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Given any homotopy equivalence f : M → X1 # · · · # Xn of closed orientable 4-manifolds,
where each fundamental group π1(Xi) satisfies Freedman’s Null Disc Lemma, we show
that M is topologically h-cobordant to a connected sum M ′ = M ′

1 # · · · # M ′
n such that

f is h-bordant to some f ′
1 # · · · # f ′

n with each f ′
i : M ′

i → Xi a homotopy equivalence.
Moreover, such a replacement M ′ of M is unique up to a connected sum of h-cobordisms.
In summary, the existence and uniqueness, up to h-cobordism, of connected sum
decompositions of such orientable 4-manifolds M is an invariant of homotopy equivalence.
Also we establish that the Borel Conjecture is true in dimension 4, up to s-cobordism, if
the fundamental group satisfies the Farrell–Jones Conjecture.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Homotopy invariance of connected sums—stable version

For simplicity, we begin with the stable version of our main result (Theorem 1.7). This version follows easily from a recent
algebraic calculation of UNil for free products of groups by F. Connolly and J. Davis [11] and from an earlier development of
stable geometric topology by S. Cappell and J. Shaneson [8,7].

Theorem 1.1. Let X be a compact connected orientable topological manifold of dimension 4. Suppose the fundamental group π1(X) is
a free product of groups Γ1, . . . ,Γn. Then there exist compact connected topological 4-manifolds X1, . . . , Xn with each fundamental
group π1(Xi) isomorphic to Γi such that there is a bijection between (S2 × S2)-stable h-structure sets:

# :
n∏

i=1

Sh
TOP(Xi) → Sh

TOP(X).

Moreover, these Xi are unique up to (S2 × S2)-stabilization and re-ordering.

Proof. By the stable prime decomposition of Kreck, Lück and Teichner [31], there exist 4-manifolds Xi , unique up to sta-
bilization and permutation, with fundamental groups Γi such that X is (S2 × S2)-stably homeomorphic to X1 # · · · # Xn .
By theorems of Waldhausen [42] and Connolly and Davis [11], the algebraic K - and L-theory splitting obstruction groups
associated to each connecting 3-sphere vanish:

Ñil0 = 0 and UNilh5 = 0.
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Therefore, by the equivalence of Theorem 3.2(2), using Cappell’s high-dimensional splitting theorem [5,7], we obtain induc-
tively that # is a bijection. �
1.2. Homotopy invariance of connected sums—unstable version

Our Main Theorem (Theorem 1.7) is phrased technically in terms of the classes NDL and SESh+ , which we define be-
low. The difficulty in the proof is in observing new extensions of the geometric topology developed by S. Cappell [7] and
S. Weinberger [44].

Definition 1.2 (Freedman). A discrete group G is NDL (or good) if the π1-Null Disc Lemma holds for it (see [21] for details).
The class NDL is closed under the operations of forming subgroups, extensions, and filtered colimits.

This class contains subexponential and exponential growth [19,21,32].

Theorem 1.3 (Freedman–Quinn, Freedman–Teichner, Krushkal–Quinn). The class NDL contains all virtually polycyclic groups and all
groups of subexponential growth.

Example 1.4. Here are some exotic examples in NDL. The semidirect product Z
2
�α Z with α = ( 2 1

1 1

)
is polycyclic but has

exponential growth. For all integers n �= −1,0,1, the Baumslag–Solitar group BS(1,n) = Z[1/n] �n Z is finitely presented
and solvable but not polycyclic. Grigorchuk’s infinite 2-group G is finitely generated but not finitely presented and has
intermediate growth.

Recall that, unless specified in the notation, the structure sets Sh
TOP and normal invariants NTOP are homeomorphisms

on the boundary (that is, rel ∂) [24, §6.2].

Definition 1.5. Let Z be a non-empty compact connected topological 4-manifold. Denote the fundamental group π := π1(Z)

and orientation character ω := w1(τZ ). We declare that Z has class SESh if there exists an exact sequence of based sets:

NTOP(Z × I)
σ h

5−→ Lh
5(π,ω)

∂−→ Sh
TOP(Z)

η−→ NTOP(Z)
σ h

4−→ Lh
4(π,ω).

The subclass SESh+ includes actions of groups in K - and L-theory (Definition 2.5).
This exact sequence has been proven for the above groups [19, Thm. 11.3A].

Theorem 1.6 (Freedman–Quinn). Let X be a compact connected topological manifold of dimension 4. If π1(X) has class NDL, then X
has class SESh+ and satisfies the s-cobordism conjecture (i.e., all s-cobordisms on X are homeomorphic to X × I).

Here is the Main Theorem of the paper. The existence and uniqueness question posed in the Title and Abstract, up to
h-cobordism, is quantified in # of Part (2).

Theorem 1.7. Let X be a compact connected topological manifold of dimension 4.

1. Suppose the fundamental group π1(X) is a free product of groups of class NDL. If X is non-orientable, assume π1(X) is
2-torsionfree. Then there exists r � 0 such that the r-th stabilization X # r(S2 × S2) has class SESh+ .

2. Suppose X has the homotopy type of a connected sum X1 # · · · # Xn such that each Xi has class SESh+ . If X is non-orientable,

assume that π1(X) is 2-torsionfree. Then the homotopy connected sum X has class SESh+ . Moreover, the following induced function
is a bijection:

# :
n∏

i=1

Sh
TOP(Xi) → Sh

TOP(X).

The proof of our theorem consists of two steps: first homology split along each essential 3-sphere [44], and then per-
form a neck exchange trick [19] to replace homology 3-spheres with genuine ones (cf. [30,25]). The first step is possible
because the high-dimensional splitting obstruction group [5] has recently been shown to vanish [11]. No direct surgeries
are performed—only cobordisms are attached. Our techniques do not show triviality of s-cobordisms.

Indeed, it turns out that a limited form of surgery does work for free groups.

Example 1.8. Suppose X is a closed connected topological 4-manifold with free fundamental group: π1(X) = Fn . Then
a fixed stabilization X # r(S2 × S2) has a topological s-cobordism surgery sequence, for some r � 0 depending on X .
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Here are other caveats, which place our Main Theorem into historical context.

Remark 1.9. A homotopy decomposition into a connected sum need not exist. A counterexample to the homotopy Kneser
Conjecture with π1(X) = G3 ∗ G5 where G p := C p × C p was constructed by M. Kreck, W. Lück, and P. Teichner [30].

Remark 1.10. Given a homotopy decomposition into a connected sum, a homeomorphism decomposition need not exist.
There exist infinitely many examples of non-orientable closed topological 4-manifolds homotopy equivalent to a connected
sum (X = RP

4 #RP
4) that are not homeomorphic a non-trivial connected sum [25,4]. Hence # is not always a bijection in

the case π1(X) = D∞ ∈ NDL.

Remark 1.11. For certain groups π1(X) unknown in NDL, such as poly-surface groups, results on exactness at NTOP(X) are
found in [24,26,22,9].

Remark 1.12. The modular group PSL(2,Z) ∼= C2 ∗C3 is an example of a free product of NDL groups. It has a discrete cofinite-
area action on H

2. However our theorem in the non-orientable case excludes it and SL(2,Z) ∼= C4 ∗C2 C6. The group PSL(2,Z)

plays a key role in the orientable case of free products [11].

Let us conclude this subsection with an application to fibering of 5-manifolds. Partial results were obtained in [44,27].
The proof is located in Section 4.

Theorem 1.13. Let M be a closed topological 5-manifold. Let X be a closed topological 4-manifold of class SESh+ . Suppose f : M → S1

is a continuous map such that the induced infinite cyclic cover M = hofiber( f ) is homotopy equivalent to X. If the Farrell–Siebenmann
fibering obstruction τ ( f ) ∈ Wh1(π1M) vanishes, then f is homotopic to a topological s-block bundle projection with pseudofiber X.

Note we obtain a fiber bundle projection if X satisfies the s-cobordism conjecture.

1.3. Topological s-rigidity for 4-dimensional manifolds

The purpose of this final subsection is an elementary observation (Theorem 1.18) from which we conclude the Borel
Conjecture is true in dimension 4 up to topological s-cobordism, given that the fundamental group satisfies the Farrell–
Jones Conjecture (see Corollary 1.23).

Definition 1.14. A compact topological manifold Z is topologically rigid if, for all compact topological manifolds M , any
homotopy equivalence h : M → Z , with restriction ∂h : ∂M → ∂ Z a homeomorphism, is homotopic to a homeomorphism.

Recall the Borel Conjecture is proven for certain good groups [19, Thm. 11.5].

Theorem 1.15 (Freedman–Quinn). Suppose Z is an aspherical compact topological 4-manifold such that π1(Z) is virtually polycyclic.
Then Z is topologically rigid.

The following crystallographic examples include the 4-torus T 4. It turns out that there are only finitely many examples
in any dimension (e.g., see [14, Thm. 21]).

Example 1.16. Suppose Γ is a Bieberbach group of rank 4, that is, a torsionfree lattice in the Lie group Isom(E4). Then
Z =R

4/Γ is topologically rigid (cf. [16]).

Let us now turn our attention to a weaker form of rigidity for general groups.

Definition 1.17. A compact topological manifold Z is topologically s-rigid if, for all compact topological manifolds M , any
homotopy equivalence h : M → Z , with restriction ∂h : ∂M → ∂ Z a homeomorphism, is itself topologically s-bordant rel ∂M
to a homeomorphism. It suffices that the Whitehead group Wh1(π1 Z) vanishes and the topological s-cobordism structure
set S s

TOP(Z) is a singleton.

The following important basic observation does not seem to have appeared in the literature. In particular, we do not
assume that the fundamental group is NDL.

Theorem 1.18. Let Z be a compact topological 4-manifold with fundamental group π and orientation character ω : π → {±1}. Sup-
pose the surgery obstruction map σ s

4 :NTOP(Z) → Ls
4(π,ω) is injective, and suppose the surgery obstruction map σ s

5 :NTOP(Z × I) →
Ls (π,ω) is surjective. If Wh1(π) = 0 then Z is topologically s-rigid. Also Z has class SESs+ .
5
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We sharpen an observation of J. Hillman [24, Lem. 6.10] to include map data.

Corollary 1.19. Let Z be a compact topological 4-manifold. Suppose the product Z × S1 is topologically rigid. If Wh1(π1 Z) = 0 then
Z is topologically s-rigid.

This allows us to generalize a theorem of J. Hillman for surface bundles over surfaces [24, Thm. 6.15]. His conclusion was
that the source and target are abstractly s-cobordant. Our new feature is s-rigidity of the homotopy equivalence.

Example 1.20. Suppose Z is a compact topological 4-manifold that is the total space of a topological fiber bundle of aspher-
ical surfaces over an aspherical surface. Then Z is topologically s-rigid, as follows. By [24, Thm. 6.2], the group Wh1(π1 Z)

vanishes. By the proof of [24, Thm. 6.15], the set S s
TOP(Z × S1) is a singleton. Now apply Corollary 1.19. Alternatively, we

can use Corollary 1.23 and the recently established validity of FJL for poly-surface groups [2].

In the topology of high-dimensional manifolds, the following class of fundamental groups has been of intense interdisci-
plinary interest for at least the past two decades.

Definition 1.21. Denote FJL as the class of groups Γ that are K -flat and satisfy the Farrell–Jones Conjecture in L-theory [17].
That is, the elements Γ of FJL satisfy Wh1(Γ ×Z

n) = 0 and HΓ
n (EallΓ, EvcΓ ;L−∞

Z
) = 0 for all n � 0 (see [12]).

We shall focus on the torsionfree case. This has nice subclasses [18,3,2].

Theorem 1.22 (Farrell–Jones, Bartels–Lück, Bartels–Farrell–Lück). Let Γ be a discrete torsionfree group. Then Γ has class FJL if :

• Γ is the fundamental group of a complete A-regular Riemannian manifold with all sectional curvatures non-positive, or
• Γ is hyperbolic with respect to the word metric, or
• Γ admits a cocompact proper action by isometries on a complete finite-dimensional CAT(0) metric space, or
• Γ is a virtually polycyclic group (equivalently, a virtually poly-Z group), or
• Γ is a cocompact lattice in a virtually connected Lie group.

We state our s-cobordism answer to the Borel Conjecture for exponential growth.

Corollary 1.23. Suppose Z is an aspherical compact topological 4-manifold such that π1(Z) has class FJL . Then Z is topologically
s-rigid. Also Z has class SESh+ .

Example 1.24. Topological s-rigidity occurs if Z − ∂ Z is complete finite-volume hyperbolic. That is, Z − ∂ Z = R
4/Γ for some

torsionfree lattice Γ in Isom(H4).

Example 1.25. A non-Riemannian example of topological s-rigidity is the closed 4-manifold Z of M. Davis [13]. The universal
cover Z̃ is a complete CAT(0) metric space. Most strikingly, Z̃ is contractible but not homeomorphic to R

4.

The next example involves multiple citations, so we give a formal proof later. Currently, due to Nil summands, it is
unknown if its Whitehead group vanishes.

Corollary 1.26. Suppose Z is the mapping torus of a homeomorphism of an aspherical closed 3-manifold K . If Wh1(π1 Z) = 0 then Z
is topologically s-rigid.

Now, let us pass to connected sums, which fail to be aspherical if there is more than one factor. The next statement shall
follow from Theorems 1.7 and 1.18. Below, we write cdim(G) for the cohomological dimension of any discrete group G .

Corollary 1.27. Let n > 0. For each 1 � i � n, let Xi be a compact oriented topological 4-manifold. If each fundamental group Γi :=
π1(Xi) is torsionfree of class FJL with cdim(Γi) � 4, and each mod-two second homotopy group vanishes: π2(Xi) ⊗Z2 = 0, then the
connected sum X := X1 # · · · # Xn is topologically s-rigid.

Next, we illustrate the basic but important example of non-aspherical oriented factors Xi = S1 × S3. Here, the connected
sum X has free fundamental group Fn .

Example 1.28. Let n > 0. Recall Wh1(Z) = 0. Then, by Corollary 1.27, the closed 4-manifold X = #n(S1 × S3) has class SESh+
and is topologically s-rigid.



3436 Q. Khan / Topology and its Applications 159 (2012) 3432–3444
Finally, we specialize Corollary 1.27 to the setting of the Borel Conjecture.

Corollary 1.29. Let n > 0. For each 1 � i � n, suppose Xi is an aspherical compact oriented topological 4-manifold with fundamental
group Γi := π1(Xi) of class FJL . Then the connected sum X := X1 # · · · # Xn is topologically s-rigid.

Here is an outline of the rest of the paper. Foundations are laid in Sections 2–3, where we expand work of Cappell and
Weinberger in dimension four. Applications are made in Sections 4–5, where we prove the stated results of the Introduction.
The reader may find most of our notation and terminology in Kirby and Taylor [29].

2. The language of structure sets

To start, the following equivalence relations play prominent roles in Section 3.

Definition 2.1. Let Z be a topological space. Let M , M ′ be compact topological manifolds. Let h : M → Z and h′ : M ′ → Z
be continuous maps. A bordism H : h → h′ rel ∂ is a compact topological cobordism (W ; M, M ′) rel ∂ and a continuous
map |H| : W → Z × I such that H|M = h and H|M′ = h′ . We call H : h → h′ a h-bordism rel ∂ (resp. s-bordism rel ∂) if
(W ; M, M ′) is an h-cobordism (resp. s-cobordism).

Next, we relativize the surgical language in the Introduction (cf. [43]).

Definition 2.2. Let Z be a topological manifold such that the boundary ∂ Z is collared. Let ∂0 Z be a union of components
of ∂ Z . The pair (Z , ∂0 Z) is called a TOP manifold pair. Write ∂1 Z := ∂ Z − ∂0 Z . The induced triple (Z; ∂0 Z , ∂1 Z) is an
example of a TOP manifold triad (in other words, a cobordism).

Here is the precise definition of the relative structure set that we use in proofs.

Definition 2.3. Let (Z , ∂0 Z) be a compact TOP 4-manifold pair. Write Γ0 := π1(∂0 Z), the fundamental groupoid of ∂0 Z .
The structure set Sh

TOP(Z , ∂0 Z) consists of ∼-equivalence classes of continuous maps (h; ∂0h, ∂1h) : (M; ∂0 M, ∂1M) →
(Z; ∂0 Z , ∂1 Z) of compact TOP 4-manifolds triads such that:

• h : M → Z is a homotopy equivalence,
• ∂0h : ∂0M → ∂0 Z is a Z[Γ0]-homology equivalence, and
• ∂1h : ∂1M → ∂1 Z is a homeomorphism.

We call such (h, ∂0h) : (M, ∂0M) → (Z , ∂0 Z) a homotopy–homology equivalence. Here, h ∼ h′ if there exists a TOP bordism
(H; ∂0 H, ∂1 H) : (h; ∂0h, ∂1h) → (h′; ∂0h′, ∂1h′) such that:

• H : W → Z × I is a homotopy equivalence,
• ∂0 H : ∂0W → ∂0 Z × I is a Z[Γ0]-homology equivalence, where (∂0W ; ∂0 M, ∂0M ′) is a cobordism, and
• ∂1 H : ∂1W → ∂1 Z × I is a homeomorphism, where (∂1W ; ∂1M, ∂1M ′) is a cobordism.

We call such (H, ∂0 H) : (h, ∂0h) → (h′, ∂0h′) a homotopy–homology h-bordism.

The 4-dimensional relative surgery sequence is defined carefully as follows. It is an h-version of Wall’s sequence (middle
of [43, p. 115]) with homotopy equivalences to ∂0 Z and with homeomorphisms to ∂1 Z .

Definition 2.4. Let (Z , ∂0 Z) be a compact TOP 4-manifold pair. Denote the fundamental groupoids Γ := π1(Z) and Γ0 :=
π1(∂0 Z). Denote the orientation character ω := w1(τZ ) : Γ → {±1}. We declare that (Z , ∂0 Z) has class SESh if there exists
an exact sequence of based sets:

NTOP(Z × I, ∂0 Z × I)
σ h

5−→ Lh
5(Γ,Γ0,ω)

∂−→ Sh
TOP(Z , ∂0 Z)

η−→ NTOP(Z , ∂0 Z)
σ h

4−→ Lh
4(Γ,Γ0,ω).

Last is the enhancement to include actions of certain groups in K - and L-theory.

Definition 2.5. In addition, we declare that (Z , ∂0 Z) has class SESh+ if, for all elements h ∈ Sh
TOP(Z , ∂0 Z) and t ∈ Wh1(Γ ) and

x ∈ Lh
5(Γ,Γ0,ω), there exist:

• an action of the group Wh1(Γ ) on the set Sh
TOP(Z , ∂0 Z) such that:

– there is an h-bordism F : W → Z × I rel ∂ from h : M → Z to t(h) : M ′ → Z with Whitehead torsion τ (W ; M, M ′) = t ,
and
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• an action of the group Lh
5(Γ,Γ0,ω) on the set Sh

TOP(Z , ∂0 Z) such that:
– there exists a normal bordism F from h to x(h) with σ h

5 (F ) = x, and
– the equation ∂(x) = x(idZ ) holds.

Before moving on, we consider the stable version of the above structure set.

Definition 2.6. Let (Z , ∂0 Z) be a compact TOP 4-manifold pair. The stable structure set Sh
TOP(Z , ∂0 Z) consists of

�-equivalence classes of homotopy–homology equivalences h : (M, ∂0 M) → (Z # r(S2 × S2), ∂0 Z) for any r � 0. Here, we
define h � h′ if there exist s, s′ � 0 and a homotopy–homology h-bordism H : h # ids(S2×S2) → h′ # ids′(S2×S2) .

The next theorem was proven by S. Cappell and J. Shaneson [8] (cf. [29]) and reformulated here.

Theorem 2.7 (Cappell–Shaneson). Let (Z , ∂0 Z) be a compact TOP 4-manifold pair. Denote the fundamental groupoids Γ := π1(Z)

and Γ0 := π1(∂0 Z) and orientation character ω : Γ → {±1}. Then there is an exact sequence of based sets:

NTOP(Z × I, ∂0 Z × I)
σ h

5−→ Lh
5(Γ,Γ0,ω)

∂−→ Sh
TOP(Z , ∂0 Z)

η−→ NTOP(Z , ∂0 Z)
σ h

4−→ Lh
4(Γ,Γ0,ω).

The group Lh
5(Γ,Γ0,ω) acts on the set Sh

TOP(Z , ∂0 Z) in such a way that the above map ∂ is equivariant.

3. A Weinberger-type homology splitting theorem

Now we are ready to improve the Λ-splitting theorem of S. Weinberger [44] by slightly modifying his proof. In essence
Theorems 1.7 and 1.1 shall be its corollaries.

Definition 3.1. In the setting below, the homotopy equivalence h : M → X is Z[Γ0]-split if h is topologically transverse to
X0 and its restriction h0 : h−1(X0) → X0 is a Z[Γ0]-homology equivalence (hence h − h0 : h−1(X − X0) → X − X0 is also).

Theorem 3.2. Let X be a non-empty compact connected topological 4-manifold. Let X0 be a closed connected incompressible separat-
ing topological 3-submanifold of X . The decomposition of manifolds X = X1 ∪X0 X2 induces the decomposition of fundamental groups
Γ = Γ1 ∗Γ0 Γ2 . Define a closed simply-connected 8-manifold

Q := CP
4 #

(
S3 × S5)#

(
S3 × S5).

Let M be a compact topological 4-manifold. Suppose h : M → X is a homotopy equivalence such that the restriction ∂h : ∂M → ∂ X is
a homeomorphism.

1. Assume (∗): the group Γ0 has class NDL and the 4-manifold pairs (X1, X0) and (X2, X0) have class SESh+ . Then h is topologically
s-bordant rel ∂M to a homotopy equivalence h′′′ : M ′′′ → X Z[Γ0]-split along X0 if and only if h × idQ is homotopic rel ∂M × Q
to a homotopy equivalence split along X0 × Q .

2. Do not assume Hypothesis (∗). Then, for some r � 0, the r-th stabilization h # idr(S2×S2) is homotopic rel ∂M to a homotopy

equivalence h′′′ : M ′′′ → X # r(S2 × S2) Z[Γ0]-split along X0 if and only if h × idQ is homotopic rel ∂M × Q to a homotopy
equivalence split along X0 × Q .

Moreover, there is an analogous statement if X0 is two-sided and non-separating.

Note the map Γ0 → Γ is injective, but the amalgam Γ need not have class NDL. Observe the 8-manifold Q has both
Euler characteristic and signature equal to one.

Corollary 3.3 (Weinberger). In the previous theorem, instead of (∗), assume (∗∗): ∂ X is empty and the fundamental group Γ has class
NDL. Then h is homotopic to a Z[Γ0]-split homotopy equivalence along X0 if and only if h × idQ is homotopic to a split homotopy
equivalence along X0 × Q .

Proof. Since Γ has class NDL, the subgroups Γ0, Γ1, Γ2 have class NDL. Then, since Γ0, Γ1, Γ2 have class NDL, by [21,32], the
4-manifold pairs (Xi, X0) have class SESh+ . Hence Hypothesis (∗∗) implies Hypothesis (∗). Now, since Γ ∈ NDL, by [21,32],
the TOP s-cobordism of Theorem 3.2(1) is a product. �
Remark 3.4. Weinberger’s theorem (Corollary 3.3) [44, Thm. 1] was stated in a limited form. The only applicable situations
were injective amalgamated products Γ = Γ1 ∗Γ0 Γ0 = Γ1 and Γ = C2 ∗ C2 = D∞ in class NDL. (The second case was applied
in [25,4].) We effectively delete the last phrase in his proof. Earlier, there was a homology splitting result of M. Freedman
and L. Taylor [20] which required that Γ = Γ0 ∗Γ0 Γ0 = Γ0 but did not require that Γ have class NDL.
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Fig. 1. Relabeled version of Weinberger’s [44, Fig. 1].

Next, we modify Weinberger’s clever cobordism argument, adding a few details. We suppress the orientation characters
ω needed in the non-orientable case.

Proof of Theorem 3.2(1). For brevity, we sometimes denote Q for either ×Q or ×idQ .
(⇒) Since dim(X Q ) = 12 > 4, this follows from two high-dimensional facts. By the TOP s-cobordism theorem [39], the

product of any 5-dimensional s-cobordism with Q is homeomorphic to a product. By the handlebody version of Quillen’s
plus construction (for example, see [19, §11.2]; the high-dimensional TOP version can be extracted from [28, Annex 3,
§6–§9]), the product of any 4-dimensional Z[Γ0]-split equivalence with idQ can be exchanged along 2- and 3-handles in
M ′′′ × Q to become a split homotopy equivalence.

(⇐) Suppose hQ is homotopic to a homotopy equivalence split along X Q
0 . By TOP transversality [19], we may assume,

up to homotopy rel ∂M , that h : M → X is TOP transverse to X0. There is an induced decomposition of compact manifolds
M = M1 ∪M0 M2, where for all j = 0,1,2 the restrictions h j := h|M j : M j → X j are degree-one TOP normal maps and ∂h j
are homeomorphisms.

Since Q has signature equal to one, by the periodicity and product formulas [35, §8], for each i = 1,2, the following
relative surgery obstruction vanishes:

σ∗(hi,h0) ∼= σ∗(hi,h0) ⊗ σ ∗(Q ) = σ∗
(
hQ

i ,hQ
0

) = 0 ∈ Lh
12(Γ,Γ0).

Then, by exactness at NTOP in Hypothesis (∗), for each i = 1,2, there exists a TOP normal bordism (Fi, ∂0 Fi) : (W i, ∂W i) →
(Xi, X0) from (hi,h0) : (Mi, M0) → (Xi, X0) to a homotopy–homology equivalence (h′

i, ∂h′
i) : (M ′

i, ∂M ′
i) → (Xi, X0). Note that

the 3-manifolds ∂M ′
1 and ∂M ′

2 may not be homeomorphic.
We take three steps to construct an s-cobordism from h to an h′′′ . Fig. 1 illustrates the first step.
The precise, set-theoretic definitions are as follows:

F := F1 ∪h1 (h × id[0, 1
2 ]) ∪h2 F2, X ′ := (X1 × 1)  (X × 0)  (X2 × 1),

W := W1 ∪M1

(
M ×

[
0,

1

2

])
∪M2 W2, M ′

0 := ∂0W1 ∪M0 ∂0W2, M ′ := M ′
1  (M × 0)  M ′

2.

Observe that (F , ∂0 F ) : (W , M ′
0) → (X ×[0,1], X0 ×[− 1

2 , 1
2 ]) is a TOP normal map of manifold pairs, and that the restriction

∂1 F : M ′ → X ′ is a homotopy equivalence.
Next, the second step is to leech off surgery obstructions of the two halves of F by attaching cobordisms. Select a homo-

topy H : M Q × [−1,0] → X Q to hQ from a homotopy equivalence g = g1 ∪g0 g2 split along X Q
0 . By TOP transversality [19],

assume H and F Q are transverse to X Q
0 . Define TOP normal maps

G0 := H0 ∪
(hQ

0 ×0)

(
hQ

0 ×
[

0,
1

2

])
, Gi := Hi ∪

(hQ
i ×0)

(
hQ

i ×
[

0,
1

2

])
∪

(hQ
i × 1

2 )
F Q

i .

Note H ∪h F Q = G1 ∪G0 G2. Observe the restriction ∂1Gi = gi  h′
i is a homotopy equivalence and the complement ∂0Gi =

G0 ∪
(hQ

0 × 1
2 )

∂0 F Q
i is a normal map. So there are defined surgery obstructions

x := σ∗(F , ∂0 F ) ∈ Lh
5(Γ,Γ0), xi := σ∗(Gi, ∂0Gi) ∈ Lh

13(Γi,Γ0).

Denote the inclusion-induced homomorphism ji : Lh
5(Γi,Γ0) → Lh

5(Γ,Γ0). Then, by periodicity with Q , the cobordism in-
variance of surgery obstructions, and Wall’s π–π theorem [43] (here, Lh∗(Γ0,Γ0) = 0), we obtain:

x ∼= σ∗(F , ∂0 F ) ⊗ σ ∗(Q ) = σ∗
(

F Q , ∂0 F Q ) = σ∗
(

H ∪h F Q , ∂0 F Q ) = j1(x1) + j2(x2).

In particular, since Q has Euler characteristic equal to one, we obtain that x ∈ Lh
5(Γ,Γ0) is the image of a surgery obstruction

xB ∈ LB
5 (Γ,Γ0) uniquely determined by F Q , where the decoration subgroup is

B := j1Wh1(Γ1) + j2Wh1(Γ2) ⊆ Wh1(Γ ).
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By existence of an Lh
5-action in Hypothesis (∗), for each i = 1,2, there exists a TOP normal bordism (F ′

i , ∂0 F ′
i ) :

(W ′
i , ∂0W ′

i ) → (Xi, X0) from (h′
i, ∂h′

i) to (h′′
i , ∂h′′

i ) with surgery obstruction σ∗(F ′
i , ∂ F ′

i ) = −xi such that (h′′
i , ∂h′′

i ) :
(M ′′

i , ∂M ′′
i ) → (Xi, X0) is a homotopy–homology equivalence. Define:

F ′ := F ′
1 ∪h′

1
F ∪h′

2
F ′

2, M ′′
0 := ∂0W ′

1 ∪∂M ′
1

M ′
0 ∪∂M ′

2
∂0W ′

2, M ′′ := M ′′
1  (M × 0)  M ′′

2 .

Observe (F ′, ∂0 F ′) : (W ′, M ′′
0) → (X ×[0,1], X0 ×[− 1

2 , 1
2 ]) is a TOP normal map of pairs, and the complement ∂1 F ′ : M ′′ → X ′

is a homotopy equivalence. So there is defined a surgery obstruction which vanishes:

σ∗
(

F ′, ∂0 F ′) = j1(−x1) + x + j2(−x2) = 0 ∈ LB
5 (Γ,Γ0).

Since the Null Disc Lemma holds for Γ0, by 5-dimensional relative surgery [43,19], there is a normal bordism G rel M ′′ to
a B-torsion homotopy equivalence of pairs:

(
F ′′, ∂0 F ′′) : (W ′′, M ′′′

0

) →
(

X × [0,1], X0 ×
[
−1

2
,

1

2

])
.

In particular, ∂1 F ′′ = ∂1 F ′ restricts to a Z[Γ0]-homology equivalence ∂h′
1 : ∂M ′

1 → X0. Hence F ′′ is a B-torsion TOP
h-bordism from h to a homotopy equivalence ∂+ F ′′ : ∂+W ′′ → X Z[Γ0]-split along X0.

Finally, the third step is to leech off the torsion obstructions of the two halves of the h-bordism F ′′ . Consider its White-
head torsion

t := τ
(
M ↪→ W ′′) ∈ B.

Then there exist ti ∈ Wh(Γi) such that t = j1(t1) + j2(t2). By existence of a Wh1-action in Hypothesis (∗), for all i = 1,2,
there exist h-bordisms F ′′

i rel ∂ such that torsion of the domain h-cobordism is ji(−ti). Therefore, by the sum formula,
attaching these h-cobordisms to the top of W ′′ produces a TOP s-bordism F ′′′ := F ′′

1 ∪ F ′′ ∪ F ′′
2 rel ∂M from h to a homotopy

equivalence h′′′ := ∂+ F ′′′
Z[Γ0]-split along X0. �

Proof of Theorem 3.2(2). The argument in the stable case, Part (2), is similar to the unstable case, Part (1). The places where
we used the hypothesis that (X1, X0) and (X2, X0) have class SESh+ can be replaced with the use of Theorem 2.7. Moreover,
the places where we used the hypothesis that Γ0 has class NDL had target X0 × I for surgery problems, and so can be
replaced with the use of Theorem 2.7.

Realization of elements of the Whitehead group by h-cobordisms on any given compact 4-manifold is the same as
in high dimensions [37, p. 90]. Finally, by [19, Thm. 9.1], any TOP s-cobordism W ′′′ on a compact 4-manifold admits
a TOP handlebody structure. Then we proceed as in the proof of the high-dimensional s-cobordism theorem (e.g., see
[37, Thm. 6.19]), except we resolve double-point singularities of immersed Whitney 2-discs via Norman tricks [34, Lem. 1].
We conclude, for some r � 0, that the sum stabilization W ′′′�r(S2 × S2 × I) (defined on [19, p. 107]) is homeomorphic to
the product (X # r(S2 × S2)) × I . �
4. Proofs for the surgery sequence

Again, we suppress the orientation characters ω used in the non-orientable case. We start with a puncturing lemma.
Section 3 contains the terminology for pairs.

Lemma 4.1. Let Z be a non-empty compact connected topological 4-manifold. Write p Z := Z − int D4 . If Z has class SESh+ , then

(p Z , S3) has class SESh+ .

Proof. Denote the fundamental group Γ := π1(Z). First, let (M, ∂0 M) be a compact topological 4-manifold pair, and
let ( f , ∂0 f ) : (M, ∂0M) → (p Z , S3) be a degree-one TOP normal map of pairs that restricts to a homeomorphism ∂1 f :
∂1M → ∂ Z . Suppose the relative surgery obstruction vanishes: σ h

4 ( f ) = 0 ∈ Lh
4(Γ,1). Recall the geometric exact sequence of

C.T.C. Wall [43, Cor. 3.1.1]:

Z = Lh
4(1)

ε−→ Lh
4(Γ ) → Lh

4(Γ,1) → Lh
3(1) = 0.

Then ∂0 f : ∂0M → S3 is DIFF normally bordant to a Z-homology equivalence g : Σ → S3. Since any closed oriented
3-manifold Σ is parallelizable, by a theorem of M. Freedman [19, Cor. 9.3C], it follows there exists a TOP normal null-
bordism of g over D4. Thus ( f , ∂0 f ) is TOP normally bordant, as a pair relative to ∂1M , to a degree-one map f ′ : M ′ → Z
such that ∂ f ′ : ∂1M → ∂ Z is a homeomorphism. Moreover, by connecting sum with copies of the TOP E8-manifold or its
reverse, we may assume that the absolute surgery obstruction vanishes: σ h

4 ( f ′) = 0 ∈ Lh
4(Γ ). By hypothesis, f ′ is TOP nor-

mally bordant to a homotopy equivalence h : M ′′ → Z . We may assume that h is transverse to a point z ∈ Z and that h−1{z}
is a singleton. Thus ( f , ∂0 f ) is normally bordant to a homotopy equivalence (ph, id) : (pM ′′, S3) → (p Z , S3). Therefore we
obtain exactness at the normal invariants NTOP(p Z , S3).
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Next, define an appropriate action of Lh
5(Γ,1) on Sh

TOP(p Z , S3) as follows. By puncturing at a transversal singleton
{z} ⊂ Z with connected preimage, we obtain a function p : Sh

TOP(Z) → Sh
TOP(p Z , S3). By the existence of 1-connected TOP

h-cobordism from a homology 3-sphere Σ to the genuine one [19, Cor. 9.3C], it follows that p is surjective. By the topolog-
ical plus construction [19, Thm. 11.1A], applied to any homology h-cobordism of S3 to itself, it follows that p is injective.
By hypothesis, there is an appropriate action of Lh

5(Γ ) on Sh
TOP(Z). This extends, via the bijection p, to an action of Lh

5(Γ )

on Sh
TOP(p Z , S3). For any orientation character ω, there is a unique k � 0 such that Wall’s exact sequence becomes

0 → Lh
5(Γ )

ι−→ Lh
5(Γ,1) → kZ = Ker(ε) → 0.

(Here k = 0 if and only if ω = 1, equivalently, Z is orientable.) Since these groups are abelian, we obtain a non-canonical
isomorphism

ϕ : Lh
5(Γ,1) → Lh

5(Γ ) ⊕ kZ.

The relevant action of Lh
4(1) on the homology structure set ShZ

TOP(S3) via twice-punctured E8-manifolds restricts/extends
to an action of kZ on Sh

TOP(p Z , S3). Thus, via the isomorphism ϕ , we obtain an appropriate action of Lh
5(Γ,1), given by

concatenation of the actions. Therefore, we obtain (p Z , S3) has class SESh+ . �
At last, we are ready to establish our Main Theorem using homology splitting. For any non-empty compact connected

4-manifold Z , we use the following notation:

p Z := Z − int D4, ÑTOP(Z) := Ker
(
NTOP(Z) → Lh

4(1)
)
, L̃h

4(π1 Z) := Cok
(
Lh

4(1) → Lh
4(π1 Z)

)
.

Proof of Theorem 1.7. Since Γ := π1(X) is isomorphic to a free product Γ1 ∗ · · · ∗ Γn , by an existence theorem of J. Hill-
man [23] (cf. [31,33]), there exist r � 0 and closed topological 4-manifolds X1, . . . , Xn with each π1(Xi) isomorphic to Γi
such that X # r(S2 × S2) is homeomorphic to X1 # · · · # Xn . For Part (1), since each Γi has class NDL, by Theorem 1.6, we
obtain that each Xi has class SESh+ . For Part (2), this is assumed of the Xi , and the SESh+ property only depends on the
homotopy type of X . Therefore we may assume that X = X1 # · · · # Xn with each Xi of class SESh+ . Write Γi := π1(Xi) for
each fundamental group.

We induct on n > 0. Assume for some n � 1 that the (n − 1)-fold connected sum of all compact connected topological
4-manifolds of class SESh+ has class SESh+ , where in the non-orientable case we assume 2-torsionfree fundamental group.
Write

X ′ := X1 # · · · # Xn−1, Γ ′ := Γ1 ∗ · · · ∗ Γn−1.

Hence X = X ′ # Xn and Γ = Γ ′ ∗Γn . By hypothesis, both X ′ and Xn have class SESh+ . Then, by Lemma 4.1, the pairs (p X ′, S3)

and (p Xn, S3) have class SESh+ . Next, we show our original 4-manifold has class SESh+:

X = p X ′ ∪S3 p Xn.

First, the K -theory splitting obstruction group vanishes [42], and, by a recent vanishing result [10,3,11], so do the
L-theory obstruction groups1:

Ñil0
(
Z;Z[

Γ ′ − 1
]
,Z[Γn − 1]) = 0, UNilh4

(
Z;Z[

Γ ′ − 1
]
,Z[Γn − 1]) = 0,

UNilh5
(
Z;Z[

Γ ′ − 1
]
,Z[Γn − 1]) = 0.

So observe, by Stalling’s theorem for Whitehead groups of free products [40] and the Mayer–Vietoris type exact sequence
for L-theory groups [6], that:

Wh1(Γ ) = Wh1
(
Γ ′) ⊕ Wh1(Γn), L̃h

4(Γ ) = L̃h
4

(
Γ ′) ⊕ L̃h

4(Γn), L̃h
5(Γ ) = L̃h

5

(
Γ ′) ⊕ L̃h

5(Γn).

Here, from the Mayer–Vietoris sequence for any free product G = G1 ∗ G2, we write

L̃h
5(G) := Ker

(
∂ : Lh

5(G) → Lh
4(1)

)
.

Second, since NTOP(S3) and ÑTOP(S3 × I) are singletons, by TOP transversality [19] and by attaching thickened normal
bordisms, we obtain:

ÑTOP(X) = ÑTOP
(

X ′) × ÑTOP(Xn).

1 If Γ is 2-torsionfree, then UNilh∗ = 0 by Cappell’s earlier result [6], [7, Lem. II.10]. Furthermore, we require Γ to be 2-torsionfree in the non-orientable

case, due to the example of non-vanishing of these two UNil-groups for RP
4 #RP

4.
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So, since the surgery sequence for both X ′ and Xn is exact at NTOP, the surgery sequence for the connected sum X is exact
at NTOP.

Third, since (p X ′, S3) and (p Xn, S3) have class SESh+ and the splitting obstruction groups vanish, by Theorem 3.2(1),
any homotopy equivalence to X is TOP s-bordant rel ∂M to a Z-homology split map along S3. That is, the top part of the
s-bordism is a homotopy equivalence whose preimage of S3 is a Z-homology 3-sphere Σ . Thus the following inclusion is
an equality (compare [5, Thm. 3]):

⊆ : SZ-split
TOP

(
X; S3) → Sh

TOP(X).

By [19, Cor. 9.3C], there exists a TOP Z-homology h-cobordism (W ;Σ, S3) such that W is 1-connected. Furthermore, there
exists an extension of the degree-one normal map Σ → S3 to a degree-one normal map W → S3 × I . Thus, by attaching
the thickened normal bordism, the following inclusion is an equality:

⊆ : Ssplit
TOP

(
X; S3) → SZ-split

TOP

(
X; S3).

(The process of this last equality is called neck exchange, cf. [30,25].) Therefore the following map #, given by interior
connected sum, is surjective:

# : Sh
TOP

(
X ′) × Sh

TOP(Xn) → Sh
TOP(X).

In order to show that # is injective, suppose h1 # h2 is TOP h-bordant to h′
1 # h′

2, say by a map H : W → X × I . Since S3 × I
is a 1-connected 4-manifold [19], and ∂ H is split along S3 × ∂ I , by the relative 5-dimensional form of Cappell’s nilpotent
normal cobordism construction [5,7], there exists a TOP normal bordism rel ∂W from H to an h-bordism H ′ : W ′ → X × I
split along S3 × I . So H ′ = H ′

1 # H ′
2. Therefore # is injective. Now Wh1(Γ ) and L̃h

5(Γ ) can be given product actions on
Sh

TOP(X). The latter extends to an action of Lh
5(Γ ) by attaching a thickened multiple of a twice-punctured E8 manifold

along S3. Hence the surgery sequence for X is exact at Sh
TOP and Lh

5. This completes the induction. Therefore arbitrary
connected sums X = X1 # · · · # Xn have class SESh+ . �

The following argument is partly based on Farrell’s 1970 ICM address [15].

Proof of Theorem 1.13. One repeats the mapping torus argument of the proof of [27, Thm. 5.6], constructing a homotopy
equivalence h : X → X using f . Since the achieved homotopy equivalence g : M → X �h S1 has Whitehead torsion τ (g) =
τ ( f ) = 0, there are no splitting obstructions. Since X has class SESh+ , the proof of splitting g along X holds [27, Thm. 5.4];
one no longer requires that M and X be DIFF manifolds. Therefore the argument of [27, Thm. 5.6] shows that f : M → S1

is homotopic to a TOP s-block bundle projection. �
5. Proofs for topological rigidity

The following elementary argument is similar to J. Hillman’s [24, Cor. 6.7.2].

Proof of Theorem 1.18. First, we show that the s-cobordism structure set S s
TOP(Z) is a singleton. Let M be a compact

topological 4-manifold, and let h : M → Z be a simple homotopy equivalence that restricts to a homeomorphism ∂h :
∂M → ∂ Z . Then the surgery obstruction σ s

4(η(h)) ∈ Ls
4(π,ω) vanishes. Since σ s

4 is injective, there exists a TOP normal
bordism F : W → Z × I to η(h) from the identity idZ . Since σ s

5 is surjective, there exists a TOP normal bordism F ′ : W ′ →
Z × I to idZ from idZ with opposite surgery obstruction: σ s

5(F ′) = −σ s
5(F ). Hence the union

F ′′ := F ′ ∪idZ F : W ′ ∪Z W → Z × I

is a TOP normal bordism to η(h) from idZ with vanishing surgery obstruction: σ s
5(F ′′) = 0. Therefore, by 5-dimensional

TOP surgery theory [43,28], we obtain that F ′′ is TOP normally bordant rel ∂ to a simple homotopy equivalence F ′′′ :
(W ′′′; Z , M) → (Z × I; Z × 0, Z × 1) of manifold triads. Therefore we have found a TOP s-bordism to h from idZ . That is,
S s

TOP(Z) is a singleton {∗}.
Next, observe that trivially we obtain an exact sequence of based sets:

NTOP(Z × I)
σ s

5−→ Ls
5(π,ω)

∂−→ {∗} η−→ NTOP(Z)
σ s

4−→ Ls
4(π,ω).

We declare the action of Ls
5(π,ω) on S s

TOP(Z) to be trivial. Finally, if Wh1(π) = 0, then homotopy equivalences to Z are
simple, and so Z is topologically s-rigid. �

We employ a case of a lemma of Hillman [24, Lem. 6.8], providing its details.
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Proof of Corollary 1.19. Let k � 0. By the Mayer–Vietoris sequence in homology, the Shaneson sequence in L-theory [38],
and the Ranicki assembly map [36, p. 148], the following diagram commutes with right-split exact rows:

H5+k(Z;L0)
i∗

As
5+k(Z)

H5+k(Z × S1;L0)
∂

As
5+k(Z×S1)

H4+k(Z;L0)

Ah
4+k(Z)

Ls
5+k(Z)

i∗ Ls
5+k(Z × S1)

∂ Lh
4+k(Z).

Moreover, the algebraic right-splitting is given by multiplying local or global quadratic complexes by the symmetric complex
of the circle. This choice of splitting commutes with the connective assembly maps As

5+k(Z × S1) and Ah
4+k(Z).

Assume Z × S1 is topologically rigid. Then S s
TOP(Z × S1) = {∗}. So, by Wall’s surgery exact sequence [43, §10] and Ranicki’s

identification of the surgery obstruction map with the assembly map [36, Prop. 18.3(1)] via topological transversality [19],
we obtain that As

5(Z × S1) is injective and As
6(Z × S1) is surjective. Hence, using k = 0 in the above diagram and the

right-splitting, σ h
4 = Ah

4(Z) is injective. Also, using k = 1 in the above diagram, σ h
5 = Ah

5(Z) is surjective. Therefore, by
Theorem 1.18, we obtain that Sh

TOP(Z) = {∗}. Hence, since Wh1(π1 Z) = 0 by hypothesis, we conclude that Z is topologically
s-rigid. �
Proof of Corollary 1.23. Denote Γ := π1(Z). Via topological transversality [19], there are commutative squares with bijective
left vertical maps [36, Prop. 18.3(1)]:

NTOP(Z)
σ s

4

∩[Z ]
L0

Ls
4(Γ )

AΓ
4

H4(Z;L0)
u4 H4(BΓ ;L0)

NTOP(Z × I)
σ s

5

∩[Z ]
L0

Ls
5(Γ )

AΓ
5

H5(Z;L0)
u5 H5(BΓ ;L0).

Here, we are using the identification NTOP(Z) = [Z/∂ Z , G/TOP]+ . Since Z is aspherical, the bottom horizontal maps are
isomorphisms. Since Γ is torsionfree with cdim(Γ ) = 4 and has class FJL , Wh1(Γ ) = 0, the map AΓ

4 is a monomorphism,
and AΓ

5 is an isomorphism. Hence σ s
4 is injective and σ s

4 is surjective. Therefore, by Theorem 1.18, we obtain that Z is
topologically s-rigid and has class SESh+ . �
Proof of Corollary 1.26. Let α : K → K be the homeomorphism. It follows from the homotopy sequence of a fibration that
Z = K �α S1 is aspherical. By a recent theorem2 of Bartels, Farrell and Lück [2], we obtain that Γ0 := π1(K ) has class FJL .

Write Γ := π1(Z). Then Γ = Γ0 �α Z. By the excessive Wang sequence and the Shaneson Wang-type sequence, there is
a commutative diagram with exact rows:

Hn(BΓ0;L)
1−α∗

A
Γ0
n

Hn(BΓ0;L)
i∗

A
Γ0
n

Hn(BΓ ;L)
∂

AΓ
n

Hn−1(BΓ0;L)

A
Γ0
n−1

Ls=−∞
n (Γ0)

1−α∗ Ls
n(Γ0)

i∗ Ls
n(Γ )

∂ Lh=s
n−1(Γ0).

Since Γ0 is torsionfree and has class FJL , the non-connective assembly maps AΓ0∗ are isomorphisms. Hence, by the five
lemma, the non-connective assembly maps AΓ∗ are isomorphisms. Using topological transversality and Poincaré duality,
similar to the proof of Corollary 1.23, by Theorem 1.18, we obtain that S s

TOP(Z) = {∗}. Hence, since Wh1(π1 Z) = 0, we
conclude that Z is topologically s-rigid. �
Proof of Corollary 1.27. Since each Xi is orientable and has class SESh+ , by Theorem 1.7, we obtain that X has class SESh+
and the following function is a bijection:

# :
n∏

i=1

Sh
TOP(Xi) → Sh

TOP(X).

Next, let 1 � i � n. Consider the connective assembly map components [41]:

A4 = ( I0 κ2 ) : H4(BΓi;L0) = H0(BΓi;Z) ⊕ H2(BΓi;Z2) → Lh
4(Γi),

A5 = ( I1 κ3 ) : H5(BΓi;L0) = H1(BΓi;Z) ⊕ H3(BΓi;Z2) → Lh
5(Γi).

2 Their proof depends on G. Perelman’s affirmation of Thurston’s Geometrization Conjecture (cf. [1]). It also depends on individual casework of S. Roushon
and P. Kühl.
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Assume Γi is torsionfree and π2(Xi) ⊗ Z2 = 0. Since Γi has class FJL and cdim(Γi) � 4, we obtain that A4 is a monomor-
phism and A5 is an isomorphism. Recall the universal covering X̃i → Xi is classified by a unique homotopy class of map
u : Xi → BΓi , which induces an isomorphism on fundamental groups. Since Xi is a closed oriented topological manifold,
using topological transversality [19], the Quinn–Ranicki H-space structure on G/TOP, and Poincaré duality with respect to
the L

0-orientation [36], we obtain induced homomorphisms

u′
4 : NTOP(Xi) ∼= [

(Xi)+, G/TOP
]
+ ∼= H4(Xi;L0)

u∗−→ H4(BΓi;L0),

u′
5 : NTOP(Xi × I) ∼= [

(Xi)+ ∧ S1, G/TOP
]
+ ∼= H5(Xi;L0)

u∗−→ H5(BΓi;L0)

such that the surgery obstruction map factors: σ h
4 = A4 ◦ u′

4 and σ h
5 = A5 ◦ u′

5. Recall the Hopf sequence, which is obtained
from the Leray–Serre spectral sequence:

H3(Xi;Z2)
u3−→ H3(BΓi;Z2) → H2( X̃;Z2) → H2(X;Z2)

u2−→ H2(BΓi;Z2) → 0.

Since H2( X̃;Z2) = π2(Xi) ⊗Z2 = 0, we have Ker(u2) = 0 and Cok(u3) = 0. Hence

Ker
(
σ h

4

) = Ker
(
u′

4

) = Ker(u0) ⊕ Ker(u2) = 0,

Cok
(
σ h

5

) = Cok
(
u′

5

) = Cok(u1) ⊕ Cok(u3) = 0.

Therefore, since Xi has class SESh+ and Wh1(Γi) = 0, we obtain that S s
TOP(Xi) is a singleton. Thus, since # is a bijection, the

Whitehead group Wh1(Γ ) and s-cobordism structure set S s
TOP(X) of X = X1 # · · · # Xn are singletons also. �
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