0) and its subspace M := maxspec(R0) have equal 
irreducible-dimensions. Since R is a finitely generated commutative ring and R is a finitely generated 
R0-module, by the Artin–Tate lemma [9, Exercise 4.32], also R0 is a finitely generated ring. Then R0 is a 
Jacobson ring, by the generalized Nullstellensatz [9, Theorem 4.19], since Z is Jacobson. So we obtain an 
isomorphism of posets:

ClosedSets(P) −−→ ClosedSets(M); C 
−→ C ∩M with inverse D 
−→ closureP(D).

This correspondence is worked out by Grothendieck [11, §IV.10: Proposition 1.2(c’); Définitions 1.3, 3.1, 
4.1; Corollaire 4.6]. Hence dim(M) = dim(P). Thus d = n + 1. �
3. Manifolds in the tangential homotopy type of RP4#RP4

Given a tangential homotopy equivalence to a certain TOP 4-manifold, the main goal of this section is to 
uniformly quantify the amount of topological stabilization sufficient for smoothing and for splitting along 
a two-sided 3-sphere. In particular, we sharpen a result of Jahren–Kwasik [15, Theorem 1(f)] on connected 
sum of real projective 4-spaces (3.5).

Let X be a compact connected DIFF 4-manifold, and write

(π, ω) := (π1(X), w1(X)).

Suppose π is good [10]. Let ϑ ∈ Ls
5(Z[πω]); represent it by a simple unitary automorphism of the orthog-

onal sum of r copies of the hyperbolic plane for some r � 0. Recall [10, §11] that there exists a unique 
homeomorphism class
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(Xϑ, hϑ) ∈ Ss
TOP(X)

as follows. It consists of a compact TOP 4-manifold Xϑ and a simple homotopy equivalence hϑ : Xϑ → X

that restricts to a homeomorphism h : ∂Xϑ → ∂X on the boundary, such that there exists a normal 
bordism rel ∂X from hϑ to 1X with surgery obstruction ϑ. Such a homotopy equivalence is called tangential;
equivalently, a homotopy equivalence h : M → X of TOP manifolds is tangential if the pullback microbundle 
h∗(τX) is isomorphic to τM .

Theorem 3.1. The following r-stabilization admits a DIFF structure:

Xϑ#r(S2 × S2).

Furthermore, there exists a TOP normal bordism between hϑ and 1X with surgery obstruction ϑ ∈ Ls
5(Z[πω]), 

such that it consists of exactly 2r many 2-handles and 2r many 3-handles. In particular Xϑ is 2r-stably 
homeomorphic to X.

Proof. The existence and uniqueness of (Xϑ, hϑ) follow from [10, Theorems 11.3A, 11.1A, 7.1A]. But by 
[7, Theorem 3.1], there exists a DIFF s-bordism class of (Xα, hα) uniquely determined as follows. Given a 
rank r representative α of the isometry class ϑ, this pair (Xα, hα) consists of a compact DIFF 4-manifold 
Xα and a simple homotopy equivalence hα that restricts to a diffeomorphism on the boundary:

hα : (Xα, ∂Xα) −−→ (Xr, ∂X)

Xr := X#r(S2 × S2).

It is obtained from a DIFF normal bordism (Wα, Hα) rel ∂X from hα to 1Xr
with of surgery obstruction ϑ, 

constructed with exactly r 2-handles and r 3-handles, and clutched along a diffeomorphism which induces 
the simple unitary automorphism α on the surgery kernel

K2(Wα) = H

(⊕
r

Z[π]
)
.

This is rather the consequence, and not the construction2 itself, of Wall realization [19, 6.5] in high odd 
dimensions.

By uniqueness in the simple TOP structure set, the simple homotopy equivalences hϑ#1r(S2×S2) and hα

are s-bordant. Hence they differ by pre-composition with a homeomorphism, by the s-cobordism theorem 
[10, Thm. 7.1A]. In particular, the domain Xϑ#r(S2 × S2) is homeomorphic to Xα, inheriting its DIFF
structure. Therefore, post-composition of Hα with the collapse map Xr → X yields a normal bordism 
between the simple homotopy equivalences hϑ and 1X , obtained by attaching r + r 2- and 3-handles. �

Next, we recall Hambleton–Kreck–Teichner classification of the homeomorphism types and simple homo-
topy types of closed 4-manifolds with fundamental group C−

2 . Then, we shall give a partial classification of 
the simple homotopy types and stable homeomorphism types of their connected sums, which have funda-
mental group D−,−

∞ = C−
2 ∗ C−

2 . The star operation ∗ [10, §10.4] flips the Kirby–Siebenmann invariant of 
some 4-manifolds.

2 In the DIFF 4-dimensional case, via a self-diffeomorphism ϕ inducing α, embeddings are chosen within certain regular homotopy 
class of framed immersions of 2-spheres. Cappell and Shaneson [7, 1.5] cleverly construct ϕ using a circle isotopy theorem of Whitney.
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Theorem 3.2 ([13, Theorem 3]). Every closed nonorientable topological 4-manifold with fundamental group 
order two is homeomorphic to exactly one manifold in the following list of so-called w2-types.

(I) The connected sum of ∗CP2 with RP4 or its star. The connected sum of k � 1 copies of CP2 with 
RP4 or RP2 × S2 or their stars.

(II) The connected sum of k � 0 copies of S2 × S2 with RP2 × S2 or its star.
(III) The connected sum of k � 0 copies of S2 × S2 with S(γ1 ⊕ γ1 ⊕ ε1) or #S1rRP4 or their stars, for 

unique 1 � r � 4.

We explain the terms in the above theorem. Firstly,

R −−→ γ1 −−→ RP2

denotes the canonical line bundle, and

ε1 := R × RP2

denotes the trivial line bundle. Secondly,

S2 −−→ S(γ1 ⊕ γ1 ⊕ ε1) −−→ RP2

is the sphere bundle of the Whitney sum. Finally, the circular sum

M#S1N := M \ E
⋃
∂E

N \ E

is defined by codimension zero embeddings of E in M and N that are not null-homotopic, where E is the 
nontrivial bundle:

D3 −−→ E −−→ S1.

Corollary 3.3 ([13, Corollary 1]). Let M and M ′ be closed nonorientable topological 4-manifolds with fun-
damental group of order two. Then M and M ′ are (simple) homotopy equivalent if and only if

1. M and M ′ have the same w2-type,
2. M and M ′ have the same Euler characteristic, and
3. M and M ′ have the same Stiefel–Whitney number: w4

1[M ] = w4
1[M ′] mod 2;

4. M and M ′ have ± the same Brown–Arf invariant mod 8, in case of w2-type III.

The following theorem is the main focus of this section. The pieces M and M ′ are classified by Hambleton–
Kreck–Teichner [13], and the UNil-group is computed by Connolly–Davis [8]. Since Z is a regular coherent 
ring, by Waldhausen’s vanishing theorem [18, Theorems 1, 2, 4], Ñil0(Z; Z−, Z−) = 0. Hence UNils5 = UNilh5
[6].

Theorem 3.4. Let M and M ′ be closed nonorientable topological 4-manifolds with fundamental group of order 
two. Write X = M#M ′, and denote S as the 3-sphere defining the connected sum. Let ϑ ∈ UNilh5 (Z; Z−, Z−).

1. There exists a unique homeomorphism class (Xϑ, hϑ), consisting of a closed TOP 4-manifold Xϑ and a 
tangential homotopy equivalence hϑ : Xϑ → X, such that it has splitting obstruction
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splitL(hϑ;S) = ϑ.

The function which assigns ϑ to such a (Xϑ, hϑ) is a bijection.
2. Furthermore,

Xϑ#3(S2 × S2) is homeomorphic to X#3(S2 × S2).

It admits a DIFF structure if and only if X does. There exists a TOP normal bordism between hϑ and 
1X , with surgery obstruction ϑ ∈ Lh

5 (D−,−
∞ ), such that it is composed of exactly six 2-handles and six 

3-handles.

Proof. Recall that the forgetful map

Ls
5(D−,−

∞ ) −−→ Lh
5 (D−,−

∞ )

is an isomorphism, since the Whitehead group Wh(D∞) vanishes. Then the existence and uniqueness of 
(Xϑ, hϑ) and its handle description follow from Theorem 3.1, using r = d + 1 = 3 from Proposition 2.2 and 
Proof 2.1. By [6, Theorem 6], the following composite function is the identity on UNilh5 (Z; Z−, Z−):

ϑ 
−→ (Xϑ, hϑ) 
−→ splitL(hϑ;S).

In order to show that the other composite is the identity, note that two tangential homotopy equivalences 
(Xϑ, hϑ) and (X ′

ϑ, h
′
ϑ) with the same splitting obstruction ϑ must be homeomorphic, by freeness of the UNilh5

action on the structure set Sh
TOP(X). Finally, since the 4-manifolds Xϑ and X are 6-stably homeomorphic 

via the TOP normal bordism between hϑ and 1X , we conclude that they are in fact 3-stably homeomorphic 
by Corollary 2.3. �

The six 2-handles are needed for map data and only three are needed to relate domains.

Corollary 3.5. The above theorem is true for X = RP4#RP4, with RP4 of w2-type III. �
Remark 3.6. We comment on a specific aspect of the topology of X. Every homotopy automorphism of 
RP4#RP4 is homotopic to a homeomorphism [15, Lemma 1]. Then any automorphism of the group D∞
can be realized [15, Claim]. The homeomorphism classes of closed topological 4-manifolds X ′ in the (not 
necessarily tangential) homotopy type of X has been computed in [5, Theorem 2]. The classification involves 
the study [5, Theorem 1] of the effect of transposition of the bimodules Z− and Z− in the abelian group 
UNilh5 (Z; Z−, Z−). As promised in the introduction, Corollary 3.5 provides a uniform upper bound on the 
number of S2 × S2 connected-summands sufficient for [15, Theorem 1(f)], and on the number of 2- and 
3-handles sufficient for [15, Proof 1(f)].
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