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1. Topological manifolds

By topological manifold, we shall mean a separable metrizable space M such that each point x € M has
a neighborhood homeomorphic to some R™. Notice we allow n to depend on z, so that different compo-
nents of M may have different dimensions. Note separable and metrizable imply paracompact [12, 4] and
second-countable.

Lemma 1.1. Let M be a topological manifold. There exists an increasing sequence My C My, C ... C M; C ...
of open sets whose union is M such that each closure M; in M both is compact and is a neighborhood
deformation retract in M;1.

It is a lament of the author to not have discovered a proof from basic topology.
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Proof. If M is compact, then simply use the constant sequence M; = M. Otherwise, assume M is non-
compact. Since M has only countably many components, say {M°}22, and by forming the finite unions
M; = U. i M7 when such sequences {M 1520 exist, we may further assume that M is connected, say
with n :=dim M.

First suppose n < 4. If n = 1, then M is homeomorphic to either S* or R [17] hence admits a (C°°)
smooth structure. If n = 2, then M admits a triangulation by Radé6 [42, 2] hence a smooth structure by
Richards [43, 3]." If n = 3, then M admits a triangulation by Moise [34, 3] hence a smooth structure
by Cairns [8, III]. If n = 4, then M admits a smooth structure by Freedman—Quinn [16, 8.2], since M is
noncompact connected. In any case, we may select a smooth structure on M. There exists a Morse function
f: M — [0,00) with each i € N a regular value [33, 2.3] and each M; := f~[0,i) precompact [33, 6.7].
Furthermore, each M; is a neighborhood deformation retract in M; [33, 3.1].

Now suppose n > 4. The topological manifold M admits a topological handlebody structure My C ... C
M; C ..., by Kirby-Siebenmann [24, I11:2.1] if n > 5 and by Quinn [16, 9.1] if n = 5. That is, each M; is
open in M, the closure M; is compact, the frontier M, := M; — M; is a bicollared topological submanifold
of M (that is, M; is clean in M), and M, is the union of M; and a handle. So, since M; is bicollared,
each M; is a neighborhood deformation retract in M; ;. O

An absolute neighborhood retract (with respect to the class of metric spaces, denoted ANR) is a metrizable
space such that any closed embedding into a metric space admits a retraction of a neighborhood to the
embedded image [19, TIT:§6].

A 1951 theorem of O Hanner has this nonseparable generalization [19, I11:8.3].

Lemma 1.2 (Hanner). Topological manifolds are absolute neighborhood retracts.
2. Equivariant topological manifolds

A G-cofibration is a G-map with the G-homotopy extension property to any G-space. Some G-homotopy
commutative squares can be made strictly commutative.

Lemma 2.1. Let G be a topological group. Let A, B,C,D be (topological) G-spaces. Let i : A — B be a
G-cofibration. Let f : A— C and g: B — D and h: C — D be (continuous) G-maps. Suppose that go1i
is G-homotopic to ho f. Then g is equivariantly homotopic to a G-map ¢’ : B — D such that ¢'oi = ho f.

Proof. Write H : Ax[0,1] — D for the G-homotopy from goi to ho f. Since i : A — B is a G-cofibration,
there exists a G-homotopy E : B x [0,1] — D from g to some g’ such that E o (i x idj ;) = H. Then
goi=H|(Ax{1})=hof. O

Recall G-cofibrant is equivalent to G-NDR for closed G-subsets [7, VIL:1.5].

Definition 2.2. By a topological G-manifold, we mean a topological G-space M so, for each closed subgroup
H of G, the H-fixed subspace is a topological manifold:

MY = {zeM|Vge H: gz =z}

Indeed the restriction of M* being locally Euclidean is not automatic [4, 8].

1 One can avoid this later classification of Richards and instead use elementary (1920s) methods: the regular neighborhoods of
simplices in the second barycentric subdivision are PL handles (see [44, 6.9] for all n); each attaching map of a 1-handle or a
2-handle is isotopic to a smooth one.
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Example 2.3 (Bing). A Cy-action on R* exists with fixed set not a C%-manifold.

Remark 2.4. Let M be a topological manifold with the action of a Lie group G. For any prime p, the
fixed set M is an F,-cohomology manifold if H < G is a finite p-group (Smith [5, V:2.2]) or toral group
(Connor-Floyd [5, V:3.2]).

T Matumoto introduced the notion of a G-CW complex for any G [31, 1.5].

Theorem 2.5. Let G be a compact Lie group. Any topological G-manifold is G-homotopy equivalent to a
G-equivariant countable CW complex. Furthermore, if the manifold is compact, then the CW complex can
be selected to be finite-dimensional.

Proof. Let M be a topological G-manifold. By Lemma 1.2, each M is an ANR. Also, by the Bredon-Floyd
theorem, each compact set in M has only finitely many” conjugacy classes of isotropy group [5, VI1:2.2]. Con-
sider the increasing sequence {M;}5°, of Lemma 1.1. We may assume that each open set M; is G-invariant
by replacement with its G-saturation G'M;; indeed, the compactness of G implies the compactness of M;
6, 1:3.1(3)]. Then each M;, hence M;, has finitely many orbit types. Also, the open set M = M; N M*
in M is an ANR by Hanner [19, I11:7.9]. So, since M; is a separable metrizable finite-dimensional locally
compact space, by a criterion of Jaworowski [21, 2.1],% we obtain that M; is a G-ENR. That is, there exist
a closed G-embedding of M; in a Euclidean G-space (equipped with a smooth orthogonal representation of
G), an open G-neighborhood U of M;, and a G-retraction r : U — M;. By a theorem of Illman [20, 7.2],
the smooth G-manifold U admits a G-CW structure, finite-dimensional and countable.

Write e : M; — U for the G-inclusion. By the G-version of Mather’s trick [30], the mapping torus
Torus(r oe) is G-homotopy equivalent to Torus(eor). Note Torus(r oe) is G-homeomorphic to M; x S* with
trivial G-action on S1. By G-cellular approximation [47, I1:2.1], the G-map eor : U — U is G-homotopic to
a cellular G-map ¢ : U — U. Then Torus(eor) is G-homotopy equivalent to the finite-dimensional countable
G-CW complex Torus(c). Thus M; x S*, hence the infinite cyclic cover M; x R ~ M;, is G-homotopy
equivalent to a finite-dimensional countable G-CW complex K;, namely the bi-infinite mapping telescope
of c.

Thus, for each ¢, we obtain a G-homotopy equivalence f; : M; — K;. Choose a G-homotopy inverse
ﬁ : K; — M;. Write ¢; : M; — M, for the G-cofibrant inclusion. By G-cellular approximation [47,
11:2.1], the composite fi11 o ¢; o fi is G-homotopic to cellular G-map g; : K; — K; 1. Recursively by
Lemma 2.1 for each ¢, we may reselect f;1+1 up to G-homotopy such that f;11 0¢; = ¢; o f; holds. These
assemble to a G-homotopy equivalence of the mapping telescopes

:h li Mi; i K:=h li K,L', i)
f oiceoNlm( ci) — ozcé)Nlm( gi)

Thus, as the ¢; are cofibrations, the topological G-manifold M = colim;(M;, ¢;) is G-homotopy equivalent
to the countable G-CW complex K ([33, Appendix]). O

Notice that, since the dimension of the Euclidean space equivariantly containing M; may be unbounded
over all i, the CW complex K may not be finite-dimensional.

2 An example with infinitely many orbit types is M = N x St with U;-action u(n, z) := (n, u"z).
3 Beware the G-Wojdystawski theorem therein is incorrect and must be amended by [22].
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3. Examples and related results

Example 3.1 (Bing). Consider the double D := E Uy E of the closed exterior E in S3 of the Alexander
horned sphere A ~ S2. This double has an obvious involution 7 that interchanges the two pieces and leaves
the horned sphere fixed pointwise. RH Bing showed that D is homeomorphic to the 3-sphere [3]. By 2.5,
(S3,75) has the Cy-homotopy type of a finite-dimensional countable Co-CW complex.

Example 3.2 (Montgomery-Zippin). Adaptation of Bing’s ideas produces an involution sz of S3 with fixed
set a wildly embedded circle [37, §2]. So (S®,7rr7) also has the Ca-homotopy type of a finite-dimensional
countable C3-CW complex.

Example 3.3 (Lininger). For each k > 3, there exist uncountably many inequivalent free U;-actions on S2+~1
with quotient not a C°-manifold [29, Remark 2]. Each has the U;-homotopy type of a finite-dimensional
countable U;-CW complex. Indeed, using [1] for mutation® of S?*~! — CP;, keeps isotropy groups trivial.

Remark 3.4 (Kwasik). The case of G finite in Theorem 2.5 was proven by S Kwasik [27, 3.6]. However, in his
first step, he implicitly assumed the continuity of the G-action, defined by g f := (z = f(g~'z)), on the
Banach space B(X) of bounded continuous functions X — R equipped with the sup-norm. This popular
assumption was implicit in the infamous assertion of an equivariant version of Wojdystawski’s theorem.
Non-equivariantly it states that the Kuratowski embedding, defined by  — (y — d(x,y)), of a metrizable
space X into B(X) [25, 6], has image closed in its convex hull, where d is any bounded metric on X [51,
7]. Nonetheless, Kwasik’s assumption is indeed true and proven later by S Antonyan; it follows from [2,
Proposition 8] that it holds when G is a discrete group. Continuity of the G-action on B(X) fails if G = U;
[2, §8:1], a flaw in [28].

Corollary 3.5. Let I' be a virtually torsionfree,” discrete group. Any topological T -manifold with proper action
has the T'-homotopy type of a countable I'-CW complex. Moreover if the action is cocompact, then the CW
complex can be finite-dimensional.

Proof. Using intersection with finitely many conjugates, there is a normal, torsionfree subgroup I'" of I'.
Write G :=T'/T'" for the finite quotient group. Since the I'-action on the given topological I'-manifold M™
is properly discontinuous and I'T is torsion-free, M is a regular I'T-covering space of the orbit space M :=
M /T, Thus, by the evenly covered property, M is a topological G-manifold. Therefore, by Theorem 2.5
(or just [27, 3.6] amended by Remark 3.4), there is a G-homotopy equivalence f : X — M from a
G-equivariant countable CW complex X.

Write X := f*M™ and consider the pullback diagram of I'-spaces and I'-maps:

f+
Xt —— MT

f*qi ql (3.1)

x . wm

Since q is a regular I't-covering map, the induced map f*q given by inclusion-projection is also a regular
I'"-covering map. Then the covering space X+ is a CW complex [7, IV:8.10]. This I'-invariant CW structure
on XV is a countable I'-CW complex [47, 11:1.15]. The induced map fT is a I'-homotopy equivalence. O

4 His first step is CO-existence of a product tube around a principal orbit [38, Remark V:4].

5 Virtually torsionfree holds necessarily for all finitely generated I' < GL,(C) by Selberg [46, 8]. Deligne gives an example of
this property failing for a lattice I in a nonlinear Lie group [11]. I conjecture that this corollary is true if “virtually torsionfree”
is replaced with “residually finite.”
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An application of Corollary 3.5: any such topological I'-manifold, whose fixed set of any finite subgroup
is contractible, is a model for the classifying space Erin['; the '-CW condition is assumed for the existence
of classifying maps. This corollary thus simplifies the fundamentally complicated proofs of [9, 2.3] [10, 2.5].

Remark 3.6 (Freedman, Quinn). Let G be a topological group. A locally linear G-manifold [6, §TV:1] (‘locally
smooth’ therein) is a proper G-space M such that, for each x € M, there are a G -invariant subset
r € S C M and a homeomorphism S — R¥ equivariant with respect to an O(k)-representation of the
1sotropy group

G, = {geG|gz=2a}

such that the multiplication map G xg, S — M is an open embedding. Any smooth G-manifold is a locally
linear G-manifold [39, 2.2.2]. M Freedman constructed a nonsmoothable free involution 77 on the 4-sphere
(more in [23]). Hence (S*,7x) is a locally linear Cy-manifold that is not a smooth Cy-manifold. F Quinn
constructed a locally linear G-disc A where G = Ci5 X2 Cy such that A does not contain a finite G-CW
complex in its G-homotopy type [41, 2.1.4]. So for non-smooth actions there is no G-analog of the Borsuk
Conjecture [50, 5.3].

Remark 3.7 (Elfving). Let G be any Lie group, and further assume that all actions are proper in the
more specialized sense of Palais [39, 1.2.2]. E Elfving concluded that any locally linear G-manifold has the
G-homotopy type of a G-CW complex [15]; first he had proven this conclusion when G is a linear Lie group
[14] which includes our case of G a compact Lie group. To contrast his results with our Theorem 2.5, his
input type of group is broader but his input type of manifold is more restricted, and our output type of
CW complex is sharper. Philosophically, for a homotopy-type result, one does not need the homeomorphism
structure of locally linear tubes, but simply equivariant neighborhood retractions.

4. Application of the Hilbert—-Smith Conjecture

An early attempt on Hilbert’s fifth problem (1900) is this approximation [48].

Lemma 4.1 (von Neumann). Any compact Hausdorff group is isomorphic to the filtered limit of an infinite
tower of compact Lie groups and smooth epimorphisms.

Proof (Pontrjagin—Weil). We outline a later proof, as it is a beautiful interaction of algebra, analysis,
and topology [40, Theorem 54]. Haar (1933) showed that any locally compact Hausdorff group G admits a
translation-invariant measure p on its Borel g-algebra. Since G is compact, we take p to be a probability mea-
sure. Urysohn’s lemma (1925) implies G is completely Hausdorff. So on the Hilbert space H := L*(G, u; C)
the G-action via pre-multiplication is faithful. Peter—Weyl (1927) showed the sum of all finite-dimensional
G-invariant C-linear subspaces is dense in ‘H. Thus each nonidentity element of G acts nontrivially on such
a subspace of H.

So, since GG is compact, it follows that each neighborhood B of the identity e in G contains the kernel
N of a finite product of (finite-dimensional) unitary representations. That is, B D N <G and G/N is
monomorphic to a finite product of unitary groups. So G/N is a Lie group (von Neumann, 1929). If G is
first-countable, then e has a countable decreasing basis {B;}:2,, so we can also assume decreasing for the
corresponding sequence {N;}5°, of closed normal subgroups of G with G/N; a (compact) Lie group. So,
since [,y N; is trivial, the homomorphism G — lim;(G/N;) is injective. It is surjective, since for any
{a;N;}52, in the limit, the intersection of the descending chain of the compact sets a;N; C G is nonempty.

Weil removed first-countability by limiting over a larger directed set [49, §25]. Consider the set F of finite
subsets of G — {e} partially ordered by inclusion; note it is directed as I, J € F implies I U.J € F. For each



Q. Khan / Topology and its Applications 235 (2018) 1421 19

e # x € G, our unitary representation M, : G — Uy, satisfies M, (x) # id; call the kernel N, < G. For
each I € F, define My := [],.; M, with kernel Ny = (1, .; Ny, so that again G/N; = M (G) < [[,c; Ui
is a compact Lie group. Thus I — G/Nj is a functor from F°P to the category of compact Lie groups and
smooth epimorphisms. Since each e # x ¢ N, the homomorphism ¢ : G — lim;c#(G/N;) is injective.
Since {a;Ny}rer has finite-intersection property, ¢ is surjective [36, 26.9]. O

I was unable to apply this tower to generalize Theorem 2.5 to compact Hausdorff G. However, under
certain circumstances, G becomes Lie, so that Theorem 2.5 applies. If G is compact, by Lemma 4.1, G has
no small subgroups if and only if it is Lie. Notice, for any prime p, the additive group Z,, of p-adic integers
is compact Hausdorff with arbitrarily small subgroups. So G is Lie implies it contains no Z,.

Conjecture 4.2 (Hilbert-Smith). Let G be a locally compact group. If G admits a faithful action on a con-
nected topological manifold M, then G must be a Lie group. In short, G is Lie if G < Homeo(M ). Hilbert’s
fifth problem is the case M = G.

Partial affirmations exist if one assumes some sorts of regularity of the action.

Theorem 4.3 (Kuranishi [26, 4] [38, V:2.2]). Conjecture 4.2 is true for G, if there exists a C'-manifold
structure on M and the action is by C'-diffeomorphisms.

If G is compact, it is unworthy to use Theorem 2.5 as the Ct-action becomes C“ [35, 1.3]. Any Cl-map
(continuous first partial derivatives) is locally Lipschitz.

Theorem 4.4 (Repovs-Scepin [}5]). Conjecture /.2 is true for G, if the action is by Lipschitz homeomor-
phisms with respect to a Riemannian metric on smooth M.

Their argument shows the impossibility of G' containing Z,, for any prime p, by otherwise establishing
inequalities with Hausdorff dimension for various metrics. The Riemannian hypothesis is only used to obtain
equality with covering dimension.

Later it was noticed that the Baire-category part of the argument could be done locally in a Euclidean
chart, averaging a metric on it over a small subgroup of Z,. In this situation, the new lemma is: M and
M /Z, have equal covering dimensions.

Both short proofs rely on C T Yang’s 1960 result: dimz(M/Z,) = dimgz (M) + 2.

Theorem 4.5 (George-Michael [18]). Conjecture /.2 is true for G, if the action is by locally Lipschitz home-
omorphisms on the connected topological manifold M .

Notice any self-homeomorphism is Lipschitz if the metric space M is compact. The following consequence
is pleasant because of no smoothness on G or the action.

Corollary 4.6. Let G be a compact group. Let M be a topological G-manifold. Suppose the action is faithful
and that M is compact and connected. Then M has the G-homotopy type of a G-equivariant finite-
dimensional countable CW complex.

To such (M, G), including Examples 3.1-3.3 or others with CY dynamics, one can now apply equivariant
homology, with variable coefficients in Abelian groups (Bredon—-Matumoto [32]) or more generally in spectra
(Davis—Liick [13]). Therefore, inductively calculable invariants of these wild objects are now available.
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