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Abstract. Cappell’s unitary nilpotent groups UNilh∗(R; R, R) are calculated for the integral group ring
R = Z[C2] of the cyclic group C2 of order two. Specifically, they are determined as modules over the
Verschiebung algebra V using the Connolly–Ranicki isomorphism [CR05] and the Connolly–Davis
relations [CD04].
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1 Introduction

Consider the simplest nontrivial 2-group

C2 =
〈

T | T 2 = 1
〉

.

Observe that the integral group ring Z[C2] fits into Rim’s cartesian square

Z[C2]
i−−−−−→ Z

i+

⏐⏐� j −
⏐⏐�

Z
j +−−−−→ F2

of rings with involution, where i±(T ) = ±1. We focus on piecing together its UNil as a
module from the UNil of the component rings Z and F2, using a Mayer–Vietoris sequence
in algebraic L-theory. The additional structure1 on

UNilh∗(R) := UNilh∗(R; R, R) ∼= NLh∗(R)

computed below is its covariant (pushforward) module structure over the Verschiebung al-
gebra

V := Z[Vn | n > 0] = Z[Vp | p prime]

1 The V-module structure is induced by the Connolly–Ranicki isomorphism (Thm. 2.2).
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of n-th power operators

Vn := (x �→ xn )

on polynomial rings R[x]. An analogous structure in algebraic K-theory has been studied
by Joachim Grunewald [Gru08, §4.2.2] for the Bass Nil-groups

Ñil∗(R) = NK∗+1(R).

The following two theorems are the main results of this paper. In the instance F = C2, since
the lower Ñili- and NKi+1-groups vanish [Har87], we may replace the 〈−∞〉 decoration
with the h decoration. The first main theorem provides a general vanishing result and a
classifying isomorphism, specializing [Kha09].

Theorem 1.1. Suppose F is a finite group that contains a normal Sylow 2-subgroup of
exponent two. If n ≡ 0, 1 (mod 4), then the following abelian group vanishes:

UNil〈−∞〉
n (Z[F]) = 0.

Furthermore, if n ≡ 2 (mod 4), then the following induced map is an isomorphism:

UNil〈−∞〉
n (Z[F]) −→ UNil〈−∞〉

n (F2)
r∼=−→ NL〈−∞〉

n (F2)
Arf∼=−−−→ xF2[x]/(f 2 − f ),

where (f 2 − f ) :=
{

f 2 − f | f ∈ xF2[x]
}

is a V-submodule of xF2[x].

The second main theorem examines non-vanishing in the remaining dimensions.

Theorem 1.2. If n ≡ 3 (mod 4), then there exists a decomposition

UNil〈−∞〉
n (Z[C2]) ∼= UNil〈−∞〉

n+1 (F2) ⊕ UNil〈−∞〉
n (Z) ⊕ UNil〈−∞〉

n (Z).

Proof. Immediate from Theorems 2.4 and 2.11.

2 Definitions, relations, and decompositions

Unless specified otherwise, all the surgery groups L, UNil, NL in in this paper shall have
the h decoration with respect to the algebraic K-groups K̃1, Ñil0, NK1.

Definition 2.1 (Bass). Let R be a ring with involution. For each n ∈ Z, define the abelian
group

NLn(R) := Ker (aug0 : Ln(R[x]) −→ Ln(R)) .

Therefore there is a natural decomposition

Ln(R[x]) = Ln(R) ⊕ NLn(R).
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The subsequent statements are technical tools for the main theorems. The first is the Con-
nolly–Ranicki isomorphism [CR05, Thm. A], which is a fundamental equivalence in the
computation of a certain class of UNil-groups.

Theorem 2.2 (Connolly–Ranicki). Let R be a ring with involution. Then for all n ∈ Z,
there is a natural isomorphism

rh : UNilhn(R; R, R) −→ NLh
n(R)

which descends to a natural isomorphism

r〈−∞〉 : UNil〈−∞〉
n (R; R, R) −→ NL〈−∞〉

n (R).

Remark 2.3. According to Connolly–Koźniewski [CK95], Connolly–Ranicki [CR05], and
Connolly–Davis [CD04], the group NLodd(F2) vanishes, and the Arf invariant is an isomor-
phism:

Arf : NLeven(F2) −→ xF2[x]

(f 2 − f )
.

The inverse of Arf is given by the map q �−→ Pq,1, where for all p , g ∈ xF2[x] the
symplectic form Pp ,g is defined by

Pp ,g :=
(⊕

2
F2[x],

(
0 1
1 0

)
,

(
p
g

))
.

Also the group NLn(Z) vanishes if n ≡ 0, 1 (mod 4), the induced map to NLn(F2) is
an isomorphism if n ≡ 2 (mod 4), and there is a two-stage obstruction theory [CD04,
Proof 1.7] if n ≡ 3 (mod 4):

0 −→ xF2[x]

(f 2 − f )
P−−→ NL3(Z)

B−−→ xF2[x] × xF2[x] −→ 0.

It is given primarily by certain characteristic numbers B in Wu classes of (−1)-quadratic
linking forms over (Z[x], 2), and secondarily by the Arf invariant, of even linking forms P,
over the function field F2(x).

Theorem 2.4. Consider F = C2 with trivial orientation character. Then, as modules over
the Verschiebung algebra, there is a decomposition

NL3(Z[C2]) = NL3(Z) ⊕ ÑL3(Z[C2])

and there is an exact sequence (constituting a three-stage obstruction theory):

0 −−−−→ NL0(F2)
∂̃−−−−→ ÑL3(Z[C2])

i−−−−−→ NL3(Z) −−−−→ 0.
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Ingredients for the next theorem are as follows. Given a ring A with involution and ε = ±1,
there is an identification [Ran81, Prop. 1.6.4] between split ε-quadratic formations over
A and connected 1-dimensional ε-quadratic complexes over A. The identification between
(−ε)-quadratic linking forms over (A, (2)∞) and resolutions by (2)∞-acyclic 1-dimensional
ε-quadratic complexes over A is given by [Ran81, Proposition 3.4.1].

The determination of the above extension (2.4) of abelian groups involves algebraic gluing
of quadratic complexes [Ran81, §1.7], given below (2.7) by a choice M of set-wise section.
Recall from group cohomology that an extension of abelian groups

0 −→ A −→ B −→ C −→ 0

and a choice of set-wise section s : C → B determine a factorset

f : C × C −→ A; (c, c′) �→ s(c) + s(c′) − s(c + c′).

Our main concern is the computation of such a function f , via generators of C and an
invariant for A in the above sequence (2.4) of abelian groups.

Remark 2.5. The Connolly–Davis computation of NL3(Z) ∼= NL4(Z, (2)∞) involves
generators Np ,g indexed by polynomials p , g ∈ Z[x]. Either p or g must have zero constant
coefficient, and each generator is defined as the nonsingular (+1)-quadratic linking form

Np ,g :=
(⊕

2
Z[x]/2,

(
p/2 1/2
1/2 0

)
,

(
p/2
g

))

of exponent two over (Z[x], (2)∞), see [CD04, Dfn. 1.6 and p. 1057]. For our computation,
we identify it with a choice of resolution by a nonsingular split (−1)-quadratic formation

Np ,g =

⎛
⎜⎜⎝
⊕
2

Z[x],

⎛
⎜⎜⎝

⎛
⎜⎜⎝

p 1
1 2g
2 0
0 2

⎞
⎟⎟⎠ ,

(
p 1
1 2g

)
⎞
⎟⎟⎠

⊕
2

Z[x]

⎞
⎟⎟⎠ .

Definition 2.6 ([Ran81, p. 69]). Let R be a ring with involution, and let F , G be finitely gen-

erated projective R-modules.A nonsingular split ε-quadratic formation

(
F ,

((
γ
μ

)
, θ

)
G

)

over R consists of the hyperbolic ε-quadratic form

Hε(F) :=
(

F ⊕ F∗,

(
0 1F

0 0

))

along with the standard lagrangian F ⊕ 0, a second lagrangian

Im

((
γ
μ

)
: G → F ⊕ F∗

)
,
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and a hessian θ : G → G∗, which is a de-symmetrization of the pullback form:

θ − εθ∗ =
(
γ
μ

)∗ (
0 1F

0 0

)
= γ∗ ◦ μ : G −→ G∗.

Definition 2.7. For any polynomial q ∈ xZ[x], define the nonsingular split (−1)-quadratic
formation Qq over Z[C2][x], where q̂ := 2(1 − T )q, by

Qq :=

⎛
⎜⎜⎝
⊕
2

Z[C2][x],

⎛
⎜⎜⎝

⎛
⎜⎜⎝

0 q̂
q̂ 0
1 (1 − T )q

(1 − T ) 1

⎞
⎟⎟⎠ ,

(
q̂ 0
q̂ qq̂

)
⎞
⎟⎟⎠

⊕
2

Z[C2][x]

⎞
⎟⎟⎠ .

For any polynomials p , g ∈ Z[x] with pg ∈ xZ[x], define the nonsingular split (−1)-
quadratic formation Mp ,g over Z[C2][x] by

Mp ,g :=

⎛
⎜⎜⎝
⊕
2

Z[C2][x],

⎛
⎜⎜⎝

⎛
⎜⎜⎝

p 1
1 (1 − T )g
2 0
0 2

⎞
⎟⎟⎠ ,

(
p 1
1 (1 − T )g

)
⎞
⎟⎟⎠

⊕
2

Z[C2][x]

⎞
⎟⎟⎠ .

Indeed each of these (−1)-quadratic formations consists of lagrangian summands, since
the associated 1-dimensional (−1)-quadratic complex over Z[C2][x] is connected [Ran80,
Proof 2.3] and in fact Poincaré: the Poincaré duality map on the level of projective mod-
ules induces isomorphisms on the homology groups. For example in Mp ,g , the nontrivial
homological Poincaré duality map is

(
p 1
1 (1−T )g

)
: H 0(C) → H 1(C), where H 0(C) = H 1(C) = Z[C2][x]/2.

Its determinant (1 − T )pg − 1 is a unit mod 2 in the commutative ring Z[C2][x], since

((1 − T )pg − 1)2 = 2(1 − T )(pg)2 − 2(1 − T )pg + 1 ≡ 1 (mod 2).

Therefore the Poincaré duality map for Mp ,g is a homology isomorphism. Also, the forma-
tion Qq is obtained as a pullback of a nonsingular formation, cf. Proof 2.8(1).

Proposition 2.8. The following formulas are satisfied for cobordism classes in the reduced
module ÑL3(Z[C2]).
(1) Boundary map: ∂̃[Pq,1] = [Qq]
(2) Lifts: i−[Mp ,g] = [Np ,g] and i+[Mp ,g] = 0

Now we state the basic relations between our generators Q and M, established by algebraic
surgery. Their inspiration is the statement and proof of [CD04, Lemma 4.3], but they are
proven independently.
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Proposition 2.9. The following formulas are satisfied for cobordism classes in the reduced
module ÑL3(Z[C2]).
(1) Additivity: [Mp1,g] + [Mp2,g] = [Mp1+p2,g] + [Qq] where q := (p1g)(p2g)
(2) Symmetry: [M2p ,g] = [M2g,p ]
(3) Square associativity: [Mx2p ,g] = [Mp ,x2g]
(4) Square root: [M2p2g,g] = [M2p ,g]

Here are some useful formal consequences, which do not require the technique of algebraic
surgery.

Corollary 2.10. The following formulas are satisfied for cobordism classes in the reduced
module ÑL3(Z[C2]).
(1) Exponent four: 4 · [Mp ,g] = 0
(2) Idempotence: 2(V2 − 1) · [Mp ,1] = 0
(3) Exponent two: 2 · ([Mx ,g] − [M1,xg]

)
= 0

(4) Nilpotence: V2 · ([Mx ,g] − [M1,xg]
)

= 0

Finally we conclude with a determination of the V-module extension UNil3(Z[C2]), through
the eyes of the Connolly–Ranicki isomorphism (2.2).

Theorem 2.11. The extension of V-modules in Theorem 2.4 is trivial.

3 Main proofs using relations

Proof of Theorem 1.1. Denote S as the Sylow 2-subgroup of F . Since S is normal and
abelian, by the reduction isomorphism of [Kha09, Theorem 1] and the Connolly–Ranicki
isomorphism r of Theorem 2.2, it suffices to show that:

NLh
n(Z[S]) = 0 if n ≡ 0, 1 (mod 4)

and the following induced map is an isomorphism:

NLh
2(Z[S]) −→ NLh

2(F2).

We induct on the order of S. If |S| = 1, then recall from Remark 2.3 that

NLn(Z[S]) = NLn(Z[1]) = 0 if n ≡ 0, 1 (mod 4)

and the following induced map is an isomorphism:

NL2(Z[S]) = NL2(Z[1]) −→ NL2(F2).

Otherwise suppose |S| > 1. Since S has exponent two, there is a decomposition

S = S′ × C2
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as an internal direct product of groups of exponent two. Then the Mayer–Vietoris sequence
of [Kha09, Proposition 33] specializes to:

· · · NLn+1(F2)
∂−−→ NLn(Z[S]) −→ ⊕

2
NLn(Z[S′]) −→ NLn(F2)

∂−−→ · · · .

Observe, by inductive hypothesis and Remark 2.3, that NLn(Z[S′]) = NLn(F2) = 0 for all
n ≡ 0, 1 (mod 4). So we obtain NL0(Z[S]) = 0 and an exact sequence

0 −→ NL2(Z[S]) −→ ⊕
2

NL2(Z[S′]) −→ NL2(F2)
∂−−→ NL1(Z[S]) −→ 0.

But the following induced map is an isomorphism, by inductive hypothesis:

NL2(Z[S′]) −→ NL2(F2).

Therefore

NL1(Z[S]) = 0

and the following composite of induced maps is an isomorphism:

NL2(Z[S]) −→ NL2(Z[S′]) −→ NL2(F2).

This concludes the induction on |S|.
Proof of Theorem 2.4. The exact sequence of [Kha09, Proposition 33] becomes

NLn+1(F2)
∂−−→ NLn(Z[C2])

(
i−
i+

)

−−−→ NLn(Z) ⊕ NLn(Z)
( j − −j + )−−−−−−→ NLn(F2).

Since this sequence is functorial, it must consist of V-module morphisms. It follows by
Orientable Reduction [Kha09, Prop. 23] that there is the commutative diagram of Figure
3.1 with top row exact, where ε : C2 → C2 is the trivial map and

∂̃ := (1 − ε) ◦ ∂.

0 NL4(F2) NL3(Z[C2]) NL3(Z) ⊕ NL3(Z) 0

0 NL4(F2) ÑL3(Z[C2]) NL3(Z) 0

∂

1−ε

(
i−
i+

)

i−−i+
projskew-diag

∂̃ i−

Figure 3.1 Orientable reduction of NL3

The map ∂̃ is a monomorphism, since i+ ◦ ∂ = 0 and the left square commutes. The map
i− is an epimorphism, since the projection projskew-diag onto the skew-diagonal is surjective
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and the right square commutes. Exactness at ÑL3(Z[C2]) follows from its definition and
exactness of the top row at NL3(Z[C2]).Thus the bottom row exists and is an exact sequence
of V-modules.

Proof of Proposition 2.8(1). According to [Ran81, pp. 517–519], the boundary map

∂ = ∂i− ◦ δ : L4(F2[x]) → L3(Z[C2][x])

for our cartesian square is defined in general in terms of pullback modules by

(A ′r ,ψ′) �−→(
(Br , 1, B′r ),

((
(1 − (χ + χ∗) ◦ φ, 0)

(φ, 1)

)
, (ψ − φ ◦ χ ◦ φ, 0)

)
(Br ,φ′, B′r)

)
.

It sends a Witt class of a rank r nonsingular form over A ′ = F2[x] to the Witt class of split
formation over A = Z[C2][x] obtained by pullback of the boundary formation of the lifted
form over B = Z[x] and of the hyperbolic formation over B′ = Z[x]. The form ψ over B
lifts the input form ψ′ over A ′. Their symmetrizations are denoted

φ := ψ + ψ∗ : Br −→ (Br )∗ and φ′ := ψ′ + ψ′∗ : B′r −→ (B′r )∗.

The morphism χ : (B′r)∗ → B′r lifts the map

χ′ := (φ′)−1 ◦ ψ′ ◦ (φ′)−1 : (A ′r)∗ −→ A ′r .

Now we compute these morphisms in our situation. Let p ∈ xZ[x]. Recall (2.3) and take

(A ′r ,ψ′) = Pq,1 =
(

F2[x]2,

[
q 1
0 1

])
.

Choose a lift

(Br ,ψ) =
(

Z[x]2,

[
q 1
0 1

])
.

Then we obtain and select

χ′ =
[

1 0
1 q

]
: F2[x]2 → F2[x]2 χ =

[−1 0
1 −q

]
: Z[x]2 → Z[x]2.

Using the pullback module structure [Ran81, p. 507]

Z[C2][x]
∼=−−−→ (Z[x], 1 : F2[x] → F2[x], Z[x]);

(m + nT ) �−→ (m − n, m + n),
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the pullback formation is

∂[Pq,1] =

⎛
⎜⎜⎜⎜⎝

(Z[x]2, 1, Z[x]2),

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

([
4q 0
0 4q

]
, 0
)

([
2q 1
1 2

]
, 1

)

⎞
⎟⎟⎟⎠ ,

([
4q2 4q

0 4q

]
, 0
)
⎞
⎟⎟⎟⎟⎠

(
Z[x]2,

[
0 1
1 0

]
, Z[x]2

)
⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

(Z[x]2, 1, Z[x]2),

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

([
0 4q

4q 0

]
, 0
)

([
1 2q

2 1

]
, 1

)

⎞
⎟⎟⎟⎠ ,

([
4q 0
4q 4q2

]
, 0

)
⎞
⎟⎟⎟⎟⎠
(

Z[x]2, 1, Z[x]2
)
⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝Z[C2][x]2,

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 2(1 − T )q
2(1 − T )q 0

1 (1 − T )q
(1 − T ) 1

⎤
⎥⎥⎦ ,

[
2(1 − T )q 0
2(1 − T )q 2(1 − T )q2

]
⎞
⎟⎟⎠Z[C2][x]2

⎞
⎟⎟⎠

= [Qq ].

Proof of Proposition 2.8(2). Clearly i−(Mp ,g) = Np ,g . Note that the second lagrangian G

of i+(Mp ,g) is

Im

⎛
⎜⎜⎝

p 1
1 0
2 0
0 2

⎞
⎟⎟⎠ = Im

⎛
⎜⎜⎝

0 1
1 0
2 0

−2p 2

⎞
⎟⎟⎠ = Im

⎛
⎜⎜⎝

1 0
0 1
0 2
2 −2p

⎞
⎟⎟⎠ .

Therefore i+(Mp ,g) is a graph formation over Z[x], hence represents 0 in NL3(Z).

Proof of Corollary 2.10(1). Note, by Proposition 2.9(1) and the relations (2.3) in NL4(F2),
that

4 · [Mp ,g] = 2 · [Qpg] + 2 · [M2p ,g] = 2 · [Qpg] + [Q2pg] + [M4p ,g] = [M4p ,g].

There is an isomorphism

(
1, 1,

(
p 0
0 0

))
: M0,g −→ M4p ,g

of split (−1)-quadratic formations over Z[C2][x], see [Ran81, p. 69, defn.]. Therefore, as
cobordism classes in NL3(Z[C2]), we obtain

4 · [Mp ,g] = [M4p ,g] = [M0,g] = 0,

by [Ran81, Proposition 1.6.4] and since M0,g is a graph formation.
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Proof of Corollary 2.10(2). Note, by Proposition 2.9(1) and the relations (2.3) in NL4(F2),
that

2(V2 − 1) · [Mp ,1] = (V2 − 1) · ([Qp ] + [M2p ,1]
)

= [M2V2p ,1] − [M2p ,1] =
n∑

k=1
pk ·

(
[M2(xk)2,1] − [M2(xk ),1]

)

where we write the polynomial

p = p1x + · · · + pnxn ∈ Ker(aug0)

for some n ∈ N and p1, . . . , pn ∈ Z. But by Proposition 2.9(4), we have

[M2(xk)2,1] − [M2(xk),1] = 0 for all k > 0.

Therefore

2(V2 − 1) · [Mp ,1] = 0.

Proof of Corollary 2.10(3). Note, by Proposition 2.9(1,2) and the relations (2.3) in
NL4(F2), that

2 · ([Mx ,g] − [M1,xg]) = ([Qxg] − [Qxg]) + ([M2x ,g] − [M2,xg])

= [M2g,x ] − [M2xg,1].

By Proposition 2.9(1) using the fact that [Qq] = 0 if q is a multiple of 2, and since g has
Z-coefficients, we may assume that g = xk for some k ∈ N in order to show that the
right-hand term vanishes. If k = 2i is even, then by Proposition 2.9(3,2), note

[M2g,x] = [M2(xi)2,x ] = [M2,(xi)2x ] = [M2,xg] = [M2xg,1].

Otherwise suppose k = 2i + 1 is odd. Then by Proposition 2.9(4) twice and by induction
on k, note

[M2g,x] = [M2(xi)2x ,x ] = [M2(xi),x] = [M2(xi+1),1] = [M2(xi+1)2,1] = [M2xg,1].

Therefore for all g ∈ Z[x] we obtain

2 · ([Mx ,g] − [M1,xg]) = 0.

Proof of Corollary 2.10(4). Note by Proposition 2.9(3) that

V2 · ([Mx ,g] − [M1,xg]
)

= [Mx2,V2g] − [M1,x2V2g] = 0.

Proof of Theorem 2.11. Consider the V-module morphism

s : NL3(Z) −→ ÑL3(Z[C2])

given additively by

Vn · [Nx ,1] �−→ Vn · [Mx ,1]

Vn · ([Nx ,xp ] − [N1,xxp ]) �−→ Vn · ([Mx ,xp ] − [M1,xxp ]).

The section s is a well-defined V-module morphism by Corollary 2.10.
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4 Some algebraic surgery machines

The remaining proofs of all parts of Proposition 2.9 are technical—algebraic surgery and
gluing are required. The first machine has input certain quadratic formations and has output
quadratic forms.

Lemma 4.1. Suppose (C,ψ) is a 1-dimensional (−1)-quadratic Poincaré complex over
Z[C2][x] satisfying the following hypotheses.
(a) The 1-dimensional chain complex C over Z[C2][x] has modules C1 = C0 and differ-

ential dC = 2 · 1.
(b) There is a null-cobordism

(f : i−(C) → D, (δψ, i−(ψ)) ∈ W%(f , −1)2)
over Z[x] such that f0 = 1 : C0 → D0 and δψ2 = 0 : D0 → D0.

(c) The quadratic Poincaré complex i+(C,ψ) over Z[x] corresponds to a graph formation.

Then we obtain the following conclusions.

(1) There exists a 2-dimensional (−1)-quadratic Poincaré complex (F ,Ψ ) over F2[x] such
that

∂[S(F ,Ψ )] = [S(C,ψ)].
Here,

∂ : L4(F2[x]) −→ L3(Z[C2][x])
is the boundary map of the Mayer–Vietoris sequence of Rim’s cartesian square, and S
is the skew-suspension isomorphism.

(2) The instant surgery obstruction Ω(F ,Ψ ) is Witt equivalent to the nonsingular (+1)-
quadratic form j −(D1, δψ0) over F2[x].

The next machine constructs inputs for the above one given a lagrangian of a certain linking
form. It is obtained as a specialization of [Ran81, Proof 3.4.5(ii)]2.

Lemma 4.2. Suppose (C,ψ) is a 1-dimensional (−1)-quadratic Poincaré complex over
Z[C2][x] satisfying the following hypotheses.
(a) The 1-dimensional chain complex C over Z[C2][x] has modules C1 = C0 and differ-

ential dC = 2 · 1.
(b) There exists a lagrangian L of the nonsingular (+1)-quadratic linking form (N , b, q)

over (Z[x], (2)∞) associated to i−(C,ψ).
(c) The evaluation i+(C,ψ) corresponds to a graph formation over Z[x].

Choose a finitely generated projective module P over Z[C2][x] and morphisms

(i) π : P → C1 monic with image

i−(π)(P) = e−1(L),

2 See errata for the formulas at http://www.maths.ed.ac.uk/˜aar/books/exacterr.pdf.
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where the quotient map e is

e : i−(C1) −→ N := Cok
(

i−(d∗
C : C0 → C1)

)
,

(ii) and χ : P → P∗ satisfying the de-symmetrization identity

(π−1 ◦ d∗
C)∗ ◦ (χ + χ∗) = (ψ̃0 − ψ∗

0) ◦ π : P → C0.

Then we obtain the following conclusions.

(1) Define a quadratic cycle ψ̂ ∈ W%(C, −1)1 by

ψ̂0 := ψ0 : C0 −→ C1,
˜̂
ψ0 := ψ̃0 : C1 −→ C0,

ψ̂1 := (π−1 ◦ d∗
C)∗ ◦ χ ◦ (π−1 ◦ d∗

C) − ψ̃0 ◦ d∗
C : C0 −→ C0.

Then the quadratic cycle ψ̂ is homologous to ψ in W%(C, −1)1 over Z[C2][x].

(2) Define a chain complex D =
{

D1
dD−→ D0

}
with modules

D1 := i−(P∗) and D0 := i−(C0)

and with differential

dD := i−(π−1 ◦ d∗
C)∗.

Define a chain map f : i−(C) → D by

f0 := 1 : i−(C0) −→ D0, f1 := i−(π∗) : i−(C1) −→ D1.

Define a quadratic chain δψ ∈ W%(D, −1)2 by

δψ0 := −i−(χ)∗ : D1 −→ D1, δψ1 := −i−(χ) ◦ d∗
D : D0 −→ D1,

δ̃ψ1 := ψ̃0 ◦ i−(π) : D1 −→ D0, δψ2 := 0 : D0 −→ D0.

Then

(
f : i−(C) → D, (δψ, i−(ψ̂)) ∈ W%(f , −1)2

)

is a null-cobordism over Z[x].

(3) The evaluation i+(C, ψ̂) corresponds to a graph formation over Z[x].
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Composition of the lemmas yields immediately the following result.

Proposition 4.3. Suppose (C,ψ) satisfies Hypotheses (a,b,c) of Lemma 4.2, and choose
P,π,χ accordingly. Then there exists a 2-dimensional (−1)-quadratic complex (F ,Ψ ) over
F2[x] such that

∂[(F ,Ψ )] = [(C, ψ̂)] = [(C,ψ)]

as cobordism classes in

L1(Z[C2][x], −1)
S∼=−−−→ L3(Z[C2][x]),

and that its instant surgery obstruction is

[Ω(F ,Ψ )] = [j −(D1, δψ0)] = [k(P, −χ∗)]

as Witt classes of the nonsingular (+1)-quadratic forms over F2[x].

Now we show why these machines work.

Proof of Lemma 4.1. We shall put together the information in the hypotheses using a tech-
nique called “algebraic gluing” [Ran81, §1.7]. The resultant object (F ,Ψ ) is a union [Ran81,
pp. 77–78] over F2[x]. The more efficient “direct union” [Ran81, pp. 79–80] does not apply
here since the null-cobordisms (D, δψ) and (E, 0) are non-split in general.

First, define a chain complex E = {E1 → 0 } over Z[x] with module

E1 := i+(C1),

and a chain map g : i+(C) → E by

g1 := 1 : i+(C1) → E1.

Then the quadratic pair
(
g : i+(C) → E, (0, i+(ψ) ∈ W%(g, −1)2)

)

is the data for an algebraic surgery. Consider the 2-dimensional mapping cone

C (g) =

⎛
⎝i+(C1)

(−1
2·1

)

−−−→ E1 ⊕ i+(C0) −−−→ 0

⎞
⎠ .

Note that

H 2(E) = H 0(C (g)) = 0 and H 0(E) = H 2(C (g)) = 0.

Observe that

H 1(E) = E1 and proj∗ : H 1(C (g))
∼=−−−→ i+(C0).



�

�
“Forum Mathematicum, Verlag Walter de Gruyter GmbH & Co. KG” — 2010/2/12 — 13:41 — page 234 — #14

�

�

�

�

�

�

234 Qayum Khan

Then the homological Poincaré duality map H 1(E) → H 1(C (g)) is given by

i+(ψ̃0 − ψ∗
0) : E1 −→ i+(C0).

By hypothesis, i+(C,ψ) represents a graph formation
(

F ,

((
γ
μ

)
, θ

)
G

)
,

which means that γ : G → F is an isomorphism. According to [Ran80, Proof 2.5], the
representation is given by

F = i+(C1) and G = i+(C0),

γ = i+(ψ̃∗
0 − ψ0) and μ = i+(d∗

C) and θ = −i+(ψ + dC ◦ ψ0).

Thus the map H 1(E) → H 1(C (g)) is given by the isomorphism γ∗ . Since the Poincaré
duality map E2−∗ → C (g) of projective module chain complexes induces isomorphisms
in homology, it must be a chain homotopy equivalence. Thus the following 2-dimensional
(−1)-quadratic pair is Poincaré:

(
g : i+(C) → E, (0, i+(ψ))

)
.

Next, define a 2-dimensional (−1)-quadratic Poincaré complex (F ,Ψ ) over F2[x] as the
union (see [Ran81, pp. 77–78])

(F ,Ψ ) := j − (
f : i−(C) → D, (−δψ, −i−(ψ))

) ⋃
k(C,ψ)

j +
(
g : i+(C) → E, (0, i+(ψ))

)
,

where k is composite morphism of rings with involution:

k := j − ◦ i− = j + ◦ i+ : Z[C2] −→ F2.

By construction,

∂[(F ,Ψ )] = [(C,ψ)],

where the boundary map

∂ : L4(F2[x]) −→ L3(Z[C2][x])

is defined in [Ran81, Props. 6.3.1, 6.1.3] for our cartesian square. For simplicity, we suppress
the morphisms i±, j ±, k in the remainder of the proof.

The 2-dimensional chain complex F over F2[x] has modules

F2 = C1, F1 = D1 ⊕ C0 ⊕ E1, F0 = D0

and differentials

d2
F =

⎛
⎝

−f1
dC

−g1

⎞
⎠ : F2 → F1, d1

F =
(
dD f0 0

)
: F1 → F0.
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The quadratic cycle Ψ ∈ W%(F , −1)2 has components

Ψ2
0 =

(−ψ0 ◦ f ∗
0

)
: F0 → F2, Ψ1

0 =

⎛
⎝

−δψ0 0 0
ψ̃0 ◦ f ∗

1 ψ∗
1 0

0 g1 ◦ ψ0 0

⎞
⎠ : F1 → F1,

Ψ0
0 =

(
0
)

: F2 → F0, Ψ1
1 =

⎛
⎝

−δψ1

ψ1 ◦ f ∗
0

0

⎞
⎠ : F0 → F1,

Ψ0
1 =

(
−δ̃ψ1 0 0

)
: F1 → F0, Ψ0

2 =
(
0
)

: F0 → F0.

The differential

(d1
F )∗ : F0 −→ F1

is a split monomorphism, since f0 = 1 : C0 → D0. Hence the instant surgery obstruction
[Ran80, Prop. 4.3] is represented by

Ω(F ,Ψ ) =

⎛
⎝D1 ⊕ E1 ⊕ C1,

⎛
⎝
δψ0 0 −f1

0 0 −1
0 0 0

⎞
⎠
⎞
⎠ .

This is Witt equivalent to the (necessarily) nonsingular (+1)-quadratic form (D1, δψ0) over
F2[x].

Proof of Lemma 4.2. Indeed ψ̂ ∈ W%(C, −1)1 is a quadratic cycle, since

ψ̂1 + ψ̂∗
1 = (π−1 ◦ d∗

C)∗ ◦ (χ+ χ∗) ◦ (π−1 ◦ d∗
C) − (ψ̃0 ◦ d∗

C + dC ◦ ψ̃∗
0)

= (ψ̃0 − ψ∗
0) ◦ d∗

C − ψ̃0 ◦ d∗
C − dC ◦ ψ̃∗

0

= −(dC ◦ ψ0 + ψ̃0 ◦ d∗
C)∗

= (ψ1 + ψ∗
1)∗

= ψ1 + ψ∗
1 .

A similar check shows that f : i−(C) → D is a chain map and that
(

f : i−(C) → D, (δψ, i−(ψ̂))
)

is a 2-dimensional (−1)-quadratic pair over Z[x]. It is Poincaré (see [Ran81, p. 259]), since
it is the data for an algebraic surgery to a contractible complex, killing the lift i−(P) of the
lagrangian L.

The quadratic cycles ψ̂ and ψ are homologous3: the differences ψ̂0 − ψ0 and
˜̂
ψ0 − ψ̃0

are zero, and the difference ψ̂1 − ψ1 is (−1)-symmetric (see above calculation). Therefore,
the latter difference is (−1)-even since Ĥ 0(Z[x], −1) = 0. Finally, i+(C, ψ̂) corresponds to
the same graph formation as i+(C,ψ), except that their hessians have difference θ̂ − θ =
ψ1 − ψ̂1.

3 In general, ψ̂ and ψ are quadratic homotopy equivalent [Ran81, p. 71 Defn., Prop. 3.4.5(ii)].
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5 Remaining proofs of relations

Using our machine (4.3), we grind out the primary relations (2.9) in ÑL3(Z[C2]) as a
V-module.

Proof of Proposition 2.9(1). Let (C,ψ) be a 1-dimensional (−1)-quadratic Poincaré com-
plex associated to the following nonsingular split (−1)-quadratic formation over Z[C2][x]:

Mp1,g ⊕ Mp2,g ⊕ Mp1+p2,g .

In particular, it has modules C1 = C0 of rank 6 and differential dC = 2 · 1. Consider the
exponent two linking form (N , b, q) over (Z[x], (2)∞) associated to the evaluation i−(C,ψ),
defined as

(N , b, q) = Np1,g ⊕ Np2,g ⊕ −Np1+p2,g .

Define a lift π : P → C1 of a lagrangian L of (N , b, q) and a morphism χ : P → P∗ by

π :=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 2 0 0
1 0 1 0 2 0
0 1 0 0 0 2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, χ :=

⎡
⎢⎢⎢⎢⎢⎢⎣

g 1 g 1 2g 1
0 0 0 p1 1 p2

0 0 0 1 2g 0
0 0 0 p1 2 0
0 0 0 0 2g 0
0 0 0 0 0 p2

⎤
⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to verify that i−(π)(P) is the inverse image of a lagrangian L and
that χ satisfies the de-symmetrization identity. Therefore, by Proposition 4.3, we obtain a
2-dimensional (−1)-quadratic Poincaré complex (F ,Ψ ) over F2[x] such that

∂[(F ,Ψ )] = [(C, ψ̂)] = [(C,ψ)] and [Ω(F ,Ψ )] = [k(P, −χ∗)].

In classical notation, we have that (F ,Ψ ) is represented by the nonsingular (+1)-quadratic
form

(M ,λ,μ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

⊕
6

F2[x],

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 g 1 0 1
1 0 0 p1 1 p2
g 0 0 1 0 0
1 p1 1 0 0 0
0 1 0 0 0 0
1 p2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

g
0
0
p1

0
p2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Its pullback along the choice (see [Wal99, Proof 5.3]) of automorphism

α :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 0
0 1 g 1 0 1
0 0 1 0 1 0
0 0 0 1 g 0
0 0 0 p1 1 + p1g p2

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

: M −→ M
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is the symplectic form

α∗(M ,λ,μ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

⊕
6

F2[x],

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

g
0
0

p1

p1g2

p2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

which has Arf invariant [q], where q := (p1g)(p2g). So, by Remark 2.3, as cobordism
classes in L4(F2[x]), we must have [(F ,Ψ )] = [Pq,1]. Therefore, by Proposition 2.8(1), we
obtain

[Mp1,g] + [Mp2,g] − [Mp1+p2 ,g] = [(C,ψ)] = ∂[(F ,Ψ )] = ∂[Pq,1] = ∂̃[Pq,1] = [Qq].

Proof of Proposition 2.9(2). Let (C,ψ) be a 1-dimensional (−1)-quadratic Poincaré com-
plex associated to the following nonsingular split (−1)-quadratic formation over Z[C2][x]:

M2p ,g ⊕ −M2g,p .

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 · 1. Consider the
exponent two linking form (N , b, q) over (Z[x], (2)∞) associated to evaluation i−(C,ψ),
defined as

(N , b, q) = N2p ,g ⊕ −N2g,p .

Define a lift π : P → C1 of a lagrangian L of (N , b, q) and a morphism χ : P → P∗ by

π :=

⎡
⎢⎢⎣

1 0 2 0
0 1 0 2
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ , χ :=

⎡
⎢⎢⎣

0 0 2p 1
0 0 1 2g
0 0 2p 2
0 0 0 2g

⎤
⎥⎥⎦ .

The remainder follows by an argument similar to Proof 2.9(1).

Proof of Proposition 2.9(3). Let (C,ψ) be a 1-dimensional (−1)-quadratic Poincaré com-
plex associated to the following nonsingular split (−1)-quadratic formation over Z[C2][x]:

Mx2p ,g ⊕ −Mp ,x2g .

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 · 1. Consider the
exponent two linking form (N , b, q) over (Z[x], (2)∞) associated to the evaluation i−(C,ψ),
defined as

(N , b, q) = Nx2p ,g ⊕ −Np ,x2g .
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Define a lift π : P → C1 of a lagrangian L of (N , b, q) and a morphism χ : P → P∗ by

π :=

⎡
⎢⎢⎣

1 0 0 0
0 x 0 2
x 0 2 0
0 1 0 0

⎤
⎥⎥⎦ , χ :=

⎡
⎢⎢⎣

0 0 −xp 1
0 0 −1 2xg
0 0 −p 0
0 0 0 2g

⎤
⎥⎥⎦ .

The remainder follows by an argument similar to Proof 2.9(1).

Proof of Proposition 2.9(4). Let (C,ψ) be a 1-dimensional (−1)-quadratic Poincaré com-
plex associated to the following nonsingular split (−1)-quadratic formation over Z[C2][x]:

M2p2g,g ⊕ −M2p ,g .

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 · 1. Consider the
exponent two linking form (N , b, q) over (Z[x], (2)∞) associated to the evaluation i−(C,ψ),
defined as

(N , b, q) = N2p2g,g ⊕ −N2p ,g .

Define a lift π : P → C1 of a lagrangian L of (N , b, q) and a morphism χ : P → P∗ by

π :=

⎡
⎢⎢⎣

1 1 0 0
0 p 2 0
0 1 0 0
p 0 0 2

⎤
⎥⎥⎦ , χ :=

⎡
⎢⎢⎣

0 p2g 1 −2pg
0 p2g 1 + 2pg −1
0 0 2g 0
0 0 0 −2g

⎤
⎥⎥⎦ .

The remainder follows by an argument similar to Proof 2.9(1).

This concludes the calculation of UNil∗(Z[C2]) as a V-module.
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