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For G a topological group, existence theorems by Milnor (1956), Gelfand–Fuks 
(1968), and Segal (1975) of classifying spaces for principal G-bundles are generalized 
to G-spaces with torsion. Namely, any G-space approximately covered by tubes (a 
generalization of local trivialization) is the pullback of a universal space indexed 
by the orbit types of tubes and cardinality of the cover. For G a Lie group, via a 
metric model we generalize the corresponding uniqueness theorem by Palais (1960) 
and Bredon (1972) for compact G. Namely, the G-homeomorphism types of proper 
G-spaces over a metric space correspond to stratified-homotopy classes of orbit 
classifying maps.
The former existence result is enabled by Segal’s clever but esoteric use of non-
Hausdorff spaces. The latter uniqueness result is enabled by our own development 
of equivariant ANR theory for noncompact Lie G. Applications include the existence 
part of classification for unstructured fiber bundles with locally compact Hausdorff 
fiber and with locally connected base or fiber, as well as for equivariant principal 
bundles which in certain cases via other models is due to Lashof–May (1986) and 
to Lück–Uribe (2014). From a categorical perspective, our general model Eκ

FG is a 
final object inspired by the formulation of the Baum–Connes conjecture (1994).

© 2022 Elsevier B.V. All rights reserved.

0. Introduction

Let G be a topological group. Throughout this paper, we mostly consider right G-spaces X. Write 
X/G := {xG | x ∈ X} for its orbit space, where xG := {xg | g ∈ G} denotes an orbit. An isotropy 
group is the subgroup Gx := {g ∈ G | xg = x}. For any subgroup H of G, consider the right H-cosets
Hg := {hg | h ∈ H} and endow the right G-set H\G := {Hg | g ∈ G} with the quotient topology. The 
balanced product of a right G-space X and a left G-space Y is

E-mail address: qkhan@indiana.edu.
https://doi.org/10.1016/j.topol.2021.107965
0166-8641/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.topol.2021.107965
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/topol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.topol.2021.107965&domain=pdf
mailto:qkhan@indiana.edu
https://doi.org/10.1016/j.topol.2021.107965


2 Q. Khan / Topology and its Applications 311 (2022) 107965
X ×G Y := (X × Y ) / ((xg, y) ∼ (x, gy)).

Historically, several models of classifying spaces for principal G-bundles exist. Milnor (1956) introduced 
EG over base spaces B that are paracompact Hausdorff, and Dold (1963) proved a uniqueness theorem in 
which homotopy classes of maps B −→ BG := EG/G correspond to isomorphism classes of principal bundles 
over B. Gelfand–Fuks (1968) generalized this to all base spaces B that are Tikhonov (that is, completely 
regular Hausdorff) via unnormalized joins, and Segal (1975) used non-Hausdorff cones to further observe a 
model EG that works for B being any topological space of arbitrary weight; however both are at the loss 
of uniqueness.

We extend Segal’s model to a so-called EFG to allow for fixed points with isotropy conjugate into a given 
set F of subgroups of G, where local triviality U ×G of a principal bundle is replaced by the notion of an 
H-tube S×H G, that is, the induction of a right H-space S (called a slice) to a right G-space. Consequently, 
other models over more specialized base spaces admit a canonical G-map to this one, that is, it is more 
universal for B any topological space. To avoid set-theoretic paradoxes, it is limited to Eκ

FG by the weight 
wB � κ of B, which is the minimum cardinality for a base of the topology; for example, second-countable 
spaces have weight the first infinite cardinal ℵ0. If the covering of the G-space X by tubes is approximate
and F consists of closed subgroups, then our existence theorem (2.1) is that X is the pullback of Eκ

FG

along a map X/G −→ Eκ
FG/G whose explicit formula is canonically determined by the tube data with 

κ = w(X/G).
Now assume G is an arbitrary Lie group, such as a countable discrete group. Following Bredon’s im-

provement (1972) of Palais’ argument (1960) for compact Lie G, as well as employing and developing (3.28)
modern advances in the equivariant theory of absolute neighborhood retracts (ANRs), we prove the fol-
lowing uniqueness theorem (4.7). Suppose that X admits a G-invariant metric and that the action of G is 
proper in the sense of Palais (1961), so an isovariant (H = Gx) covering by tubes exists by Palais’ slice 
theorem. Then the isomorphism classes of such X over a given base space B = X/G bijectively correspond 
to stratified-homotopy classes of maps B −→ BFG, where B has the induced orbit-type stratification and F
is a set of compact subgroups of G containing all the isotropy groups of X without any conjugate represen-
tatives. Here BFG is the orbit space of the right G-space EFG, which is our unnormalized join inspired by 
Gelfand–Fuks with coarse cones instead of fine ones. Palais–Bredon assume that F is finite so use normalized 
(Milnor) joins, as well as assume that B is finite-dimensional; we remove these cardinal limitations, as well 
as no longer assume G is compact whereby proper was automatic.

1. Preliminaries

M McCord introduced the following notion as non-Hausdorff cone [61, §8].

Definition 1.1 (McCord). Recall Sierpiński1 space I1 := ({0, 1}, {∅, {1}, {0, 1}}). Let (A, T) be a topological 
space. Write A+ := A � {0}. The indiscrete cone is

c(A,T) := (A,T)+ ∧ I1 = (A+,T ∪ {A+}).

This let G Segal [72] cleverly simplify a construction of Gelfand–Fuks [39]. We generalize it here to 
non-free actions for which Segal’s construction is F = {1}.

1 Sierpiński [73, §3, §9] noted I1 is the nondiscrete nonindiscrete Fréchet V-space [37, V] on two points. Open sets of a topological 
space correspond bijectively to continuous functions to I1.
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Definition 1.2. Let G be a topological group. Let F be any set of subgroups of G. Define F\G :=�H∈F H\G
equipped with the coherent topology. Let κ be a cardinal. Write κ = card(I) for a set I. Using the product 
and subspace topologies, define

Eκ
FG := (c(F\G))I − {0}I

and the κ-indexed F-classifying space Bκ
FG := Eκ

FG/G with quotient topology. Note the G-homeomorphism 
type of Eκ

FG does not depend on the representative I. For less cumbersome reading, we abbreviate EκG :=
Eκ

{1}G and BκG := Bκ
{1}G.

We expand Biller’s [16, 2.1] beyond Hausdorff G and X and compact H ∈ F. Our expanded definition 
here also adds the notions of approximate and isovariant.

Definition 1.3. Let G be a topological group. Let X be a topological G-space. For any x ∈ X, its isotropy 
group is Gx := {g ∈ G | xg = x}. Let F be any set of subgroups of G. An open G-subset T of X is an
F-tube if it is G-homeomorphic to S ×H G for some H ∈ F and H-space S. We say that X is covered by 
F-tubes if X =

⋃
i∈I Ti for some F-tubes {Ti ≈ Si ×Hi

G}i∈I . More specifically, the cover is approximate
if, for each point x ∈ X and neighborhood O of Gx in G, there exist i ∈ I and g ∈ G with x ∈ Ti and 
Gx � g−1Hig ⊂ O. In particular, the cover is isovariant if each x ∈ X admits some i ∈ I with x ∈ Ti and 
Gx conjugate to Hi.

(Isovariant) covering by F-tubes implies tomDieck’s “(strongly) locally F-trivial” [27, p46].

Proposition 1.4. Any Eκ
FG can be covered by F-tubes, in fact, by κ ·card(F)-many. Also, the cover by F-tubes 

is isovariant when restricted to the following G-subset:

E κ
FG := {e ∈ Eκ

FG | ∃i ∈ I : Ge = Gei} .

We shall call Bκ
FG := E κ

FG/G the isovariant κ-indexed F-classifying space. The G-space E κ
FG is analogous 

to Palais’ reduced join [69, 1.3.6] [20, p108]. Note E κ
FG is dense in Eκ

FG if F is closed under conjugacy and 
κ-fold intersections.

Proof. Fix i ∈ I and H ∈ F. Define a G-space T (i, H) and H-subspace S(i, H) by

T (i,H) := {e ∈ Eκ
FG | ei ∈ H\G}

S(i,H) := {e ∈ Eκ
FG | ei = H ∈ H\G}.

It remains to show that the following canonical bijective G-map is an open function:

μ : S(i,H) ×H G −→ T (i,H) ; [e, g] −→ eg = (eig)i∈I . (1.1)

Let O be open in G. Let j �= i ∈ I and K ∈ F. Let U be open in K\G. Consider

B(j, U) := {e ∈ S(i,H) | ej ∈ U}.

For any k ∈ I, write πk : (c(F\G))I −→ c(F\G) for the k-th projection (e → ek) and Vk := (πk◦μ)[B(j, U) ×
O]. Since O is open G, note Vi = {H}O = {H}(

⋃
h∈H hO) is open in H\G. Since U is open in K\G, note 

Vj = UO =
⋃

g∈O Ug is open in K\G [27, I:3.1i]. Otherwise Vk = c(F\G) is open in c(F\G) for all k �= i, j. 
Thus μ[B(j, U) ×O] ⊆ T (i, H) is open with respect to the product topology of (c(F\G))I .
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Observe that the subspace topology of S(i, H) has subbase

B := {B(j, U) | j ∈ I − {i} and ∃K ∈ F : U is open in K\G} .

Let B = B1 ∩ · · · ∩Bn be in the base generated by B. Since μ is injective, note

μ[B ×O] = μ[B1 ×O ∩ · · · ∩Bn ×O] = μ[B1 ×O] ∩ · · · ∩ μ[Bn ×O]

is open in T (i, H). Thus μ[O′×O] is open in T (i, H) for any open set O′ in S(i, H). Therefore μ[W ] is open 
for any open set W in product topology of S(i, H) ×G. As [−] : S(i, H) ×G −→ S(i, H) ×H G is continuous, 
μ is open so a G-homeomorphism. Hence each e ∈ Eκ

FG = (c(F\G))I − {0}I is a member of some F-tube 
T (i, H).

Finally, let e ∈ E κ
FG. Then Ge = Gei for some i ∈ I. We may assume ei �= 0. Then ei ∈ H\G for some 

H ∈ F. So e ∈ T (i, H) ∩ E κ
FG ≈ (S(i, H) ∩ E κ

FG) ×H G. �
2. The classifying property: existence

Theorem 2.1. Let G be a topological group. Let F be any set of subgroups of G. Let κ be a cardinal. Let X
be a G-space isovariantly covered by κ-many F-tubes. Then X is G-homeomorphic to the pullback f∗(E κ

FG)
for some map f : X/G −→ Bκ

FG. The conclusion holds with Eκ
FG if the cover is only approximate and each 

Gx closed.

Recall that each isotropy group Gx is closed if X is Hausdorff (T2) [27, I:3.5]. Any space is regular if any 
neighborhood of a point has a closed subneighborhood.

Proof. Let i ∈ I. There is a G-homeomorphism φi : Ti −→ Si ×Hi
G with Hi ∈ F. Write qi : Si ×Hi

G −→
Hi\G for the G-map [s, g] −→ Hig. Define a G-map

Fi : X −→ c(F\G) ; x −→
{

(qi ◦ φi)(x) if x ∈ Ti

0 if x /∈ Ti.

The G-map F : X −→ Eκ
FG whose i-th coordinate is Fi induces f : X/G −→ Bκ

FG. It remains to prove the 
following canonical surjective G-map is an open injection:

Ψ : X −→ f∗(Eκ
FG) ; x −→ (xG,F (x)).

Fix i ∈ I. Let O be open in G, and let U be open in Si. Consider the open set

V := φ−1
i [U ×G]G × {e ∈ Eκ

F | ei ⊂ HiO}

in X/G ×Eκ
FG, with the quotient map X −→ X/G; x −→ xG open [27, I:3.1iv]. Note Ψ(φ−1

i [U ×HiO]) =
V ∩ f∗(Eκ

FG). Thus Ψ|Ti, hence Ψ, is an open function.
It remains to show that Ψ is injective. Suppose Ψ(x) = Ψ(y) for some x, y ∈ X. Then xG = yG, that is, 

y = xa for some a ∈ G. First, assume the cover is isovariant. There exist i ∈ I and g ∈ G such that x ∈ Ti and 
Gx = g−1Hig. Note Fi(x) = Hing for some n ∈ NG(Hi). Then Hinga = Fi(x)a = Fi(y) = Fi(x) = Hing. 
So a ∈ Gx. Hence y = x. Alternatively, assume the cover is approximate and Gx is closed in G. Kolmogorov 
proved topological groups G are regular in the above sense [50, §1]. Assume a /∈ Gx. Then a /∈ O for some 
neighborhood O of Gx in G. There are i ∈ I and g ∈ G with x ∈ Ti and Gx � g−1Hig ⊂ O. Again note 
Fi(x) = Hing and then gag−1 ∈ Hi. So now a ∈ O, a contradiction. Hence a ∈ Gx. Therefore y = x. �
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Remark 2.2. Below are earlier classifying spaces that isovariantly map to ours. Our models Eκ
FG are T0 but 

not T1, if G is2 T0 and each H ∈ F is a closed set in G. A reason to regard higher cardinals κ is G = (S1)I , 
with the product topology, for any infinite set I. These infinite-dimensional toral groups are connected 
compact [22, p830] abelian Hausdorff groups and archetypes beyond Lie groups [43, 8.15]. The continuum 
c := 2ℵ0 can be ℵα for ordinals α > 0 in ZFC set theory.

2.1. Free actions

The following was my motivation and stated by G Segal in Russian [72].

Corollary 2.3 (Segal). Let G be any topological group. Let κ be any cardinal. Let X be a principal G-bundle 
covered by κ-many local trivializations. Then X is G-homeomorphic to the pullback bundle f∗(EκG) for 
some map f : X/G −→ BκG.

This simplified Gelfand–Fuks’ model [39]3 where the orbit space X/G is assumed Tikhonov (T3.5): a T0
space Y is Tikhonov if points and closed sets are separated by maps Y −→ [0, 1]. An upper bound on κ is 
the weight of X/G, the minimum cardinality for a base. For example, if X/G is second-countable, then κ
can be taken as the first infinite cardinal ℵ0.

Corollary 2.4 (Gelfand–Fuks). Let G be a topological group. Let B be a Tikhonov space, with weight denoted 
wB. Let X be a principal G-bundle over B. Then X is G-homeomorphic to the pullback bundle f∗(EwBG)
for some map f : B −→ BwBG.

This served to generalize Dold’s pullback [30] of Milnor’s construction [63]. A fast formula for f is given 
by tomDieck [25, II] and Husemöller [47, 4:12.2], who applied Milnor’s countable partition of unity trick [64, 
p25–26] [66, 5.9].

Corollary 2.5 (Milnor–Dold). Let G be a topological group. Let B be a paracompact Hausdorff space. Let X
be a principal G-bundle over B ≈ X/G. Then X is G-homeomorphic to the pullback bundle f∗(Eℵ0G) for 
some map f : B −→ Bℵ0G.

In turn, this bests Steenrod [75, 19.6, 19.3]: On\On+k models EnG for an embedding G � Ok.

Corollary 2.6 (Steenrod). Let G be a compact Lie group. Let B be a finite simplicial complex, say of dimension 
n. Let X be a principal G-bundle over B. Then X is G-homeomorphic to the pullback bundle f∗(EnG) for 
some map f : B −→ BnG.

The same conclusion holds for G Lie and B paracompact of dim � n [49, 5.10].

Remark 2.7. We illustrate how Segal’s allowance of non-Hausdorff base spaces (2.3) is useful in geometric 
combinatorics beyond Milnor–Dold’s model (2.5). Let G be a discrete finite group. Recall that a G-CW 
complex is regular if the attaching map of each cell is a homeomorphism. Consider the problem of enumer-
ating, possibly with repetition of isomorphism classes, all free regular G-CW complexes E with orbit space 
a given connected finite regular CW complex B.

By functoriality in Björner’s correspondence [17, 3.1], regular G-CW complexes (each admits a canonical 
simplicial subdivision [58, III:2.1, III:1.7]) correspond (via the face poset consisting of the closed cells under 

2 Kolmogorov (T0) topological groups G are Tikhonov (T3.5, completely regular Hausdorff) [71, Теорема 10].
3 Also [39] had only X/G be Hausdorff if X were “locally T-trivial” like [33, Définition(a)].
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inclusion) to so-called CW posets [17, 2.1] with G-action; here “poset” abbreviates “partially ordered set.” 
Given any CW complex K, write Δ(K) for its face poset and consider the Aleksandrov-discrete space
‖Δ(K)‖: the T0 (which is T1 iff Δ(K) has no comparable elements iff dim(K) = 0) topological space on the 
underlying set of Δ(K) with the open sets being the upper sets U (that is, y ⊇ x ∈ U implies y ∈ U) [3]. 
Then, by Segal’s model (2.3), enumeration of all free regular G-CW complexes E with E/G = B, possibly 
repeating isomorphism classes, is all of the maps A := ‖Δ(B)‖ −→ BwAG between these finite T0 spaces.

On the other hand, if one uses the Milnor–Dold model (2.5) in conjunction with obstruction theory, all 
connected free (hence CW) G-spaces X with X/G = B would correspond to the classification of regular 
G-fold coverings: the conjugacy classes of normal subgroups of π1(B) with quotient G. In principle, for 
small G and finitely presented π1(B), the Dietze–Schaps multistep algorithm [28] applies to this classical 
enumeration; however one inputs the order of G and then eliminates the spurious quotient groups of the 
same order. Alternatively, our new perspective in terms of conversion to finite T0 spaces directly provides a 
finite search-space implementable on a computer; a second pass eliminates redundant representatives within 
isomorphism classes.

For nonfree actions of finite groups G with orbit space a finite regular CW complex B, using Mostow’s 
slice theorem for these T3.5 G-spaces to obtain F-tubes [69, 1.7.19], in principle our method (2.1) of finite 
T0 spaces works. On the other hand, the classical approach of Palais–Bredon (2.14, 4.7) involves (stratified) 
obstruction theory — a multistep cohomological process.

2.2. Unstructured fiber bundles

Balanced products X×GF allow analogies of the above results for fiber bundles with fiber F and structure 
group G [75, 2.3]. However, applications do not effortlessly and formally occur to the more primitive notion 
of a fiber bundle with fiber F and no given structure group [75, 1.1].

Nonetheless, for any base and certain fibers, we can combine [75, 5.4–5.5] with [12, Theorem 4] to associate 
a principal bundle to unstructured fiber bundles.

Theorem 2.8 (Steenrod–Arens). Let F be a Hausdorff space that either is compact or is both locally connected 
and locally compact. Endow Homeo(F ) with compact-open topology G [36]. Any F -fiber bundle over any 
topological space B is isomorphic to the balanced product X ×G F for some principal G-bundle X over B.

Corollary 2.9. Let F be compact T2 space or locally connected locally compact T2. Endow Homeo(F ) with 
compact-open topology G. Let B be a topological space; let κ be a cardinal. Any F -fiber bundle p : E −→ B

covered by κ-many local trivializations {Ui × F}i∈I is isomorphic to pullback f∗(EκG ×G F ) for a map 
f : B −→ BκG.

Proof. This is immediate from Theorem 2.8 and Corollary 2.3. �
Remark 2.10 (Cianci–Ottina). For B any Aleksandrov space [3] and the above sort of fiber F , Corollary 2.9
overlaps with existence of a Grothendieck-type classifying space for unstructured F -fiber bundles over B
found recently in [23, 4.3].

The following result is well-known nowadays but seems to be undocumented.

Corollary 2.11 (Holm). Endow Homeo(Rn, 0) with compact-open topology TOPn. Let B be a paracompact 
Hausdorff space. Any Rn-microbundle p : E −→ B [65] is isomorphic to pullback f∗(Eℵ0TOPn ×TOPn

Rn)
for a map f : B −→ Bℵ0TOPn.
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Proof. Holm shows Rn-microbundles over B are (Rn, 0)-fiber bundles [44, 3.3]. As Rn is locally connected 
locally compact, use Theorem 2.8 and Corollary 2.5. �

Analyzing his own main proof (Y = [0, 1]), Crowell noticed this fact [24, §4].

Theorem 2.12 (Crowell). Let X be any locally compact Hausdorff space. Endow Homeo(X) with Arens’ g-
topology [12]. Let Y be any locally connected space. Any continuous function h : X × Y −→ X with each 
hy : X −→ X ; x −→ h(x, y) a homeomorphism has its adjoint h∗ : Y −→ Homeo(X) ; y −→ hy being 
continuous.

Now, we allow the fibers of Corollary 2.9 to include non-locally connected examples, such as the p-adic 
rationals F = Qp, by transferring the condition to the base.

Corollary 2.13. Let F be any locally compact Hausdorff space. Endow Homeo(F ) with Arens’ g-topology 
G. Let B be any locally connected topological space; let κ be a cardinal. Any F -fiber bundle p : E −→ B

covered by κ-many local trivializations {Ui × F}i∈I is isomorphic to the pullback f∗(EκG ×G F ) for a map 
f : B −→ BκG.

Proof. By [12, Theorem 3], G is a topological group with continuous evaluation function G × F −→
F ; (g, f) −→ g(f), and it is the coarsest for which these hold. For any transition (Ui ∩ Uj) × F −→
(Ui ∩ Uj) × F

prF−−→ F of local trivializations, since Ui ∩ Uj ⊂ B is locally connected, by Theorem 2.12, its 
adjoint Ui∩Uj −→ G is continuous. So the F -fiber bundle p : E −→ B has structure group G [75, 2.3] and is 
isomorphic to X ×G F for an associated G-principal bundle X −→ B [75, 8.1]. Then X is G-homeomorphic 
over B to a pullback of EκG, by Corollary 2.3. �

Again, notice that an upper bound on the cardinal κ is the weight wB of the base space B.

2.3. Nonfree actions

Bredon [20, II:9.7i] reworked Palais [69, 2.6.2], who had X separable and locally compact. In the conclusion 
[70, 4.5], Palais asserts that his classification also holds for any Lie group G if the action is Palais-proper; 
this assertion is enacted and extended further in our Theorem 4.7.

Corollary 2.14 (Palais–Bredon). Let G be a compact Lie group. Let F be a finite set of subgroups of G with 
no conjugate elements. Let X be a metrizable G-space with all orbit types represented in F. Then X is 
G-homeomorphic to the pullback f∗(E ℵ0

F G) for some map f : X/G −→ Bℵ0
F G.

Recall, when G is a compact Lie group, the Peter–Weyl theorem implies that there are only countably 
many conjugacy classes of compact subgroups [69, 1.7.27]. Next, Ageev had a similar construction to ours 
in the realm of metric spaces [2, 3.2].

Corollary 2.15 (Ageev). Let G be a compact Lie group. Write cpt for the set of compact subgroups of G. Let 
X be a metrizable G-space (hence X/G is metrizable). Then X is G-homeomorphic to pullback f∗(Eℵ0

cptG)
for a map f : X/G −→ Bℵ0

cptG.

Now we generalize this further, from having X/G be metrizable to only Tikhonov.

Corollary 2.16. Let G be any Lie group. Write cpt for the set of compact subgroups of G. Let X be a 
Tikhonov space, equipped with a Palais-proper G-action. By Palais’ slice theorem [70], X is isovariantly 
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covered by cpt-tubes, say κ-many. Then X is G-homeomorphic to the pullback f∗(Eκ
cptG) for some map 

f : X/G −→ Bκ
cptG.

In the next definition, the trivial group is in cpt but not in lrg for the p-adic integers G = Zp.

Definition 2.17 (Antonyan). Let G be a locally compact Hausdorff group. A subgroup H of G is large if 
the homogeneous space G/H is a topological manifold. Write lrg ⊆ cpt (equality if G Lie) for the subset of 
large compact subgroups of G.

The approximate-slice theorem of Abels–Biller–Antonyan [10, 3.6] is used instead of Palais’ slice theorem 
to prove the following generalization of Corollary 2.16. Our conclusion follows from theirs: their G-map F
is an embedding [6, 4.4(1)]. We conclude the same; our F also separates points from closed sets [35, 2.3.20].

Corollary 2.18 (Antonyan–Antonyan–Valera-Velasco). Let G be a locally compact Hausdorff group. Let X
be a Tikhonov space with a Palais-proper G-action. Then X is G-homeomorphic to the pullback f∗(EwX

lrg G)
for some map f : X/G −→ BwX

lrg G.

Proof. By Theorem 2.1 it suffices to approximately cover X by wX-many lrg-tubes.
Let x ∈ X; let O be an open neighborhood of Gx in G. Since the G-action on X is Bourbaki-proper [16, 

1.4, 1.6c], the G-map G −→ xG; g −→ xg is open [27, I:3.19iii]. Then xO = U ∩ xG for an open set U in 
X. By the approximate-slice theorem [10, 3.6], there exists a large compact subgroup H � Gx of G with 
xH ⊂ U . Then xH ⊂ xO. Hence H ⊂ O. Moreover, that theorem gives an open G-neighborhood T (x, O)
of x in X that is G-homeomorphic to S ×H G for some H-space S [1, 3.5]. Finally, this approximate cover 
{T (x, O)} of X by lrg-tubes, by the Axiom of Choice, has a subcover4 of cardinality � wX [35, 1.1.14]. �
2.4. Generalized equivariant principal bundles

Theorem 2.19. Let Γ be a topological group; let Π be any normal subgroup of Γ. Let F be a set of subgroups of 
Γ such that H∩Π = 1 for each H ∈ F. Let κ be a cardinal. Let X be a Γ-space isovariantly covered by κ-many 
F-tubes. Then X is Γ-homeomorphic to the pullback c∗(E κ

FΓ) for some Γ/Π-map c : X/Π −→ E κ
FΓ/Π.

Observe X −→ X/Π is a principal Π-bundle, as the restriction of F to Π is {1}.

Proof. Define c using the F and f for Γ of Proof 2.1 in the commutative diagram

X X/Π X/Γ

E κ
FΓ E κ

FΓ/Π Bκ
FΓ.

F c f (2.1)

Then X is Γ-homeomorphic to the pullback f∗(E κ
FΓ), by Theorem 2.1. Consider the set FΠ :=

{HΠ := HΠ/Π | H ∈ F} of subgroups of the topological group G := Γ/Π.
Note GxΠ = (Γx)Π. For each H ∈ F, the quotient map H −→ HΠ is an isomorphism, since H ∩ Π = 1. 

Then any H-space S is an HΠ-space. So (S ×H Γ)/Π ∼= S ×HΠ G as G-spaces. Thus, by Proof 1.4, the 
G-space E κ

FΓ/Π is isovariantly covered by κ · card(F)-many F-tubes. Theorem 2.1 gives the commutative 
diagram

4 Note Lindelöf’s lemma is wX = ℵ0: any open cover has a countable subcover [55, II: Rn].
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X/Π E κ
FΓ/Π E

κ·card(F)
F G

X/Γ Bκ
FΓ B

κ·card(F)
F G

c

f

(2.2)

where the right square and the rectangle are pullbacks. By the so-called pasting law [60, III:4.8b], the left 
square of (2.2) is a pullback. Again, since the right square and the rectangle of (2.1) are pullbacks, the left 
square of (2.1) is a pullback. �

May–Elmendorf’s model [34, p278] led to this existence part of [52, Theorem 9]. The pullback property 
[51, p269] is established in [53, Theorem 7].

Corollary 2.20 (Lashof–May–Rothenberg). Let Π be a closed normal subgroup of a compact Lie group Γ. 
Write F(Π; Γ) for the set of closed subgroups H of Γ with H ∩ Π = 1. Let X −→ X/Π be a numerable 
(Π; Γ)-bundle [52] with X Tikhonov. Suppose that X has the Γ-homotopy type of a Γ-CW complex.5 Then 
the Γ-space X is Γ-homeomorphic to c∗(E ℵ0

F(Π;Γ)Γ) for some Γ/Π-map c : X/Π −→ E ℵ0
F(Π;Γ)Γ/Π.

Proof. An isovariant cover exists by Palais [70]; κ = ℵ0 by tomDieck [25]. �
A noncompact result exists for twisted equivariant principal bundles [57, 11.4].

Corollary 2.21 (Lück–Uribe). Let Π, G be compactly generated Hausdorff groups. Let τ : G −→ Aut(Π) be a 
homomorphism with adjoint G × Π −→ Π continuous. Write Γ := k(Π �τ G) [18, III:2.28] [76]. Let X be 
a Γ-CW complex with X −→ X/Π a (G, τ)-equivariant principal Π-bundle. Suppose R is a family of local 
representations for (G, τ, Π) [57, 3.3] that satisfies the (H)-condition [57, 6.1]. Write F(R) for its associated 
family of closed subgroups of Γ [57, 3.5]. Then X is Γ-homeomorphic to the pullback c∗(E ℵ0

F(R)Γ) for a G-map 

c : X/Π −→ E ℵ0
F(R)Γ/Π.

Remark 2.22 (Guillou–May–Merling). Let Π be either a discrete group or a compact Lie group. Let G be 
a discrete group. Let τ : G −→ Aut(Π) be any homomorphism. Write Γ := Π �τ G. Corollary 2.21 applies 
with F(R) = F(Π; Γ). The model in [41, 0.4] is more rigid, as it descends from a categorical framework.

3. The classifying property: uniqueness, I

3.1. Topological groups G and arbitrary G-spaces

As a prelude to the next subsection, we discuss coarse cones and coarse joins (survey in [38]).

Definition 3.1. Let (A, T) be a topological space. Consider the half-smash set

A+ ∧ [0, 1] := A× [0, 1] / (∀a, a′ ∈ A : (a, 0) ∼ (a′, 0)).

The coarse cone C(A, T) is this set equipped with the coarsest topology for which the functions A+∧[0, 1] −→
[0, 1] ; [a, t] −→ t and A ×(0, 1] −→ A ; [a, t] −→ a are continuous. The fine cone C (A, T) is that set equipped 
with the finest topology for which the function A × [0, 1] −→ A+ ∧ [0, 1] ; (a, t) −→ [a, t] is continuous.

5 A (Π; Γ)-bundle X −→ X/Π is numerable and X ∈ T3.5 if X is a Γ-CW complex [52, 4,5].



10 Q. Khan / Topology and its Applications 311 (2022) 107965
Remark 3.2. For any space X, the identity function CX −→ CX is continuous. It is a homeomorphism if 
X is compact, by the tube lemma. It is not so for X = R, since {[x, t] ∈ R+ ∧ [0, 1] | t < 1/(1 + x2)} is a 
neighborhood of the cone point in the fine topology but not the coarse one. If d is a metric on X then CX

has metric

Cd([x, s], [y, t]) := |s− t| + min{s, t} · d(x, y).

Note a function f = (f0, f1) : A −→ CX is continuous if and only if its coordinates f1 : A −→ [0, 1] and 
f0 : f−1

1 (0, 1] −→ X are continuous. A function CX −→ Z is continuous if and only if the composition with 
X × [0, 1] −→ CX is continuous.

Remark 3.3. Historically, these two notions of cone were implicit in the topological study of simplicial 
complexes K. If K is given the CW topology [82, p316], then CK is canonically a CW complex. If K is 
given the euclidean-metric topology [54, I.1:4.12], then CK is induced by the euclidean metric.6 Recall the 
CW topology on K is finer than the metric one and is it if and only if K is locally finite.

If X is a G-space, then CX and CX have G-actions defined by [x, t] · g := [xg, t].

Example 3.4 (Gelfand–Fuks). Their unrestricted join [39] of any G-spaces is

ˇ
i∈I

Xi :=
(∏

i∈I

CXi

)
− {0}I .

Correspondingly, we reformulate Milnor’s definition [63] in terms of cones.

Definition 3.5 (Milnor). The coarse join of any set of topological spaces is

©
i∈I

Xi :=

⎧⎨
⎩[x, t] ∈

∏
i∈I

CXi

∣∣∣∣ ∃ finite J ⊆ I :
∑
j∈J

tj = 1 and ∀i ∈ I − J : ti = 0

⎫⎬
⎭

endowed with the subspace topology induced from Tikhonov’s product topology. Write EZ := Z◦ℵ0 for any 
space Z, with the diagonal G-action if Z has a G-action.

As just above, we update for arbitrary cardinality, in [69, 1.3.6] [20, p108].

Definition 3.6 (Palais). The isovariant join of a set of topological G-spaces is

æ

i∈I

Xi :=
{

[x, t] ∈ ©
i∈I

Xi

∣∣∣∣ ∃i ∈ I : G[x,t] = Gxi

}
.

However, if I is infinite, this ‘hemorrhages’ in neighborhoods of A ∪ X(H) in X in [20, Proof II:9.5], 
obstructing renormalization on X−A to finite support. This naïveté is untenable for Proof 3.28; we introduce 
our own coarse join in the Gelfand–Fuks style, which for finite I is G-homeomorphic to Palais’ join via 
normalization.

6 Given the vertex set S of the abstract simplicial complex [4, §IV.1:1] underlying K, there is a geometric realization in terms of 
basis vectors in the coproduct R⊕S equipped with the 2-norm.
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Definition 3.7. The unrestricted isovariant join of topological G-spaces is

ˇ
i∈I

Xi :=
{

[x, t] ∈
∏
i∈I

CXi − {0}I
∣∣∣∣ ∃i ∈ I : G[x,t] = Gxi

}
.

We remind the reader of the following notion of a proper action [70, 1.2.2]. Note that the Palais-proper 
condition is automatic if G is an arbitrary compact group.

Definition 3.8 (Palais). A topological G-space X is Palais if every x ∈ X has a neighborhood U in X
satisfying: each y ∈ X has a neighborhood V in X so that the transporter 〈U, V 〉G := {g ∈ G | Ug∩V �= ∅}
is precompact (that is, has compact closure). Observe that if G is discrete, then 〈U, U〉G being precompact 
(hence finite) means that the action is properly discontinuous.

In the second half of this subsection, we quickly construct a filtered homotopy.

Definition 3.9. The following topological space we shall call bi-Sierpiński space:

I2 := ({−1, 0,+1}, {∅, {0}, {−1, 0}, {0,+1}, {−1, 0,+1}}) .

It is the particular-point topology on three elements where I1 is for two [74, II:8]. The inclusion I1 −→
I2; 0, 1 −→ 1, 0 has left-inverse I2 −→ I1; −1, 0, 1 −→ 1, 1, 0. Earlier, I2 occurs as the upper topology on the 
poset of the 1-simplex [4, I:1.4]. Notice the continuous surjection Δ : [−1, 1] −→ I2 ; ± 1 −→ ±1, −1 < t <
1 −→ 0.

Lemma 3.10. Let G be a topological group. Let F be any set of subgroups of G. Suppose {Ti ≈ G ×Hi
Si}i∈I

and {Tj ≈ G ×Hj
Sj}j∈J each F-isovariantly cover a G-space X for sets I and J . There is a G-map 

Φ : X × I2 −→ E I�J
F G that restricts to the classifying G-maps F− : X × {−1} −→ E I

FG and F+ :
X × {+1} −→ E J

FG. The same holds for approximate coverings by F-tubes where E∗
FG (1.2) replace E ∗

FG.

So the classifying maps f± : X/G −→ BI�J
F G are homotopic via (id × Δ) ◦ Φ/G. The proof works more 

generally for G-maps F± not necessarily induced from tubes.

Proof. Define Φ| : X × {0} −→ E I�J
F G to be the classifying G-map of Theorem 2.1 for the combined 

isovariant cover {Ti}i∈I � {Tj}j∈J of the G-space X by F-tubes. Define Φ|X × {−1} to be the classifying 
G-map F− for the isovariant cover {Ti}i∈I ; define Φ|X × {+1} to be the classifying G-map F+ for the 
isovariant cover {Tj}j∈J . Here we use the G-embedding E I

FG �E J
FG −→ E I�J

F G given by extension by zero.
Let O be open in G. Let i ∈ I. In the product topology, consider the open set

B(O, i) := {e ∈ E I�J
F G | ei ∈ OHi/Hi}.

There is equipped a G-homeomorphism φi : Ti −→ G ×Hi
Si. Note the preimage

Φ−1(B(O, i)) = φ−1
i (OHi ×Hi

Si) × {−1, 0}

is open in X × I2. Similarly one defines B(O, j) for any j ∈ J and verifies a similar equality. Observe that 
{B(O, k) | O open in G and k ∈ I � J} is a subbase for the topology of E I�J

F G. Therefore the G-function 
Φ is continuous. �
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Theorem 3.11. Let G be a topological group. Let F be any set of subgroups of G. Let κ be an infinite cardinal. 
Then Eκ

FG is a final object in the category of all topological G-spaces covered by κ-many F-tubes and G-
homotopy classes of G-maps.

For paracompact Hausdorff orbit space, one assumes κ = ℵ0 by Proposition 4.4.

Proof. Existence is in Proof 2.1, without “approximate” for the extra “pullback.” Uniqueness up to G-
homotopy is Lemma 3.10 via (id × Δ) ◦ Φ and κ + κ = κ. �

Here is an important case [27, I:6.6], upon which the Baum–Connes conjecture is formulated. Asserted 
in [15, Proof A:1], one must replace Husemöller’s case of F = {1} with Lück’s observation [56, 2.5i] that the 
former case works for noncompact G. (Earlier, tomDieck had a narrower case [26] derived from [25].)

Corollary 3.12 (tomDieck). Let G be a locally compact Hausdorff group. Let F be a set of closed subgroups 
of G preserved under finite intersections and under conjugacy. The coarse join E(F\G) = (F\G)◦ℵ0 is a 
final object in the full subcategory of numerable G-spaces. (Recall the isovariant G-map E(F\G) −→ Eℵ0

F G

of 2.2.)

The first case is recorded independently in [47, 4:12.4] [25, §3] after Milnor.

Corollary 3.13 (Husemöller). Let G be a topological group. Then EG is a final object in the category of 
numerable G-spaces and G-homotopy classes of G-maps.

To state a stronger uniqueness, we require the notion of a stratified homotopy. The following definition 
we amplify to preorders from partial-orders [46, 2.6]; we shall need it in such generality and cannot assume 
closedness if X is non-Hausdorff.

Definition 3.14 (Hughes). Let P be a set with a preorder7 �. A topological space Y shall be (P, �)-filtered
if it is equipped with a set {Y a}a∈P of subspaces where Y =

⋃
a∈P Y a and b ≺ a implies Y b ⊆ Y a. A 

continuous function f : Y −→ Z of (P, �)-filtered spaces is (P, �)-filtered if f(Y a) ⊆ Za for each a ∈ P. In 
particular, a map f : Y −→ Z shall be (P, �)-stratified8 if f(Ya) ⊆ Za for each a ∈ P, where

Ya := Y a −
⋃
b≺a

Y b.

The source Y × [−1, 1] of a homotopy has stratification (Y × [−1, 1])a = Ya × [−1, 1].

Example 3.15. Let G be a topological group. Let F be a set of subgroups of G. Write (F) for the set of 
G-conjugacy classes of elements of F. Define a preorder � on (F) by: (H) � (K) if H contains a G-conjugate 
of K (the reverse of [49, 3.5]). Let X be a G-space with orbit types in F. The orbit-type filtration of X/G

is

(X/G)(H) := X(H)/G = {xG ∈ X/G | ∃g ∈ G : H ⊆ Gxg} .

The orbit-type stratification of the orbit space X/G is

7 Recall a preorder is a partial-order without antisymmetry: a � a holds and a � c if a � b � c.
8 If (P, �) has upper topology [3, before II], � satisfies antisymmetry (a = b if a � b � a), and each set Y a is closed, then 

{Ya}a∈P is a (P, �)-stratification in the sense of Lurie [59, A.5.1]. If further the partition {Ya}a∈P is locally finite, then it is a 
(P, �)-decomposition in the sense of Goresky–MacPherson [40, 1.1]. If the partially ordered set is finite and Y a is closed cofibrant 
in Y b if a ≺ b, then {Y a}a∈P is a (P, �)-filtration of Y in the sense of Weinberger [81, p115].
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(X/G)(H) := X(H)/G = {xG ∈ X/G | ∃g ∈ G : H = Gxg} .

By isovariance, the map f (2.1) is stratified and homotopy Φ/G (3.10) is filtered.9

Remark 3.16. In the preceding example, if G is a Lie group and F ⊆ cpt(G), then it follows from Cartan’s 
closed-subgroup theorem that � is moreover a partial-order. However, even for the solvable Baumslag–Solitar 
group

G = BS(1, 4) = 〈x, y | yxy−1 = x4〉 ∼= Z[ 14 ] �4 Z,

which is a 0-dimensional Lie group with the discrete topology, antisymmetry of � fails for F = {〈x〉, 〈x2〉}. 
Therefore, for general G and F, our Definition 3.14 of filtered spaces is stated in terms of preorders, not the 
more familiar partial-orders.

3.2. Arbitrary Lie groups G and isometric G-actions

At first, the filtered homotopy Φ/G (3.10) had a stratified strengthening [69, §2.7] [20, II:9.7].

Theorem 3.17 (Palais–Bredon). Let G be a compact Lie group. Let F ⊆ cpt(G) be finite with no conjugate 
elements. Consider Palais’ join of Milnor’s join (3.5):

En
FG :=

æ

H∈F

(H\G)◦n

for some n ∈ N. Let B be an (F)-filtered metrizable space of covering dimension < n. Suppose f, g : B −→
Bn
FG := En

FG/G are stratified maps. If f∗(En
FG) and g∗(En

FG) are G-homeomorphic over the identity idB, 
then there exists a stratified homotopy from f to g.

We generalize G, F, n following their strategy, but we implement it differently.

Theorem 3.18. Let G be an arbitrary Lie group. Let F ⊆ cpt(G) with no conjugate elements. Consider our 
unrestricted isovariant join (3.7) of copies of Milnor’s infinite join:

EFG := ˇ
H∈F

E(H\G).

Let B be an (F)-filtered metrizable space. Suppose f, g : B −→ BFG := EFG/G are stratified maps (3.14). 
If f∗(EFG) and g∗(EFG) are G-homeomorphic over the identity idB, then there exists a stratified homotopy 
from f to g.

The proof appears after some lemmas in the spirit of the Palais–Bredon strategy.
The first lemma generalizes [20, II:9.2] without using transfinite induction. Therein, the members of C

had dimension � n and F was a compact (n − 1)-connected polytope [20, II:9.1]. Our C shall be the class 
M of metrizable spaces. Recall that Z is an absolute extensor for C, written Z ∈ AE(C), means that for 
any X ∈ C and closed subset A ⊂ X, any map A −→ Z has an extension X −→ Z.

9 To see Φ/G : X/G × I2 −→ BI�J
F G need not be stratified, take K cohopfian in X = K\G and κ = 1, T1 = X = T2 and 

φ1(Kg) = Kg, φ2(Kg) = Kag with a /∈ NG(K). Note GH(K,−1) = G(K,0) = K and GH(K,1) = G(0,Ka) = a−1Ka, but note 
GH(K,0) = G(K,Ka) = K ∩ a−1Ka �= K.
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Lemma 3.19. Let C be a subclass of the class P of paracompact Hausdorff spaces, such that any closed subset 
of any member of C is a member of C. Let p : E −→ X be an F -fiber bundle with any structure group [75, 
2.3] and X ∈ C and F ∈ AE(C). For any closed subset A of X, any section A −→ E extends to a section 
X −→ E.

A structure group does not occur in [20, II:9.2] but does in his applications.

Proof. Since X ∈ P, there is a p-trivializing locally finite open cover of X. The associated principal bundle 
has a trivializing locally finite open cover {Ui}∞i=1 that is countable [25, Hilfsatz 2], which works also for the 
F -fiber bundle p. There is a closed refinement {Ci ⊂ Ui}∞i=1 [31, 2], which is locally finite and p-trivializing.

Write A0 := A and An+1 := An ∪ Cn+1. Inductively assume a section An −→ E exists extending 
A −→ E for some n > 0. Since p−1(Cn+1) ≈ Cn+1×F , sections Cn+1 −→ E correspond bijectively to maps 
Cn+1 −→ F . Then the section An ∩Cn+1 −→ E corresponds to a map An ∩Cn+1 −→ F . Since An is closed 
in X, we have An ∩ Cn+1 is closed in Cn+1 ∈ C. Then there is an extension Cn+1 −→ F . Equivalently, the 
section An ∩ Cn+1 −→ E extends to a section Cn+1 −→ E. By the pasting lemma, we obtain a section 
An+1 −→ E. We are done by induction. �

T O Banakh proved the following observation using direct methods [14, 1.3]. Indirectly, this already 
followed from Haver [42] with Dold [30, Proof 8.1].

Lemma 3.20 (Banakh). Let W be a Lie group. Then Milnor’s join EW ∈ AE(M).

For any class C of topological G-spaces, a G-space Z is an absolute G-extensor for C, written Z ∈
G-AE(C), if for any closed G-subset A ⊂ X ∈ C, any G-map A −→ Z extends to a G-map X −→ A. Write 
G-M for the class of Palais (3.8) G-metrizable spaces. Here, G-metrizable means there is a G-invariant 
metric. Furthermore, a G-space Z is an absolute neighborhood G-extensor for C, written Z ∈ G-ANE(C), 
if for any closed G-subset A ⊂ X ∈ C, any G-map A −→ Z admits an extension to a G-map U −→ Z for 
some G-neighborhood U of A in X.

Lemma 3.21. Let K be a compact Lie group. For any K-normed linear space V : a vectorspace with linear 
K-action and K-invariant norm, EV ∈ K-ANE(K-M).

A nonexample is the circle group K = U1 and V = Cb(C, R) with the sup-norm, due to failure of 
continuity of right-action (f · g)(x) := f(xg) [8, Example 8:1].

Proof. The topological product P := (V ⊕ R)ℵ0 is the algebraic direct product of R-vectorspaces with 
product topology. The topological vectorspace P is metrizable and locally convex but not normable. (Also 
P is Fréchet if and only if V is Banach.) To see that P is locally convex [19, §II:4.1], recall P has the coarsest 
topology for which each n-th projection P −→ V ⊕ R is continuous. The norm-topology on V ⊕ R is the 
coarsest for which the norm and all of its vectorspace translations are continuous. Thus the topology on P is 
the coarsest for which each n-th seminorm, given by n-th projection then n-th norm, and all coordinatewise 
vectorspace translations are continuous [19, §II:1.2]. So P is locally convex [19, §II:4.1]. The proof that P is 
metrizable formally generalizes that for V = 0: Rℵ0 [79, p547]. Lastly, P is not normable because any basic 
open neighborhood of 0 contains a line.

Factoring through metric orbit spaces, by Tietze’s extension theorem [78, Satz 3], we obtain that R ∈
K-AE(K-M). Using the coordinate projections, observe that the K-action on P is continuous; also P ∈
K-AE(K-M) if V ∈ K-AE(K-M). Above, we implicitly used the sup-norm on V ⊕ R, namely: ‖(v, r)‖ :=
max{‖v‖, |r|}.
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Consider the bounded level-preserving K-injection from the coarse cone (3.1):

ι : CV −→ V ⊕R ; [x, t] −→
(

tx

1 + ‖x‖ , t
)
.

The restriction ι|(CV − {0}) away from the conepoint is an embedding. Note

ι−1{(v, r) | ‖(v, r)‖ < ε} = {[x, t] | t < ε}.

Thus ι is both continuous and open at the coarse conepoint. So ι is a K-embedding. Hence the product 
function ιℵ0 : (CV )ℵ0 −→ P is a K-embedding. Since the image ι(CV ) in V ⊕ R is convex, it follows that 
ιℵ0(EV ) ⊂ ιℵ0(CV ) in P is also convex. Therefore, since EV admits a K-embedding as a convex K-subset 
of a locally convex vectorspace P , and since K is a compact Lie group, by Antonyan’s partial generalization 
[7] of Dugundji’s extension theorem, EV ∈ K-ANE(K-M). �

The above variations of extensor, if a member of C also, are spaces Z which have the stated extension 
property specialized to when A −→ Z is the identity map. They are forms of the retract notion, denoted 
by the letter R instead of E [45].

The Lie hypothesis of Lemma 3.21 is necessary; if K is a non-Lie metric compact group, there are K-
normed linear spaces not in K-ANE(K-M) [8, Theorem 6]. Lemma 3.20 is a case of Banakh’s lemma [14, 
1.3] stated for all W ∈ ANR(M). The latter lemma shall be the G = 1 case of the following equivariant 
generalization.

Theorem 3.22. Let G be a Lie group. Milnor’s join (3.5) defines a class-function

E : G-ANR(G-M) −→ AR(M) ∩G-M ∩G-ANE(G-M) ; Z −→ EZ := Z◦ℵ0 .

We mostly repeat the second half of Banakh’s proof and introduce Palais actions. Also we remove his 
intermediate need for a convex subset and we fill in some details. I did not fully understand the first half 
of Banakh’s proof, which involved some sort of abstract convexity structure and an appeal to the proof of 
Dugundji’s theorem, so I replaced it with my own Lemma 3.21 which applies Antonyan’s rigorous work.

Proof. Fix Z ∈ G-ANR(G-M). Since G is locally compact and Z ∈ G-M, there exist a G-normed linear 
space L, a normed linear space N , and a closed G-embedding e : Z −→ (L − 0) × N with open G-subset 
L −0 Palais [5, 3.10]. Since the G-action on N is trivial, (L −0) ×N is Palais (3.8) hence lies in G-M. Then, 
since Z ∈ G-ANR(G-M), there exists a G-retraction r : O −→ e(Z) for some G-neighborhood O of e(Z) in 
(L − 0) ×N ⊂ L ⊕N . Consider the G-invariant map

η : L⊕N −→ [0, 1] ; x −→ d(x,C)
d(x, eZ) + d(x,C) (3.1)

where C := L ⊕N −O and d(x, S) := infy∈S ‖x −y‖. Note η(C) = {0} and η(eZ) = {1}. So η for M realizes 
the conclusion of Urysohn’s lemma for T4 spaces.

Using r and η, next we reproduce Banakh’s neighborhood retraction R of E(eZ) in E(L ⊕N), and the 
map R shall turn out to be G-equivariant. Define a G-function

s : E(L⊕N) −→ [0, 1] ; [x, t] −→
∞∑
i=0

η(xi)ti.

To prove Banakh’s assertion that s is continuous, for any i ∈ N consider the function η(xi)ti : C(L ⊕N) −→
[0, 1] defined on the coarse cone of a G-normed linear space. It is continuous away from the conepoint, since 
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η and multiplication are continuous. Given ε > 0, taking δ = ε, if |ti − 0| < δ then |η(xi)ti − 0| � ti < ε, so 
it is continuous. Thus, as the i-th projection is continuous, for all n ∈ N, the n-th partial sum is too:

sn : C(L⊕N)ℵ0 −→ [0, n] ; [x, t] −→
n∑

i=0
η(xi)ti.

Let [x, t] ∈ E(L ⊕N). Then ti = 0 for some n � 0 and all i > n. Let ε > 0. Since sn and each [x, t] −→ ti
are continuous, then in the product topology (see 3.5), there exists an open neighborhood U of [x, t] in 
the subspace E(L ⊕ N) ⊂ C(L ⊕ N)ℵ0 such that: if [x′, t′] ∈ U then |sn[x, t] − sn[x′, t′]| < ε/2 and ∑n

i=0 t
′
i > 1 − ε/2; note

s[x, t] − s[x′, t′] = sn[x, t] − s[x′, t′] � sn[x, t] − sn[x′, t′] < ε/2 < ε

s[x′, t′] − s[x, t] =
∞∑
i>n

η(x′
i)t′i + sn[x′, t′] − sn[x, t] <

∞∑
i>n

t′i + ε/2 < ε

so |s[x, t] − s[x′, t′]| < ε. Thus s is continuous. Banakh’s neighborhood retraction is

R : s−1(0, 1] −→ E(eZ) ; [x, t] −→
[
r(xi),

η(xi)ti
s[x, t]

]
.

Let K ∈ cpt(G). By Lemma 3.21, E(L ⊕ N) ∈ K-ANE(K-M), as G hence K is Lie by Cartan’s closed 
subgroup theorem [21, 27]. Then EZ ∈ K-ANE(K-M), as EZ is a neighborhood K-retract of E(L ⊕ N). 
Thus EZ ∈ G-ANE(G-M), by Antonyan’s neighborhood version [9, Thm 5] of Abels’ induction theorem [1, 
4.2]. Also, as Z ∈ G-M, the coarse cone CZ ∈ G-M by Remark 3.2. So the induced metric [68, 20.5] on the 
countable product (CZ)ℵ0 is G-invariant. Hence EZ ∈ G-M.

Finally, we establish the fact that EZ ∈ AE(M), independently of [14, 1.3]. Take G = 1 in the above 
arguments and simplify, as follows. Take L = 0 and the closed embedding e : Z −→ N with N Arens–Eells’ 
space for Z ∈ M [13]. Obtain R as above. In Lemma 3.21 for K = 1, replace [7] with Dugundji’s extension 
theorem [32], to find EN ∈ AE(M). Then EZ ∈ ANE(M), skipping [21] and [9]. So EZ ∈ AE(M) [45, 
III:7.2], since EZ is contractible [30, 8.1]. �

Next, let K be a set of compact subgroups of a locally compact Hausdorff group G. Write (G, K)-M for 
the Palais G-metrizable spaces with isotropy conjugate into K.

Lemma 3.23. Fix H ∈ lrg(G) (see 2.17) for a locally compact Hausdorff group G. Then the Palais G-space 
E(H\G) is a member of the class G-AE((G, {H})-M).

This update of [20, II:9.3] generalizes half of a recent theorem [83, 4.3].

Corollary 3.24 (Zhang–Antonyan–Antonyan). Let G be a Lie group. The trivial group 1 is a large compact 
subgroup of G, hence EG = E(1\G) ∈ G-AE((G, {1})-M).

Remark 3.25. Let G be a locally compact group. Updating his own earlier work, S. Antonyan defines a 
closed subgroup H as large in G to be that G/N is a Lie group for some normal subgroup N ⊆ H of G
[10, 3.1]. By [10, 3.2], this is equivalent to our Definition 2.17. When G is separable compact Hausdorff, this 
equivalence is immediate from [71, Теорема 75] or [67, Theorem 6.3:1], since the kernel of the G-action on 
G/H is the normal subgroup N =

⋂
g∈G gHg−1.

As the large subgroup H is closed in the Hausdorff group G, so is its normalizer NG(H). The closed 
subgroup NG(H)/N of the Lie group G/N is Lie [21, 27]. Since H/N is closed in NG(H)/N , then WG(H) :=
NG(H)/H is Lie [27, I:5.3].
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Recall the H-skeleton (or H-fixed set) and H-stratum are the WG(H)-spaces

XH := {x ∈ X | H � Gx} and XH := {x ∈ X | H = Gx}.

Our approach shall avoid the related and noteworthy criterion of James–Segal: for any compact Lie group 
K, a member of K-ANE(K-P) belongs to K-AE(K-P) if and only if each H-skeleton belongs to AE(P) for 
all closed H � K [48, 4.1].

Proof of Lemma 3.23. For easier reading, shorten W := WG(H) and E := E(H\G). Observe that E has all 
orbit types10 � (H) and that EH = E(H\NG(H)) = EW .

Recall from [49, 2.6] the space MG(X, Y ) := {(x, y) ∈ X × Y | Gx � Gy}/G. Let X be a G-metrizable 
space with Palais G-action of single orbit type (H). Note

MG(X,E) = XH ×NG(H) E
H = XH ×W EW.

The map π : MG(X, E) −→ X/G becomes XH ×W EW −→ XH/W , which is an EW -fiber bundle, as W is 
Lie (Remark 3.25), by Palais’ slice theorem [70, 2.3.1].

Suppose that A is a closed G-subset of X and f : A −→ E is a G-map. The G-extensions of f to X
correspond bijectively [49, 2.6]11 to the extensions of the π-section Γf : A/G = AH/W −→ XH ×W EW to 
π-sections from X/G = XH/W . The latter exists by Lemma 3.19, since EW ∈ AE(M) (3.20) and M ⊂ P

[77]. �
Extending the above notions, the (H)-skeleton and (H)-stratum are G-spaces

X(H) := {x ∈ X | ∃g ∈ G : H � Gxg} and X(H) := {x ∈ X | ∃g ∈ G : H = Gxg}.

Lemma 3.26. Let H be a compact subgroup of a Lie group G. Let X be a Tikhonov space with Palais G-action. 
Both X(H) and X(H) −X(H) are closed subsets of X.

So X(H) is locally closed in X with closure ⊆ X(H); see [20, p68] [27, I:6.2]. Therefore, X satisfies the 
Frontier Condition over the poset (cpt, �) [40, I:1.1].

Proof. We use the notation of Example 3.15. Let x ∈ X−X(H). Then (H) � (Gx). By Palais’ slice theorem 
[70, 2.3.1], there exist a G-neighborhood U of xG in X and a G-retraction U −→ xG ≈ Gx\G. If y ∈ U

then (Gy) � (Gx) so (H) � (Gy). Thus U ⊆ X −X(H). Therefore X(H) is closed in X.
Let a ∈ X(H). Then (H) = (Ga). By Palais’ slice theorem, there exist a G-neighborhood O of aG in X

and G-retraction O −→ aG ≈ G/H. Since G is Lie, its closed subgroups are cohopfian, so the preorder �
is antisymmetric; see Footnote 10 and [27, I:3.7]. If b ∈ X(H) ∩ O then (H) � (Gb) � (H) so (H) = (Gb). 
Thus X(H) ∩O ⊆ X(H). So X(H) is open in X(H). Hence X(H) −X(H) is closed in X. �

Finally, we update Palais–Bredon’s key cone lemma [69, §2.7] [20, II:9.4]. They only had considered 
compact G, so they equivalently used the fine cone (3.2).

Lemma 3.27. Fix a compact subgroup H of an arbitrary Lie group G. Let A be a closed G-subset of a 
Palais G-metrizable space X. Any G-map ϕ : A −→ CE(H\G) with 0 /∈ ϕ(A(H)) admits a G-extension 
Φ : X −→ CE(H\G) such that 0 /∈ Φ(X(H)).

10 Like Remark 3.16, there are large compact subgroups H of locally compact Hausdorff groups G and g ∈ G with gHg−1 � H, 
e.g. the infinite-dimensional toral group H = (U1)ℵ0 in G = H � Z.
11 Indeed E ∈ M ⊂ T3.5, since H\G ∈ M (2.17) so C(H\G), C(H\G)ℵ0 ∈ M (3.2) [35, 4.2.4].
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Proof. Since ϕ is equivariant, note ϕ(A(H) − A(H)) = {0}, the coarse conepoint. Write Z := ϕ−1(0) and 
E := E(H\G). Since A(H) ∩ Z = ∅, there are coordinates

ϕ|A(H) = (ϕ0, ϕ1) : A(H) −→ E × (0, 1].

Since H ∈ lrg(G) and since A(H) is closed in X(H) ∈ (G, {H})-M, by Lemma 3.23, ϕ0 : A(H) −→ E extends 
to a G-map ϕ′

0 : X(H) −→ E. Also, since A(H) is closed in X(H) ∈ M, by Tietze’s extension theorem [78, 
Satz 3], ϕ1 : A(H) −→ (0, 1] extends to a G-map ϕ′

1 : X(H) −→ (0, 1]. Since A(H) and B := X(H) −X(H)
are disjoint sets (with B closed in X by Lemma 3.26), similar to (3.1), construct a map

η : X(H) −→ [0, 1] ; x −→ d(x,B)
d(x,A(H)) + d(x,B)

satisfying η(B) = {0} and η(A(H)) = {1}. Then ϕ1 extends to ϕ′
1η : X(H) −→ [0, 1] which has B being the 

preimage of 0. So ϕ|A(H) extends to a G-map ϕ′ := (ϕ′
0, ϕ

′
1η) : X(H) −→ CE with ϕ′(B) = {0}. As X(H) is 

closed in X by Lemma 3.26, by pasting lemma [68, 18.3], ϕ and ϕ′ unite to a G-map ϕ′′ : A ∪X(H) −→ CE.
Again as above, the restriction of this new function has coordinates

ϕ′′|A′ = (ϕ′′
0 , ϕ

′′
1) : A′ := (A− Z) ∪X(H) −→ E × (0, 1].

Since H is a compact subgroup of the Lie group G, the orbit H\G ∈ G-ANR(G-M) by Palais’ slice theorem 
[70, 2.3.1]. Then E ∈ G-ANE(G-M) by Theorem 3.22. So ϕ′′

0 : A′ −→ E extends to a G-map Φ′
0 : U −→ E

on a G-neighborhood U of the closed G-subset A′ in the G-metrizable space X ′ := X − (Z ∪ B). Indeed, 
by Lemma 3.26, the frontier ∂X(X(H)) := X(H) −X(H) ⊂ B so ∂X−B(X(H)) = ∅. Define a G-map

η′ : X ′ −→ [0, 1] ; x −→ d(x,X ′ − U)
d(x,A′) + d(x,X ′ − U)

with η′(X ′ − U) = {0} and η′(A′) = {1}. Then ϕ′′
1 : A′ −→ (0, 1] extends to a map ϕ′′

1η
′ : X ′ −→ [0, 1]. So 

ϕ′′|A′ extends to a G-map Φ′ := (Φ′
0, ϕ

′′
1η

′) : X ′ −→ CE with (Φ′)−1{0} = X ′ − U . Extend Φ′ by zero to a 
G-map Φ : X ′ ∪ Z ∪B −→ CE. �

Recall that any G-map f : X −→ Y satisfies Gx � Gfx for all x ∈ X. Furthermore, if Gx = Gfx for all 
x ∈ X, the G-equivariant map f is called G-isovariant.

Theorem 3.28. Let G be a Lie group. Let F ⊆ cpt(G) have no conjugate elements. Then EFG =
ˇ H∈F E(H\G) is an isovariant absolute G-extensor for (G, F)-M: for any closed G-subset A of any mem-
ber X of the class (G, F)-M, any isovariant G-map ϕ : A −→ EFG extends to an isovariant G-map 
Φ : X −→ EFG.

Differently from Palais–Bredon’s construction of an isovariant F-classifying space, S. Ageev asserted that 
(C(F\G))ℵ0 is an isovariant absolute G-extensor for (G, F)-M, if G is a compact Hausdorff group and 
F ⊆ lrg(G) need not be finite [2, 3.2].

Proof. Write EH := E(H\G) and denote coordinates ϕ = (ϕH : A −→ CEH)H∈F. Let H ∈ F− {G}. Since 
ϕ is isovariant, ˇ is our unrestricted isovariant join (3.7), and F has no conjugate elements, note for all 
a ∈ A(H) that

(G) �= (H) = (Ga) = (Gϕa) = (GϕHa).
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So 0 /∈ ϕH(A(H)). By Lemma 3.27, ϕH extends to a G-map ΦH : X −→ CEH with 0 /∈ ΦH(X(H)). If G ∈ F

then ϕG : A −→ CEG = [0, 1], where 0 /∈ ϕG(AG) since {0}I /∈ ϕ(AG), extends to a G-map ΦG : X −→ [0, 1]
with 0 /∈ ΦG(XG), by [78, Satz 3] via orbit spaces to (0, 1] ∈ AE(M) then [0, 1]; this is if G is compact and 
X has a G-fixed point. So the G-map Φ := (ΦH)H∈F : X −→ EFG is isovariant. �

Consequently, we obtain the desired corollary which is the first half of uniqueness.

Proof of Theorem 3.18. Assume a G-homeomorphism ψ : f∗(EFG) −→ g∗(EFG) satisfying ψ/G = idB . 
Note X := f∗(EFG) × [0, 1] has orbit space X/G = B× [0, 1]. On the closed G-subset A := f∗(EFG) ×{0, 1}
of X, define the isovariant G-map

ϕ : A −→ EFG ; (b, e, s) −→
{
e if s = 0
ψ1(b, e) if s = 1

with the pullback f∗(EFG) := {(b, e) ∈ B × EFG | f(b) = eG} and ψ = (idB , ψ1). Note (ϕ/G)(b, 0) = f(b)
and (ϕ/G)(b, 1) = ψ1(b, e)G = g(b). Therefore, we conclude the existence of a stratified homotopy Φ/G :
B × [0, 1] −→ BFG from f to g by Theorem 3.28, once we verify that X is G-metrizable, as X has isotropy 
in (F).

Since H\G ∈ G-M for any H ∈ F, by Theorem 3.22, the Milnor join E(H\G) ∈ G-M. The induced 
metric (3.2) on its coarse cone is G-metrizable. The Lie group G has only countably many conjugacy classes 
of compact subgroups, by [49, Corollary 3.9]. Then the countable product 

∏
H∈F CE(H\G) has an induced 

metric [68, 20.5], whose formula is G-invariant. So EFG ∈ G-M. Therefore, since B ∈ M, the subproduct 
f∗(EFG) ⊂ B × EFG ∈ G-M, hence X is also a member. �
4. The classifying property: uniqueness, II

The following Covering Homotopy Theorem is a nontrivial result on product structures for Hausdorff B. 
In the free case, it is [75, 11.3] if B is normal Lindelöf and locally compact, and more generally [47, 4:9.8] if 
B is paracompact.12 If G is a compact Lie group, the result generalizes [69, 2.4.1] if B is second-countable 
locally compact, and more generally [20, II:7.1] if B is hereditarily paracompact.

Theorem 4.1. Let X be a Tikhonov space with Palais action of a Lie group G. Suppose the orbit map is p :
X −→ B× [0, 1] for some hereditarily paracompact Hausdorff space B. Assume (Gx) = (Gy) if projB(px) =
projB(py). Then X is G-homeomorphic over the identity idB×[0,1] to the product space p−1(B×{0}) × [0, 1].

Our ensuing proof applies and extends Palais–Bredon’s argument [20, II:7.1].

Lemma 4.2. Let (y, t) ∈ B × [0, 1]. Then p−1(U × [a, b]) is G-homeomorphic over id to p−1(U × a) × [a, b]
for some neighborhoods U of y in B and [a, b] of t in [0, 1]. Furthermore, the G-homeomorphism restricts 
to id : p−1(U × a) −→ p−1(U × a) × a.

We modify [20, Proof II:7.1A] to include all strata and to exclude induction.

Proof. Let x ∈ p−1(y, t). Since X is Tikhonov with Palais G-action, by Palais’ slice theorem [70, 2.3.1], 
there exists a Gx-slice S at x in X. The tube SG is open in X, hence its image p(SG) is open in the orbit 
space X/G = B × [0, 1]. By the tube lemma, there are neighborhoods U of y in B and [a, b] of t in [0, 1]
such that U × [a, b] ⊆ p(SG). We may assume equality by reassigning S as S ∩ p−1(U × [a, b]).

12 Paracompact Hausdorff B admit a product-structure theorem for microbundles [65, 3.1].
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Since Gx is a compact Lie group, S/Gx = SG/G = U × [a, b], and U is hereditarily paracompact, by [20, 
Theorem II:7.1], S is Gx-homeomorphic over idU×[a,b] to the product T × [a, b] with T := S ∩ p−1(U × a)
and [a, b] trivial Gx-action. Note

p−1(U × [a, b]) = SG = S ×Gx
G ≈ (T ×Gx

G) × [a, b] = p−1(U × a) × [a, b]. �
Lemma 4.3. Let y ∈ B. The preimage p−1(U × [0, 1]) is G-homeomorphic over idU×[0,1] to the product 
p−1(U × 0) × [0, 1] for some neighborhood U of y in B. Furthermore, the G-homeomorphism restricts to 
id : p−1(U × 0) −→ p−1(U × 0) × 0.

Our argument reexplains [20, Proof II:7.1B] but now includes all the strata.

Proof. For each t ∈ [0, 1], by Lemma 4.2, there exist a neighborhood Ut of y in B, a neighborhood [at, bt]
of t in [0, 1], and a G-homeomorphism φt over the identity:

φt : p−1(Ut × [at, bt]) −→ p−1(Ut × at) × [at, bt] with φt|p−1(Ut × at) = id.

Since [0, 1] is compact, there is a finite subset F ⊂ [0, 1] with (0, 1) =
⋃

t∈F (at, bt). Define U :=
⋂

t∈F Ut, a 
neighborhood of y in B. By Lebesgue’s number lemma, there is n ∈ N such that each 

[
i
n ,

i+1
n

]
⊆ [ati , bti ]

for some ti ∈ F . Thus we obtain

ϕi : p−1(U ×
[
i
n ,

i+1
n

]
) −→ p−1(U × 0) ×

[
i
n ,

i+1
n

]
ϕi| = φt0 ◦ · · · ◦ φti−1 : p−1(U × i

n ) −→ p−1(U × 0).

Then ψ := ϕ0 ∪ · · · ∪ ϕn−1 : p−1(U × [0, 1]) −→ p−1(U × 0) × [0, 1] as desired. �
We shall avoid Bredon’s transfinite induction by a Milnor-style replacement trick. Our statement is more 

generally in terms of predicates Π (that is, unary relations).

Proposition 4.4. Let (B, T) be a normal Hausdorff space. Let Π ⊆ T be preserved under all open subsets and 
all disjoint unions. Suppose U ⊆ Π for a locally finite open cover U of B. Then V ⊆ Π for a countable 
locally finite open cover V of B.

For local trivializations, [25, Hilfsatz 2] [47, 4:12.1] work. Originally, Milnor proved it for (B, T) para-
compact and no input U [64, p25–26] [66, 5.9].

Proof. Since B ∈ T4, by Dieudonné’s shrinking lemma [29, Théorème 6] and Urysohn’s lemma [80, Satz 25], 
it follows as noted in [62, Proposition 2] that U admits a subordinate partition of unity {tU : B −→ [0, 1]}U∈U

with the same index set. That is, tU are continuous with {tU > 0} ⊆ U and 
∑

U∈U tU = 1.
We may assume U is infinite. For each nonempty finite F ⊂ U, define the function

qF := max
{

0, min
U∈F

tU − max
U /∈F

tU

}
: B −→ [0, 1].

Observe that qF is continuous, since the min is over the finite set F and each x ∈ B admits a neighborhood 
N meeting only finitely many elements of U hence of U − F . Then its support VF := {qF > 0} is open. So 
VF ∈ Π since VF ⊆ U for some U ∈ F .

Let E �= F be finite subsets of U with cardE = cardF . We show VE ∩ VF = ∅. As E and F are distinct 
of same cardinality, there are O ∈ E−F and P ∈ F −E. If x ∈ VE then tO(x) � min tU (x) > max tU (x) �
U∈E U /∈E
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tP (x). Similarly, if x ∈ VF then tP (x) � min
U∈F

tU (x) > max
U /∈F

tU (x) � tO(x). Thus VE∩VF = ∅, as tO > tP > tO

on VE ∩ VF . Then the union Vn :=
⋃
{VF | cardF = n} is disjoint. Therefore Vn ∈ Π.

Define V := {Vn | n ∈ Z>0}, a countable collection of open sets in B. We show V is a cover of B. Let x ∈ B. 
Since 

∑
U∈U tU (x) = 1, the set S := {U ∈ U | tU (x) > 0} is nonempty finite. Then qS(x) = min

U∈S
tU (x) > 0. 

So x ∈ VS ⊆ VcardS . Lastly, we show V is locally finite. As U is locally finite, there is a neighborhood N of 
x in B with R := {U ∈ U | N ∩ U �= ∅} finite. Suppose N ∩ VF �= ∅. Then qF (y) > 0 for some y ∈ N . So 
tU (y) > 0 hence y ∈ U for all U ∈ F . Thus F ⊆ R. That is, {F | N ∩ VF �= ∅} ⊆ 2R, which is a finite set. 
Therefore V is locally finite. �

We simplify [20, Proof II:7.1C] to include all strata and no infinite ordinals. For ease of reading, we drop 
the ×0 for p-preimages that occur from Lemma 4.3. The key idea is to construct a G-isotopy δ on the 
overlap for continuous transition.

Proof of Theorem 4.1. Since B is paracompact Hausdorff hence normal by [29, Théorème 1], by Lemma 4.3
and Proposition 4.4, we obtain a countable locally finite open cover V = {Vn}n>0 of B and G-
homeomorphisms ψn : p−1(Vn × [0, 1]) −→ p−1(Vn) × [0, 1] over idVn×[0,1] restricting to id : p−1(Vn × 0) −→
p−1(Vn) × 0.

Consider the open sets Un :=
⋃

i<n Vi in B, with U1 = ∅. Since V is locally finite, it suffices to recursively 
define similar G-homeomorphisms φn : p−1(Un × [0, 1]) −→ p−1(Un) × [0, 1] such that φn+1| = φn| over 
(Un − Vn) × [0, 1]. Define φ1 = id∅.

Assume φn is defined. Shorten U := Un and V := Vn, so Un+1 = U ∪ V . Write

ε := projX ◦ φn ◦ ψ−1
n | : p−1(U ∩ V ) × [0, 1] −→ p−1(U ∩ V ).

As U ∪V is paracompact so normal, disjoint closed sets V −U and U−V have disjoint closed neighborhoods 
C0 and C1 in U ∪V . By Urysohn’s lemma [80, Satz 25], there is a map f : U ∪V −→ [0, 1] with f(Ci) = {i}. 
Define a G-homeomorphism

δ : p−1(U ∩ V ) × [0, 1] −→ p−1(U ∩ V ) × [0, 1] ; (x, t) −→ (ε(x, f(px)t), t)

with inverse δ−1(y, t) = (projXψnφ
−1
n (y, f(py)t), t). Note if px ∈ V −U then δ(x, t) = (x, t), and if px ∈ U−V

then δ(x, t) = φnψ
−1
n (x, t). Define the G-bijection

φn+1 :=

⎧⎪⎪⎨
⎪⎪⎩

φn on U − V

δ ◦ ψn on U ∩ V

ψn on V − U

⎫⎪⎪⎬
⎪⎪⎭ : p−1(Un+1 × [0, 1]) −→ p−1(Un+1) × [0, 1].

By the pasting lemma, φn+1 is continuous as f is constant on each neighborhood Ci; similarly for the 
formula of φ−1

n+1. Then φn+1 is obtained. Induction is complete. �
We conclude with a summary of our uniqueness results, now inclusive of noncompact G.

Corollary 4.5. Let G be an arbitrary Lie group. Let F ⊆ cpt(G) with no conjugate elements. Let B be an 
(F)-filtered metrizable space. Two maps f, g : B −→ BFG are stratified-homotopic if and only if f∗(EFG)
and g∗(EFG) are G-homeomorphic over idB.

Proof. The reverse direction is Theorem 3.18. For the forward direction, let h : B × [0, 1] −→ BFG be a 
stratified homotopy from f to g. Write X := h∗(EFG), which is a G-metrizable Palais G-space as shown 
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in Proof 3.18. Hence X is Tikhonov. The metrizable space B is hereditarily paracompact [77]. Write p :
X −→ B × [0, 1]. As h is stratified, (Gx) = (Gy) if projB(px) = projB(py). By Theorem 4.1, there is a 
G-homeomorphism X −→ f∗(BFG) × [0, 1] over idB×[0,1]. It restricts to a G-homeomorphism g∗(BFG) =
p−1(B × 1) −→ f∗(BFG) × 1. �
Remark 4.6 (Baum–Connes–Higson). For G a locally compact Hausdorff group, cardinal κ = ℵ0, family 
F = cpt, and B a metrizable space, a weaker variation of Corollary 4.5 is sketched in [15, Appendix 3]. Their 
correspondence is between ordinary homotopy classes of maps B −→ Bℵ0

cptG and their so-called ‘homotopy’ 
classes of Palais-proper G-spaces over B, which I instead would call concordance classes.

Here is our full classification generalizing [69, 2.6.2, 2.7.10] [20, II:9.7]. We allow noncompact G, infinite 
F, and infinite dim(B); thus, we fulfill and exceed Palais’ ambition [70, §4.5].

Theorem 4.7. Let G be an arbitrary Lie group. Let F ⊆ cpt(G) with no conjugate elements. Let B be an (F)-
filtered metrizable space. Taking pullback of EFG is a bijection from stratified-homotopy classes of stratified 
maps B −→ BFG to isomorphism classes of metrizable spaces that are equipped with Palais G-action, 
isotropy conjugate to members of F, and orbit space B.

Proof. Well-definition and injectivity of this correspondence are Corollary 4.5. To show surjectivity, let X
be a metrizable space with Palais G-action, isotropy conjugate into F, and B = X/G (or a stratified home-
omorphism). By Antonyan–deNeymet [11, Theorem B], X admits a G-invariant metric. As X ∈ (G, F)-M, 
by Theorem 3.28, there is an isovariant G-map Φ : X −→ EFG. The induced map X −→ (Φ/G)∗(EFG) is 
a G-homeomorphism over idB [49, 2.5]. �
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