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ON CONNECTED SUMS OF REAL PROJECTIVE SPACES

QAYUM KHAN

1. The error and the downgrade

In the author’s thesis, [Kha06, Theorem 3.1.3] is incorrect as stated and proven.

Theorem. Let f : R −→ R′ be a morphism of rings with involution such that the

induced map f∗ : Ĥj(R) −→ Ĥj(R′) is an isomorphism (implicitly, of R-modules)
for both j = 0, 1. Suppose R satisfies (2.4.1.1) and that R′ is a flat right R-module.
Then for all n ∈ Z, the induced map f∗ : NQn(R) −→ NQn(R′) is an isomorphism.

Recall the 2-periodic j-th Tate cohomology of the cyclic group C2 of order two:

Ĥj(R) := Ĥj(C2;R) =
{a ∈ R | a = εa}
{b+ εb | b ∈ R}

with coefficients in the additive group of the ring R, where ε := (−1)j and whose
Z[C2]-module structure is given by the involution [Kha06, p47]. Furthermore, the

abelian group Ĥj(R) has the structure of a left R-module by the ‘quadratic’ action

r · [s] := [rsr].

The hypothesis (2.4.1.1) is that each Ĥj(R) has a 1-dimensional resolution by
finitely generated projective left R-modules; this is true for any Dedekind domain R.

However, the winnowed and published version [Kha09, Proposition 25] is correct.

Proposition. Let R be a Dedekind domain with involution. Suppose that the Tate

cohomology groups vanish: Ĥ∗(R) = 0. Its nilpotent L-groups vanish: NLh∗(R) = 0.

Moreover, it is my opinion that it is essentially the only recovery of that theorem.

Remark. So now delete [Kha06, Lemma 3.2.3(3)] and reduce [Kha06, 3.3.1(2)].
Only the publication [Kha09] uses this sort of material; the error is avoided therein.

2. The minor source of error

For about ten years, I thought that the only mistake was in the first half of the

proof, where one constructs a resolution of Ĥ∗(R′[x]) using data from Ĥ∗(R[x]).
This works by induction to R′[x] (not by restriction to R[x]) by instead assuming:

the induced map f∗ : R′ ⊗R Ĥj(R) −→ Ĥj(R′) is an isomorphism of R′-modules.

Here is an illustration with the Gaussian integers and a cyclotomic number ring.
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Example 2.1. Consider the inclusion f : Z[i] −→ Z[ζ], where i :=
√
−1 7−→ ζ2,

and ζ := eπi/4 is a primitive 8-th root of unity, whose involution is ζ := ζ−1 = ζ7.
Recall ζ4 + 1 = 0. Note the first induced map is an isomorphism of Z[i]-modules:

f∗ : Ĥj(Z[i]) =
Z[i]

(1− i)
·

{
1 if j = 0

i if j = 1
−→ Ĥj(Z[ζ]) =

Z[ζ]

(1− ζ)
·

{
1 if j = 0

ζ2 if j = 1.

However, note the second induced map is not an isomorphism of Z[ζ]-modules:

f∗ : Z[ζ]⊗ Ĥj(Z[i]) =
Z[ζ]

(1− ζ2)
·

{
1 j = 0

ζ2 j = 1
−→ Ĥj(Z[ζ]) =

Z[ζ]

(1− ζ)
·

{
1 j = 0

ζ2 j = 1.

Notice that Z[ζ] is a free right Z[i]-module with basis {1, ζ}, a fortiori a flat module.

3. The major source of error

In 2019, I discovered that the second half of the proof of [Kha06, Theorem 3.1.3]
has a fatal error, notwithstanding the above adjustment that remedies the first half.

The fatal error therein was in imprecisely applying [Kha06, Lemma 2.4.5(2)]:
calculations ensuing from a Künneth-type spectral sequence [Kha06, Remark 2.4.4].

Specifically, even assuming the replacement hypothesis in Section 2, say for
H0(C ′t⊗R′[x] C

′) it still boils down to having the following canonical map be onto:

H0(C)t ⊗R[x] H0(C) −→ H0(C)t ⊗R[x] R
′[x]R′[x]R′[x]⊗R[x] H0(C)

and similarly for Tor1. These only seem to hold if the modules vanish [Kha09, 25].
Here a right A-module M t is a given left one M made ‘right’ by the involution on A.

References

[Kha06] Qayum Khan. On connected sums of real projective spaces. PhD thesis, Indiana Univer-
sity, 2006.

[Kha09] Qayum Khan. Reduction of UNil for finite groups with normal abelian Sylow 2-subgroup.

J. Pure Appl. Algebra, 213(3):279–298, 2009.



ON CONNECTED SUMS OF
REAL PROJECTIVE SPACES

Qayum Khan

Submitted to the faculty of the University Graduate School
in partial fulfillment of the requirements

for the degree
Doctor of Philosophy

in the Department of Mathematics
Indiana University

July 2006



Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the
requirements for the degree of Doctor of Philosophy.

James F. Davis, Ph.D.

Darrell Haile, Ph.D.

Paul Kirk, Ph.D.

Kent Orr, Ph.D.

22 June 2006

ii



Copyright 2006
Qayum Khan

ALL RIGHTS RESERVED

iii



“And other seeds fell on rocky ground...”
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“Split a piece of wood, and I am there.
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Abstract

Part I computes the unitary nilpotent groups UNil for certain classes of virtually

cyclic groups. UNil originates as the obstruction to splitting a homotopy equiv-

alence between manifolds along a two-sided hypersurface. However, for the past

fifteen years, UNil has become highlighted in connection with the isomorphism con-

jecture in algebraic L-theory. Part II focuses on the connected sum problem for real

projective spaces. It consists of an assortment of geometric phenomena, namely: the

behavior under passage to a self-similar cover, smooth splitting in dimension five,

and topological destabilization / smoothing in dimension four. Overall, the algebra

of Part I and the topology of Part II are related by the infinite dihedral group.
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Introduction

0.1. Background

0.1.1. The splitting problem. Let g : W → Y be a simple homotopy equiv-

alence between connected closed manifolds of dimension n > 5. Let i : X → Y be

the inclusion of a connected, separating, codimension one submanifold such that the

induced homomorphism

i∗ : π1(X) −→ π1(Y )

is injective. Then we obtain decompositions

Y = Y− ∪X Y+

π1(Y ) = π1(Y−) ∗π1(X) π1(Y+).

Definition 0.1.1. We call g split along X if g is transversal to X, and the

following restrictions are homotopy equivalences:

g : g−1(X) −→ X

g : g−1(Y±) −→ Y±.

We call g splittable along X if g : W → Y is homotopic to a split map g′ : W → Y .

The goals of this dissertation are to study the splitting problem, especially for

connected sums of real projective spaces, and how it applies to the computation of

the surgery L-groups of certain infinite groups with torsion.

0.1.2. Splitting obstruction theory. Let us start with a little bit of back-

ground. Sylvain Cappell, in the mid 1970’s, developed a functor called UNiln, the

unitary nilpotent group in dimension n ∈ Z, from the category of triples, consisting

of a ring R with involution and two (R, R)-bimodules B−,B+ with involution, to

the category of abelian groups.

1



0.1. BACKGROUND 2

Definition 0.1.2. An involution − : R → R on a ring R is an additive homo-

morphism such that, for all r, s ∈ R, we have

r + s = r + s

r = r.

An involution ∧ : B± → B± on an (R, R)-bimodule B± is an additive homomor-

phism such that, for all b ∈ B± and r, s ∈ R, we have

(r · b · s)∧ = s · b∧ · r.

For each n ∈ Z, Sylvain Cappell [Cap74b] algebraically defines an abelian group,

which is natural in R and B± and is 4-periodic in n:

UNilhn(R; B−,B+) ∼= UNilhn+4(R; B−,B+).

In the splitting problem, the involutions − on the group rings

R = Z[π1X]

A± = Z[π1Y±]

are defined on group elements by

a = a−1.

The involution ∧ on the (R,R)-bimodule

B± = Z[π1Y± \ π1X]

is the restriction of the involution − on A±. Observe that R is a subring of A± and

there is a decomposition of (R,R)-bimodules:

A± = R⊕B±.

Theorem 0.1.3 (Cappell [Cap74a]). There is an element

splith
L(g; X) ∈ UNilhn+1 := UNilhn+1(Z[π1X];Z[π1Y− \ π1X],Z[π1Y+ \ π1X])

which vanishes if and only if g is splittable along X.

Guest
Comment
TYPO: $\overline{ r s } = \overline{s} \overline{r}$

Guest
Comment
REMARK: Since $\overline{1} = 1 \overline{1}$, it follows that $\overline{1}=1$.
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Theorem 0.1.4 (Cappell [Cap74b]). Let n ∈ Z.

(1) The abelian group UNilhn+1 is a summand of Lh
n+1(Z[π1Y ]).

(2) There is a Mayer-Vietoris exact sequence

· · · −→ Lh
n+1(Z[π1Y−])⊕ Lh

n+1(Z[π1Y+]) −→ Lh
n+1(Z[π1Y ])

UNilhn+1

∂−−→ Lh
n(Z[π1X]) −→ Lh

n(Z[π1Y−])⊕ Lh
n(Z[π1Y+]) −→ · · · .

0.1.3. The connected sum of real projective spaces. Consider the splitting

problem for the manifolds

Y = RPn#RPn = (RPn−1 ×−1) ∪f (Sn−1 ×D1) ∪f (RPn−1 × 1)

X = Sn−1 × 0.

Here f : Sn−1 → RPn−1 is the two-fold covering map. Just like the circle S1, for

each k > 0, there exists a k-fold (irregular) self-covering map pk : Y → Y defined by

pk(x) :=





(x0, cos(kπ(x1 + 1)/2)) if x = (x0, x1) ∈ Sn−1 ×D1

(y0, (−x1)
k) if x = (y0, x1) ∈ RPn−1 ×±1.

In Section 0.2, We shall study what happens to then splitting problem of a

homotopy equivalence to Y along X when we pass to self-similar covers pk : Y → Y .

0.1.4. The infinite dihedral group. Define the infinite dihedral group

D∞ := Isom(Z).

Here one should think of the integers Z as the vertices of a very large regular polygon.

Let a and b be reflection through 0 and 1/2, and let t = ab be translation by −1.

Then there are semidirect and free product decompositions:

D∞ = C∞ o−1 C2 =
〈
t, a | ata−1 = t−1, a2 = 1

〉

D∞ = C2 ∗ C2 =
〈
a, b | a2 = b2 = 1

〉
.

In Section 0.2, for any n > 2, we shall use

π1(RPn#RPn) = D∞.
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In Section 0.4, for any finite group F , we shall use

F ×D∞ = (F × C2) ∗F (F × C2).

For any n ∈ Z, we shall abbreviate

UNilhn(Z[F ]) := UNilhn(Z[F ];Z[F ],Z[F ]),

which is a summand of the abelian group Lh
n(Z[F ×D∞]).

0.2. Splitting homotopy equivalences in finite covers

Let n > 2, and let M be a compact, connected, smooth m-manifold such that

m + n > 5. For example, if n > 5 then we can take M to be a point.

Theorem 0.2.1 (cf. Thm. 6.1.1, Cor. 6.2.4). Suppose W is a compact smooth

(m + n)-manifold and

g : W −→ M × RPn#RPn

is a simple homotopy equivalence that restricts to a diffeomorphism on the boundary.

Then g is splittable along the two-sided hypersurface

M × Sn−1

when lifted to some odd self-similar cover.

Let d := m+n− (−1)n, and consider the ring R = Z[π1M ] with involution. The

involution on the Laurent extension R[t, t−1] is given by t = t. Then the fundamental

theorem of algebraic L-theory [Ran74] states that there is a natural decomposition

Lh
d(R[t, t−1]) = Lh

d(R)⊕ Lp
d(R)⊕N−Lh

d(R)⊕N+Lh
d(R),

where

N±Lh
d(R) := Ker

(
aug1 : Lh

d(R[t±1]) −→ Lh
d(R)

)
.
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Theorem 0.2.2 (cf. Cor. 6.2.2). Suppose W is a compact smooth (m + n)-

manifold and

g : W −→ M × RPn#RPn

is a simple homotopy equivalence that restricts to a diffeomorphism on the boundary.

Then g is splittable along the one-sided hypersurface

M × RPn−1#RPn−1

when lifted to some self-similar cover, if and only if its Browder-Livesay invariant

BL(g) ∈ Lh
d(R[t, t−1])

has zero components in the summands

Lp
d(R) and Lh

d(R).

Instead of looking at one splitting problem at a time, we instead could study those

splitting problems that become solved in a fixed self-similar cover. The following

theorem negatively resolves a question of Shmuel Weinberger.

Theorem 0.2.3 (cf. Thm. 6.3.2). Let k > 1. Then the kernel of the k-fold

self-similar transfer homomorphism

p!
k : L2(Z[D∞]) −→ L2(Z[D∞])

is not finitely generated.

0.3. Homotopy structures in lower dimensions

Let X,Y be compact connected topological 4-manifolds.

Definition 0.3.1. We say Y is stably homeomorphic to X if Y #r(S2×S2)

is homeomorphic to X#r(S2 × S2) for some r ≥ 0.

For example, we can take X = RP4#RP4 and aim at a homeomorphism classi-

fication of manifolds in its stable homeomorphism type.

Theorem 0.3.2 (cf. Cor. 8.1.3). Suppose π1(X) = D∞. If Y is stably homeo-

morphic to X, then Y #3(S2 × S2) is homeomorphic to X#3(S2 × S2).
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The next theorem incorporates stable homeomorphism into splitting problems.

Let M and M ′ be closed non-orientable TOP 4-manifolds with fundamental group

π1(M) = π1(M
′) = C2.

Consider their connected sum X along the 3-sphere S:

X = M#M ′.

Select an element

ϑ ∈ UNilh5(Z;Z−,Z−).

There exists a unique homeomorphism class (Xϑ, hϑ), consisting of a closed TOP

4-manifold Xϑ and a tangential homotopy equivalence

hϑ : Xϑ −→ X,

such that it has L-theoretic splitting obstruction

splith
L(hϑ; S) = ϑ.

Theorem 0.3.3 (cf. Thm. 8.2.4). Consider the pair (Xϑ, hϑ).

(1) The 3-stabilization Xϑ#3(S2× S2) is homeomorphic to X#3(S2× S2) and

admits a smooth structure if and only if X does.

(2) There exists a 5-dimensional TOP normal bordism F between hϑ and 1X

with surgery obstruction

σ(F ) = ϑ ∈ Lh
5(Z[C−2 ∗ C−2 ])

consisting of exactly six 2-handles and six 3-handles.
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In order to perform certain cobordism constructions smoothly in dimension five,

we must first examine the extent to which piecewise-linear surgery is effective in

dimension four.

Let X be a closed, connected, oriented PL 4-manifold with fundamental group

π. The 2-dimensional component of the assembly map [TW79] is a homomorphism

κ2 : H2(π;Z2) −−−→ Lh
4(Z[π]).

Theorem 0.3.4 (cf. Cor. 7.1.4). The surgery exact sequence

Ss
PL(X) −→ NPL(X) −→ Ls

4(Z[π])

of based sets is exact if κ2 is injective.

Now we focus our attention to splitting obstruction theory for homotopy equiv-

alences between smooth 5-manifolds. It is well-known that any PL manifold of

dimension four or five admits a unique compatible smooth structure.

Let Y be a closed, connected, oriented, smooth 5-manifold. Suppose that X is a

connected, oriented, smooth 4-submanifold of Y such that:

(1) X is separating and π1-injective in Y , and

(2) the assembly map for π1(X) is injective (cf. Thm. 0.3.4), and

(3) Wall realization exists as follows:

Lh
5(Z[π1X])× Sh

PL(X) −→ Sh
PL(X).

Theorem 0.3.5 (cf. Thm. 7.2.1). Let W be a closed smooth 5-manifold, and let

g : W −→ Y

be a simple homotopy equivalence. Then the map g is splittable along X if and only

if the following L-theory element vanishes:

splith
L(g; X) ∈ UNilh6 ⊆ Lh

6(Z[π1(Y )]).
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0.4. Computations of UNil for certain virtually cyclic groups

The Farrell-Jones isomorphism conjecture reduces the computation of L-groups

of arbitrary groups Γ to the computation of UNil-groups of finite groups F (see

Chapter 2 for details).

Let’s first review some recent calculations of Frank Connolly, Jim Davis, and

Andrew Ranicki. We start with the field F2.

Theorem 0.4.1 ([CK95, CD04]). Let n ∈ Z.

(1) If n ≡ 0 (mod 2), then the Arf invariant over the function field F2(x) in-

duces an isomorphism

Arf : UNiln(F2) −→ xF2[x]

〈f 2 − f〉 .

(2) If n ≡ 1 (mod 2), then

UNiln(F2) = 0.

Next, we pass to the integers Z. Recall that UNiln(Z) is a summand of Ln(Z[D∞]).

Theorem 0.4.2 ([CR05, CD04, BR06]). Let n ∈ Z.

(1) If n ≡ 0, 1 (mod 4), then

UNiln(Z) = 0.

(2) If n ≡ 2 (mod 4), then there is an induced isomorphism

UNiln(Z) −→ UNiln(F2).

(3) If n ≡ 3 (mod 4), then there is a non-split short exact sequence

0 −→ xF2[x]

〈f 2 − f〉 −→ UNiln(Z) −→ xF2[x]× xF2[x] −→ 0.
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Part I of the dissertation is an extension to Z[F ] for certain finite groups F .

Theorem 0.4.3 (cf. Cor. 3.2.2). Suppose F is a finite group of odd order. Then,

for all n ∈ Z, there is an induced isomorphism

incl∗ : UNiln(Z[1]) −→ UNiln(Z[F ]).

Theorem 0.4.4 (cf. Thm. 4.1.2). Suppose F is a finite group that contains a

normal Sylow 2-subgroup of exponent two. Then

UNil0(Z[F ]) = UNil1(Z[F ]) = 0

and there is an induced isomorphism

UNil2(Z[F ]) −→ UNil2(F2).

Theorem 0.4.5 (cf. Thm. 4.1.3). Consider the cyclic group C2 of order two.

There exists a decomposition

UNil3(Z[C2]) ∼= UNil0(F2)⊕ UNil3(Z)⊕ UNil3(Z).

Theorem 0.4.6 (cf. Thm. 3.2.1). Suppose F is a finite group that contains

a normal abelian Sylow 2-subgroup S. Then, for all n ∈ Z, there is an induced

isomorphism

incl∗ : UNiln(Z[S])F/S −→ UNiln(Z[F ]).
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CHAPTER 1

Preliminaries in algebraic K- and L-theory

1.1. Definition of UNil with decorations in Nil

The purpose of this section is to generalize J. Brookman’s algebraic surgery

definition of Cappell’s unitary nilpotent groups. This slight modification allows

intermediate decorations in Waldhausen’s nilpotent groups.

1.1.1. Definition of Nil and the assembly viewpoint. First, we quickly

define Friedhelm Waldhausen’s nilpotent category and its algebraic K-theory.

Definition 1.1.1 ([Wal78, p. 148], compare [CK95] [Gru05]). Let R be a

ring, and let B−,B+ be (R, R)-bimodules that are flat as left R-modules. Define

an exact category1

NIL := NILproj(R; B−,B+)

as follows. Each object is a quadruple x = (P−, P+; p−, p+), where P± are finitely

generated projective left R-modules and p± : P± → B±⊗R P∓ are morphisms of left

R-modules, satisfying the following nilpotence condition for some n ∈ Z≥0:

(p− ◦ p+)n = 0 ∈ EndT (B)(T (B)⊗R P+).

Here the morphisms

p± : T (B)⊗R P± −→ T (B)⊗R B± ⊗R P∓

are extensions to the tensor algebra T (B) on the (R, R)-bimodule B := B−⊗R B+.

Each morphism f : x → x′ is a pair (f−, f+), where f± : P± → P ′
± is a left

1This notion of Quillen is equivalent to being a full additive subcategory of an abelian cat-

egory such that it is closed under extensions of objects. In our case, the abelian category is

ENDall(R; B−, B+), which is defined similarly to NIL except we do not require that P−, P+ are

projective and p− ◦ p+ is nilpotent.

11
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R-module morphism, such that the following diagram commutes:

P± B± ⊗R P∓

P ′
± B± ⊗R P ′

∓.

wp±

u

f±

u

1⊗f∓

wp′±

¤

Definition 1.1.2 ([Wal78]). For each n ∈ Z≥0, define the abelian group

Niln(R; B−,B+) := Kn(NIL) = πn+1(BQNIL).

It is the (n+1)-st homotopy group of the classifying space of Quillen’s Q-construction,

which defines the algebraic K-theory of the exact category NIL. The reduced Nil-

group is defined to fit into the natural decomposition

Niln(R; B−,B+) = Kn(R)⊕Kn(R)⊕ Ñiln(R; B−, B+).

Namely, it is the split kernel of the homomorphism on Kn-groups induced by the

forgetful functor NIL → PROJ(R)× PROJ(R) defined by

(P−, P+; p−, p+) 7−→ (P−, P+).

In regard to decorations for L-theory, our main interest shall be Ñil0(R; B−,B+).

This abelian group can be more directly defined [Wal69] as the reduced Grothendieck

group of Waldhausen’s exact category NIL = NILproj(R; B−,B+). ¤

Definition 1.1.3 ([Wal78, §I.1]). A pushout (colimit) in the category of rings:

C A

B R

wα

u
β

u
w

is pure if α and β are injective and there exist (C, C)-bimodule decompositions

A = α(C)⊕ A′ and B = β(C)⊕B′.

It is written R = A ∗C B.
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The main ingredient of Waldhausen’s K-theory Mayer-Vietoris sequence [Wal78,

Thms. 1–3] is the identification of Ñil as the defect in excisive approximation by a

certain assembly map. This leads to modified Mayer-Vietoris sequence in K-theory;

see §1.3.1. We strongly refer the reader to §1.3.3 for a detailed discussion of the

analogous viewpoint in L-theory.

1.1.2. The algebraic surgery definition of UNil. Now suppose that the ring

R and the (R, R)-bimodules B± have compatible involutions − and ∧:

(r · b · s)∧ = s · b∧ · r for all r, s ∈ R and b ∈ B±.

Definition 1.1.4 ([Bro04, Defn. 4.6], compare [Ran92a] [CK95]). On the

above exact category, define the involution functor

∗ : NIL −→ NILop;

x∗ := (P ∗
+, P ∗

−;−p∗−,−p∗+) and f ∗ := (f ∗+, f ∗−).

Here, for any (finitely generated projective) left R-module P , the dual module

P ∗ := HomR(P,R)

has left R-module structure given by r · ϕ := (m 7→ ϕ(m)r). ¤

Now, we define Sylvain Cappell’s even-dimensional unitary nilpotent groups of

algebraic L-theory.

Definition 1.1.5 (decorated version of [Cap74b], compare [Bro04, Defn. 7.14]).

Let ν be a ∗-invariant subgroup of Nil0(R; B−,B+), and let ε = ±1. A ν-decorated,

nonsingular ε-quadratic unilform over (R; B−,B+) is a pair (P−, θ−; P+, θ+)

of bimodule-valued ε-quadratic forms

θ± : P± −→ B± ⊗R P∓

such that P∓ = P ∗
± as finitely generated projective left R-modules2 and

x = (P−, P+; θ− + εθ∗−, θ+ + εθ∗+) ∈ NIL with projective class [x] ∈ ν.

2The nil class [x] lies in Ñil0 if and only if P± are stably finitely generated free modules (1.1.2).

Guest
Comment
ADDITION: To define $p_\pm^*$, we may assume that $P_\pm$ are f.g. free with bases $\{e^-_i\}$ and $\{e^+_j\}$.  Uniquely write $p_-(e^-_i) = \sum_j b_{ij} \otimes e^+_j$.  Then $p_-^*(e^{+*}_j) = \sum_i b_{ji}^\wedge \otimes e^{-*}_i$, which is the conjugate-transpose of the matrix.  Similarly define $p_+^*$ on the dual basis.
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A lagrangian is a pair (V−, V+) of summands of (P−, P+) such that the following

three conditions hold. First, V± is a summand of P± such that for every m,m′ ∈ V±:

θ±(m)(m′) = b∓ b∧ for some b ∈ B±.

Second, with respect to the evaluation pairing3 P− × P+ → R, the submodules V−

and V+ annihilate each other:

V∓ = V ◦
± :=

{
f ∈ V ∗

± | f(V±) = 0
}

.

Third, their well-defined, nonsingular quotient must have a restricted nil class

[(P−/V−, P+/V+; θ− + εθ∗−, θ+ + εθ∗+)] ∈ ν.

Let k ∈ Z and write ε := (−1)k. Define the abelian group

UNilν2k(R; B−,B+)

as the Witt group of ν-decorated, nonsingular ε-quadratic unilforms modulo la-

grangians. ¤

Remark 1.1.6. Similar to L-groups, there is a notion of sublagrangian of unil-

forms [CK95, CD04], where we instead require V∓ ⊆ V ◦
±. On occasion, we use the

Witt-equivalent sublagrangian construction

(P−/V ◦
+, θ−; P+/V ◦

−, θ+).

Next we re-work Jeremy Brookman’s definition of the odd-dimensional unitary

nilpotent groups.

Definition 1.1.7 (decorated version of [Bro04, §13.1, §13.2]). Let ν be a ∗-
invariant subgroup of Nil0(R; B−,B+), and let ε = ±1. A ν-decorated, short

odd, ε-quadratic Poincaré nilcomplex is a pair (C, ψ) satisfying the following

three conditions. First, it consists of a 1-dimensional chain complex in the NIL

category:

C =
{

C1
d−−→ C0

}
with projective Euler characteristic [C] = [C0]− [C1] ∈ ν.

3Here we use nonsingularity of the unilform: P− = P ∗+.
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Second, it consists of an ε-quadratic structure

ψ =
{

C∗
0

ψ0−−−→ C1, C
∗
0

ψ1−−−→ C0

}

satisfying the cycle condition

d ◦ ψ0 + (ψ1 − εψ∗1) = 0.

Third, the mapping cone of its Poincaré duality must be a contractible complex in

the NIL category:

0 −−−→ C∗
0

�−ψ0

−d∗
�

−−−−−−−−→ C1 ⊕ C∗
1

( d εψ∗0 )−−−−−−−−→ C0 −−−→ 0.

A null-cobordism of (C, ψ) is a pair (f : C → D, (δψ, ψ)) satisfying the fol-

lowing four conditions. First, it consists of a highly connected 2-dimensional chain

complex in the NIL category:

D = { 0 −→ D1 −→ 0 } with projective Euler characteristic [D] = −[D1] ∈ ν.

Second, it consists of a morphism of chain complexes

f =
{

C1
f1−−−→ D1

}
.

Third, it consists of a ε-quadratic structure4

δψ =
{

D∗
1

δψ0−−−−→ D1

}
.

Fourth, the mapping cone of its Poincaré duality must be a contractible complex in

the NIL category:

0 −−−→ C1 ⊕D1
−
�

f1 δψ0−εδψ∗0
−d εψ∗0◦f∗1

�
−−−−−−−−−−−−−−→ D1 ⊕ C0 −−−→ 0.

Let k ∈ Z and write ε := (−1)k. Define the abelian group

UNilν2k+1(R; B−, B+)

as the cobordism group of ν-decorated, short odd, ε-quadratic Poincaré nilcomplexes.

¤
4In the highly-connected case, the ε-quadratic pair (δψ, ψ) is automatically a relative cycle.
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Definition 1.1.8. Let n ∈ Z. The unitary nilpotent groups with simple, free,

and projective decorations are defined as

UNilsn(R; B−,B+) := UNil0n(R; B−,B+)

UNilhn(R; B−,B+) := UNil
fNil0
n (R; B−, B+)

UNilpn(R; B−,B+) := UNilNil0
n (R; B−, B+).

One can show the following result, which allows us to focus our computations on

the Witt groups UNilνeven.

Proposition 1.1.9. Consider the following group ring and bimodules with in-

volution as Laurent extensions:

A := R[C∞]

B±[C∞] := A⊗R B± ⊗R A.

Then, for all n ∈ Z, there are Shaneson-type exact sequences

0 −→ UNilsn(R; B−, B+) −→ UNilsn((R; B−,B+)[C∞]) −→ UNilhn−1(R; B−, B+) −→ 0

0 −→ UNilhn(R; B−, B+) −→ UNilhn((R; B−,B+)[C∞]) −→ UNilpn−1(R; B−, B+) −→ 0.

¤

1.1.3. Definition of lower L-groups. We start with the fundamental theorem

of algebraic K-theory, due to Bass-Heller-Swan for n = 1 and to Quillen for n > 1.

Theorem 1.1.10 (cf. [Bas68, Thm. XII.7.4]). Let R be a ring and n ∈ Z>0.

There is a split exact sequence of abelian groups, natural in R:

0 −→ Kn(R) −→ Kn(R[x])⊕Kn(R[x−1]) −→ Kn(R[x, x−1]) −→ Kn−1(R) −→ 0.

Furthermore, there is a natural decomposition

Kn(R[x, x−1]) = Kn(R)⊕Kn−1(R)⊕ Niln(R)⊕ Niln(R).

This theorem motivated Hyman Bass to recursively define the lower K-groups.
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Definition 1.1.11 ([Bas68, p. 664]). Let n ∈ Z≤0. Suppose that the functor

Kn is defined from the category of rings to the category of abelian groups. Then

define the lower K-functor Kn−1 by the formula

Kn−1(R) := Cok
(
Kn(R[x])⊕Kn(R[x−1]) −→ Kn(R[x, x−1])

)
.

The following vanishing result is due to D.W. Carter.

Theorem 1.1.12 ([Car80]). Let O be the ring of integers in a number field, and

let F be finite group. Then, for all n < −1, the following abelian group vanishes:

Kn(O[F ]) = 0.

Next, we turn to algebraic L-theory. The involution on the Laurent extension

R[C∞] is the nontrivial5 involution of the group-ring:

rg = rg−1 for all r ∈ R and g ∈ C∞.

The following theorem consists of the Ranicki-Shaneson sequences, which can be

used in part to prove Proposition 1.1.9.

Theorem 1.1.13 ([Ran73a, Thm. 1.1]). Let R be a ring with involution and

m ∈ Z. There are functorial split exact sequences of abelian groups:

0 −→ Ls
m(R) −→ Ls

m(R[C∞]) −→ Lh
m−1(R) −→ 0

0 −→ Lh
m(R) −→ Lh

m(R[C∞]) −→ Lp
m−1(R) −→ 0.

This theorem motivated Andrew Ranicki to define recursively the lower L-groups,

where the classical ones are indexed as follows:

Ls
m = L〈2〉m and Lh

m = L〈1〉m and Lp
m = L〈0〉m .

Definition 1.1.14 ([Ran92b, Defn. 17.1]). Let n ∈ Z≤0. Suppose that the

functor L
〈n〉
m is defined from the category of rings with involution to the category of

abelian groups. Then define the lower L-functor L
〈n−1〉
m−1 by the formula

L
〈n−1〉
m−1 (R) := Cok

(
L〈n〉m (R) −→ L〈n〉m (R[C∞])

)
.

5There is an analogous fundamental theorem of algebraic L-theory for R[x, x−1] where x = x.
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Then there are Rothenberg-type exact sequences involving the forgetful map.

· · · −→ L〈n〉m (R)
forget−−−−−→ L〈n−1〉

m (R)
χ−−→ Ĥm(C2; Kn−1(R))

∂−−→ L
〈n〉
m−1(R) −→ · · · .

Definition 1.1.15 ([Ran92b, 17.7]). Define the ultimate lower L-functor

L−∞m as their direct limit under the forgetful maps:

L〈−∞〉m (R) := colim
n≤2

L〈n〉m (R).

Remark 1.1.16. Let O be the ring of integers in a number field, and let F be

a finite group. Then, as a corollary of Carter’s vanishing theorem (1.1.12) and the

Ranicki-Rothenberg exact sequence, there is an induced isomorphism for all m ∈ Z:

L〈−1〉
m (O[F ])

∼=−−→ L〈−∞〉m (O[F ]).

1.2. Splitting h-cobordisms and homotopy equivalences

Throughout this dissertation, we fix the following notation for compact CAT

manifolds of dimension n > 5, where the manifold category is either DIFF (smooth),

PL (piecewise linear), or TOP (topological).

1.2.1. Topological notation. Consider a properly embedded, connected in-

compressible6, two-sided (n− 1)-submanifold (X, ∂X) of a compact connected CAT

n-manifold (Y, ∂Y ). Write i : (X, ∂X) → (Y, ∂Y ) as the inclusion. Denote G as the

fundamental group of Y and ω : G → C2 = {±1 } its orientation character. Also

denote H as the fundamental group of X. Since X is two-sided in Y , its orientation

character is the restriction ω ◦ i : H → C2.

Denote J = J− ∪ J+ as the fundamental groupoid of Y \X. Write the induced

homomorphisms i± : H → J± and j± : J± → G of vertex groups. Since X is

incompressible in Y , the maps i± and j± are also injective, and the orientation

character of Y \ X is also the restriction ω ◦ j : J → C2. Observe that if X is

separating in Y (see [Wal99, §12A]), then J = J− t J+ and we have a pushout of

6We call X incompressible in Y if the induced map i∗ : π1(X) → π1(Y ) is injective.
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connected spaces and groups:

X Y+

Y− Y

wi+

u
i−

u
j+

wj−

and

H G+

G− G.

wi+

u
i−

u
j+

wj−

Hence G = G− ∗H G+ is an injective amalgam of groups, by the Seifert-VanKampen

theorem.

Otherwise, observe that if X is non-separating in Y (see [Wal99, §12B]), then

J = J− = J+ and we have another pushout (colimit) of connected spaces and groups:

X
i+ //

i−
// Y \X

j // Y and H
i+ //

i−
// J

j // G.

Hence G = ∗JH is a Higman-Neumann-Neumann (HNN) extension of groups.

For simplicity, we shall associate a triad

Φ := (Z[H];Z[J− \H],Z[J+ \H]) ,

consisting of a ring and two free bimodules. Then denote

Φω := (Z[Hω];Z[(J− \H)ω],Z[(J+ \H)ω]) ,

consisting of a ring with involution and two free bimodules with involution.

1.2.2. Splitting obstructions. The reader is reminded from §1.2.1 that the

compact CAT manifold (Y, ∂Y ), of dimension n > 5, contains a two-sided hypersur-

face (X, ∂X).

Consider the following subgroups of the projective class and Whitehead groups:

I := Ker
(
K̃0(Z[H])

i−−→ K̃0(Z[J ])
)

B := Im
(
Wh(J)

j−−→ Wh(G)
)

.

The following theorem on splitting h-cobordisms is due essentially to F. Wald-

hausen. The technique of proof is to handle-exchange in the non-compact cover Ŵ

corresponding to the subgroup H of G = π1(W ).

Theorem 1.2.1 ([Wal69, Thms. §5,6]). Let (W ; Y, Y ′) be an h-cobordism rel ∂Y

of compact manifolds. Then it can be decomposed as a union of h-cobordisms with
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compact bases X×D1 and Y \X×
◦

D1 if and only if its Whitehead torsion τ ∈ Wh(G)

satisfies the following vanishing condition:

∂K(τ)⊕ splitK(τ) = 0 ∈ I ⊕ Ñil0(Φ) ∼= Wh(G)/B.

Proof. This is immediate from exactness at Wh(G) in Waldhausen’s Mayer-

Vietoris sequence (1.3.4). ¤

Figure 1.2.1. The two-sided submanifold X has a neighborhood X×
D1 in the ambient manifold Y .

The existence of the latter isomorphism is part of our combined statement. The

analogous theorem, on splitting homotopy equivalences between manifolds of the

same dimension, is due to S. Cappell.

Theorem 1.2.2 ([Cap74a, Thms. 1, 5]). Let g : (W,∂W ) → (Y, ∂Y ) be a

homotopy equivalence between compact manifolds that restricts to an isomorphism

g : ∂W → ∂Y . Then it is h-bordant to a union of homotopy equivalences with

compact targets X × D1 and Y \ X ×
◦

D1, if and only if the following vanishing

conditions are satisfied:

[∂K(τ(g))] = 0 ∈ Ĥn(C2; I
ω) and splith

L(g) = 0 ∈ UNilhn+1(Φ
ω).

Furthermore, it is homotopic to this union of homotopy equivalences if and only if

∂K(τ(g))⊕ splitK(τ(g)) = 0 ∈ Wh(G)/B and splits
L(g) = 0 ∈ UNilsn+1(Φ

ω).

¤
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In both parts of the theorem, the secondary obstruction in L-theory is only

defined if the primary obstruction in K-theory vanishes.

The splitting obstructions ∂K , splitK , splitL are topologically defined in terms

of CW-complexes and handle-exchanges (see [Wal69, §5] and [Cap76b, Ch. I]).

They constitute the key ingredients in the proofs of the existence of Mayer-Vietoris

sequences in algebraic K- and L-theory (stated in §1.3), at least for injective amal-

gams of finitely presented groups.

1.2.3. Decomposition of homotopy structures. The geometric significance

of splitting homotopy equivalences (1.2.2) is the existence of a decomposition of

the homotopy structure set Sκ
CAT(Y, ∂Y ), where κ is a ∗-invariant subgroup7

of torsions Wh(G). Recall that it consists of κ-torsion CAT h-bordism classes of

κ-torsion homotopy equivalences

g : (W,∂W ) −→ (Y, ∂Y )

whose restrictions g : ∂W → ∂Y are CAT isomorphisms.

Our statement of Cappell’s decomposition theorem is an interpolation with re-

spect to Whitehead torsions. Therein, the subset of split structures Sσ
split(Y, ∂Y ; X)

is defined similarly to the structure set except that the elements are split σ-torsion

h-bordism classes of split σ-torsion homotopy equivalences.

Theorem 1.2.3 ([Cap74a, Thms. 3, 7]). Let ν and σ be ∗-invariant subgroups

of Ñil0(Φ) and B. Then, for any manifold category, the action of the surgery L-group

restricts to a bijection

act : UNilνn+1(Φ
ω)× Sσ

split(Y, ∂Y ; X) −→ Sν⊕σ(Y, ∂Y ).

¤

7The action of the group C2 is given by the conjugate-transpose ∗ with respect to the involution

on the ring Z[Gω].
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Remark 1.2.4. The proof of this theorem is entirely geometric. The partial

inverse of Wall’s realization

act : Lκ
n+1(Z[Gω])× Sκ(Y, ∂Y ) −→ Sκ(Y, ∂Y )

is Cappell’s nilpotent normal cobordism construction

nncc : Sν⊕σ(Y, ∂Y ) −→ UNilνn+1(Φ
ω)× Sσ

split(Y, ∂Y ; X).

For their handlebody-type definitions, we refer the reader to [Wal99, Theorem 10.5]

and [Cap76b, §II.1]. It turns out that the surgery obstruction of Cappell’s nncc

coincides with the splitting obstruction:

splitL = proj ◦ nncc : Sν⊕σ(Y, ∂Y ) −→ UNilνn+1(Φ
ω).

1.3. Mayer-Vietoris sequences with decorations

1.3.1. The failure of excision in K-theory.

Definition 1.3.1 ([Wal78, Intro.]). A pushout (colimit) of rings

C A

B R

wα

u
β

u
w

is pure if α and β are monomorphisms and there exist left projective summands A′

and B′ such that

A = α(C)⊕ A′ and B = β(C)⊕B′

as (C, C)-bimodules. (Similarly for HNN-extensions of rings.) Its associated triad

is denoted

Φ := (C; A′, B′).

The following theorem of F. Waldhausen is stated in terms of Quillen’s algebraic

K-theory of rings, all of whose constructions are categorical in nature. A ring C is

regular coherent if every finitely presented module admits a finite resolution by

finitely generated projective modules.
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Theorem 1.3.2 ([Wal78, Thms. 1,2,4]). Consider any pure pushout of rings

R = A ∗C B. Then there exists a homotopy fibration of based spaces

ΩK(R) −−−→ K̃Nil(Φ)⊕K(C)

�
0 α
0 −β

�
−−−−−→ K(A)×K(B).

Furthermore, the exotic K̃Nil(Φ)-term is contractible if C is a regular coherent ring.

¤

The induced sequence on homotopy groups is the Mayer-Vietoris sequence in

algebraic K-theory.

Corollary 1.3.3 (Waldhausen). Consider any pure pushout of rings R = A ∗C

B. Then for all n ∈ Z, there exists an exact sequence of abelian groups:

Kn+1(R)

�
splitK

∂K

�
−−−−−→ Ñiln(Φ)⊕Kn(C)

�
0 α
0 −β

�
−−−−−→ Kn(A)⊕Kn(B) −−−→ Kn(R).

Moreover, Ñiln(Φ) is a summand of Kn+1(R). ¤

Corollary 1.3.4 (see Theorem 1.2.1). Consider any injective amalgam or

HNN-extension of groups (denoted in §1.2.1). Then there exists a (non-split) short

exact sequence of abelian groups:

0 −−−→ B −−−→ Wh(G)

�
splitK

∂K

�
−−−−−→ Ñil0(Φ)⊕ I −−−→ 0.

Moreover, Ñil0(Φ) is a summand of Wh(G). In particular, splitK(B) = 0 and

∂K(B) = I. ¤

1.3.2. The failure of excision in L-theory. Using handlebody techniques,

S. Cappell proves a Mayer-Vietoris sequence in algebraic L-theory. Our combined

re-statement interpolates the K-theory decorations using Corollary 1.3.4. For sim-

plicity, we write the group G instead of the ring R[Gω] with involution, where R is

a subring of Q.

Theorem 1.3.5 ([Cap74b, Thms. 1–5]). Consider any injective amalgam or

HNN-extension of finitely presented groups (denoted in §1.2.1). Suppose ν and σ
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are ∗-invariant subgroups of Ñil0(Φ) and Wh(G) such that B ⊆ σ. Then for all

n ∈ Z, there exists an exact sequence of abelian groups:

Lν⊕σ
n+1(G)

�
splitL

∂L

�
−−−−−→ UNilνn+1(Φ

ω)⊕ L∂K(σ)
n (H)

i−−i+−−−→ Lh
n(J)

j−−→ Lν⊕σ
n (G).

Write the associated group triad Φ̂ := (G; J ; H). Then the term

UNilνn(Φω) = LSn−1(Φ̂
ω) = Ln(Φ̂ω)

is a summand of Lν⊕σ
n (G). Furthermore, this exotic UNil-term has exponent 4 (see

[Far79]). This abelian group vanishes if 2 is a unit in R or if H is square-root

closed8 in G. ¤

Remark 1.3.6. Using the above vanishing condition, Cappell applied this the-

orem and a five-lemma argument to show that the Novikov conjecture (with Q-

coefficients) is true under taking closure by a certain kind of injective Bass-Serre

graphs of groups [Cap76a, Thm. 1].

Remark 1.3.7. We outline the geometric definition of the connecting homomor-

phism, using Remark 1.2.4:
(

splitL
∂L

)
: Lν⊕σ

n+1(G) −−−→ UNilνn+1(Φ
ω)⊕ L∂K(σ)

n (H).

Choose appropriate manifolds (Y, ∂Y ) and (X, ∂X) with these fundamental groups

and orientation character (see §1.2.1 for notation). Let x ∈ Lν⊕σ
n+1(G) and consider

its Wall realization

∂(x) := act(x, 1Y ) ∈ Sν⊕σ(Y, ∂Y ).

Define the composite

splitL(x) := (proj1 ◦ nncc ◦ ∂)(x) ∈ UNilνn+1(Φ
ω).

Consider the other projection

[g] = (proj2 ◦ nncc ◦ ∂)(x) ∈ Sσ
split(Y, ∂Y ; X).

8We call a subgroup H square-root closed in G if g ∈ G and g2 ∈ H imply g ∈ H.
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There is a normal bordism G between the split homotopy equivalence g and the

identity 1Y , with surgery obstruction x− splitL(x). It is obtained by uniting Wall’s

normal bordism between the homotopy equivalence ∂(x) and the identity 1Y , with

surgery obstruction x, to Cappell’s normal bordism between the homotopy equiva-

lence ∂(x) and the split homotopy equivalence g, with surgery obstruction splitL(x).

Observe that the transversal restriction F of G to X is an n-dimensional normal

bordism, whose lower boundary is the identity 1X , and whose upper boundary is a

homotopy equivalence g|g−1(X). Therefore it has a well-defined surgery obstruction

∂L(x) := σ(F ) ∈ L∂K(σ)
n (H).

1.3.3. The controlled/assembly viewpoint of UNil. The failure of L-theory

being excisive is embodied in the homotopy cofiber of an assembly map, and the

success of its homological approximation is measured by controlled topology.

Let G be an injective amalgam G = J− ∗H J+ or an HNN-extension G = ∗HJ (as

denoted in §1.2.1). The associated Bass-Serre tree T is a contractible simplicial

1-complex, on which G has an effective transitive simplicial action without inver-

sions, such that its vertex isotropy groups are conjugate to the vertex groups of the

groupoid J = J− ∪ J+, and that its edge isotropy groups are conjugate to H.

Proposition 1.3.8 (Decorated, controlled version of [Wei94, Exercise §6.2A]).

Consider the control map

p : EG×G T −→ T −→ T/G =





D1 if G is an injective amalgam

S1 if G is an injective HNN-extension.

Suppose ν and σ and π are ∗-invariant subgroups of Ñil0(Φ) and Wh(J) and I such

that ∂K(jσ) = π. Then for all n ∈ Z, the following sequence of abelian groups is

split exact:

0 −→ Lπ→σ
n (T/G; p)

forgetcontrol−−−−−−−→ Lν⊕jσ
n (G)

splitL−−−→ UNilνn(Φω) −→ 0.

Remark 1.3.9. We describe the context of the left-hand term, without decora-

tions. For any block fibration p : E → X between finite polyhedra, M. Yamasaki
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showed [Yam87, Thm. 3.9] that there exists a certain functorial homotopy equiva-

lence A. Consequently, the following diagram of spectra homotopy commutes:

H(X;L.(p)) L.(E)

L(X; p) L(pt; E → pt).

wblasmb

u
A '

u
A '

wforgetcontrol

The upper-right term L.(E) is the classical L
〈−∞〉
∗ -spectrum of the space E, and

blasmb denotes the assembly map blocked over X. Following the notation of F.

Quinn (see [Qui82, Defn. 8.1] and [Ran92a] for the definitions), we write homotopy

groups in each dimension n ∈ Z as follows. The controlled L-group of p is denoted

Ln(X; p), and the blocked L.-homology group of p is denoted Hn(X;L.(p)). Both of

these functors, from the category of block fibrations to the category of Ω-spectra, are

homotopy invariant and excisive. Originally, Quinn developed [Qui79] the above

diagram and homotopy equivalence A for the pseudo-isotopy functor P.

Proof of Proposition 1.3.8. We may assume n > 6 by periodicity isomor-

phisms, such as

⊗σ∗(CP2) : Ln(E) −→ Ln+4(E).

Consider Yamasaki’s identification

A∗ : Hπ→σ
n (T/G;L.(p))

∼=−−→ Lπ→σ
n (T/G; p)

in Remark 1.3.9, but with intermediate decorations. It is equivalent to show the

split exactness of the following sequence of abelian groups:

0 −→ Hπ→σ
n (T/G;L.(p))

blasmb−−−−→ Lν⊕jσ
n (G)

splitL−−−→ UNilνn(Φω) −→ 0,

which we abbreviate to

0 −→ H
blasmb−−−−→ L

split−−→ U −→ 0.

Recall that, in the setting of rings and bimodules with involution, Cappell alge-

braically defines a map ψ : U → L. In the case of group rings [Cap74b, Thm. 2], ψ

is a monomorphism split by the geometrically-defined map split : L → U . We shall

define an isomorphism between L and H ⊕ U .
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Construct a connected closed DIFF (n− 1)-manifold Y and two-sided submani-

fold X, with desired fundamental groups G and H and orientation character ω, as

follows. First, start with the (n − 1)-disc and attach 1- and 2-handles to obtain

a connected compact DIFF (n − 1)-manifold Y0 with boundary X, having finitely

presented fundamental group Hω. Next, perform interior 0- and 1-surgeries on Y0 to

obtain a compact DIFF (n− 1)-manifold Z with boundary X and finitely presented

fundamental groupoid Jω. Finally, using the monomorphism i : H → J , glue to

obtain a connected closed manifold

Y =
⋃

X×D1

Z.

Now define a set map ϕ : L → H as follows. First, by Wall realization [Wal99,

Thm. 10.4], represent any element x ∈ L as the surgery obstruction of a normal

map of manifold triads

F : (V n; Y, W ) −→ (Y × [0, 1]; Y × 0, Y × 1)

such that F0 : Y → Y is the identity and F1 : W → Y is a (ν ⊕ jσ)-torsion

homotopy equivalence. Next, since the pushout G is injective, by Cappell’s nilpotent

normal cobordism construction [Cap76b, §II.1 §III.2] applied to F1 with reversed

orientation, there exists a normal bordism of manifold triads

F ′ : (V ′; W,W ′) −→ (Y × [1, 2]; Y × 1, Y × 2)

from F1 to a (jσ)-torsion homotopy equivalence F ′
2 : W ′ → Y split along X. Finally,

glue to obtain a normal map of manifold triads

F ′′ := F ∪ F ′ : (V ′′; Y, W ′) −→ (Y × [0, 2]; Y × 0, Y × 2)

with surgery obstruction

σ(F ′′) = x− (ψ ◦ split)(x) ∈ Ker(split : L → U)

such that both homotopy equivalences F ′′
0 = F0 and F ′′

2 = F ′
1 are split along X. As

outlined in Remark 1.3.7, we may cut F ′′ open along the transverse inverse image

of X × [0, 2] to obtain a normal map

F ′′ : (V ; Z, W ′, N ; X,M ′) −→ (Z × [0, 2]; Z × 0, Z × 2, X × [0, 2]; X × 0, X × 2),
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whose restrictions to the outer boundary pieces Z and W ′ are homotopy equiva-

lences. Its surgery kernel

σ∗(F ′′) = (y; z)

is an n-dimensional algebraic quadratic Poincaré pair (see [Ran81, Prop. 2.2.1,

Dfn.]) over the morphism Z[Hω] → Z[Gω
±] of rings with involution. Therefore, we

can define an n-dimensional L.(p)-cycle (y; z) with homology class (see [Ran92a,

Defn. 12.17])

ϕ(x) := [(y; z)] ∈ H.

Repeat the above construction for any element y ∈ L, turn its normal bordism

G′′ upside down, which induces the reversed orientation on the identity map Y → Y ,

and glue to obtain

E := F ′′ ∪ −G′′.

Note that both boundary pieces are homotopy equivalences split along X. Also note

σ(E) = (x− y)− (ψ ◦ split)(x− y),

which induces the element ϕ(x− y) ∈ H, by definition of ϕ. However

E = F ′′ ∪ −G′′,

which induces the element ϕ(x) − ϕ(y) ∈ H, by definition of H. Therefore these

elements are equal. Thus ϕ is subtractive, and hence ϕ is a group morphism.

It now suffices to show the following group morphisms are inverses:

( ϕ
split

)
: L → H ⊕ U and ( blasmb ψ ) : H ⊕ U → L.

Note from the definition of H that split ◦ blasmb = 0, and from the definition of ϕ

that ϕ ◦ blasmb = 1H . Also ψ − ψ ◦ split ◦ ψ = 0 implies ϕ ◦ ψ = 0. Therefore

( ϕ
split

) ◦ ( blasmb ψ ) =
(

1H 0
0 1U

)
.

Also note from the definition of ϕ that blasmb ◦ ϕ = 1− ψ ◦ split. Therefore

( blasmb ψ ) ◦ ( ϕ
split

)
= ( 1L ) .

¤
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Remark 1.3.10. The above explicit proof is equivalent to a five-lemma argument

applied to the commutative ladder between the Mayer-Vietoris sequences [Qui82,

Prop. 8.4] and [Cap74b, Thm. 5.2]:

H
π n
((
−1

,1
);

p)
H

σ n
([
−1

,1
);

p)
⊕

H
σ n
((
−1

,1
];

p)
H

π
→

σ
n

([
−1

,1
];

p)
H

π n
−1

((
−1

,1
);

p)

L
π n
(H

)
L

σ n
(J
−
)
⊕

L
σ n
(J

+
)

L
ν
⊕j

σ
n

(G
)

U
N

il
ν n
(Φ

ω
)

L
π n
−1

(H
).

w
i −
−i

+

u

∼ =

w
j

u

∼ =

w
∂

u
u

∼ =

w
i −
−i

+
w

j
w

∂
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(Similarly for S1.) The indicated vertical isomorphisms are Yamasaki’s nor-

malization lemma [Yam87], which applies to L.-homology with cosheaf coefficients

where there is a single contractible stratum.



CHAPTER 2

L-theory of type III virtually cyclic groups: Equivalences

Unless otherwise specified in the rest of Part I, all orientation characters are

trivial, and all K-theory decorations are excluded: L∗ = L
〈−∞〉
∗ (defined in §1.1.3).

The Farrell-Jones isomorphism conjecture in L-theory [FJ93] states for any

group Γ that L∗(Z[Γ]) is determined by L∗(Z[V ]) of all virtually cyclic subgroups V

of Γ together with certain homological information. More specifically, there are spec-

tral sequences (Atiyah-Hirzebruch [Qui82] and p-chain Davis-Lück [DL03]) which

converge to the fibered L.-homology of the classifying space BVC(Γ) for Γ-actions

with virtually cyclic isotropy. A group V is virtually cyclic if it contains a cyclic

subgroup of finite index. Equivalently:

(I) V is a finite group, or

(II) V is a group extension 1 → F → V → C∞ → 1 for some finite group F , or

(III) V is a group extension 1 → F → V → D∞ → 1 for some finite group F

(see §5.1 for more on D∞).

The L-theory of type I, with various decorations, is determined classically by

Wall and others [Wal76]. The L-theory of type II is determined by a combination

the L-theory of type I and the monodromy map (1 − α∗) in the Cappell-Ranicki-

Shaneson-Wall sequence [Wal99, §12B] [Ran73b]. The groups V of type III admit

a decomposition

V = V− ∗F V+

as an injective amalgam with

[V± : F ] = 2.

Thus the Mayer-Vietoris sequence [Cap74a] determines the groups L∗(Z[V ]) as a

combination of the L-groups of the type I groups F, V−, V+ and of Cappell’s splitting

31
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obstruction groups

UNil∗(Z[F ];Z[V− \ F ],Z[V+ \ F ]).

Recent computations [CK95, CR05, CD04, BR06] of these UNil-groups for F = 1

provide a starting point for our determination of the L-groups L∗(Z[V ]) for certain

classes of type III virtually cyclic groups V .

The various equivalences established in this chapter are the fabric through which

the tapestry of computations in Chapters 3 and 4 are woven.

2.1. Foundational results on UNil

2.1.1. Twisted generalization of the Connolly-Ranicki theorem. As de-

sired for our study of type III virtually cyclic groups, we generalize the Connolly-

Ranicki theorem [CR05, Thm. A], which is recovered below from K = 1. Our

generalization includes that which was observed by Connolly-Davis [CD04] for their

computation of UNilh∗(Z;Z−,Z), corresponding to u = −1.

Definition 2.1.1 (generalizes [Ran81, §5.1]). Let A be a ring with involution,

α an automorphism of A, and u ∈ A× a unit. Suppose for all a ∈ A that the

following identities are satisfied:

uα(u) = 1 and (α)2(a) = (u)a(u)−1, where α(a) := α(a).

The (α, u)-twisted polynomial extension of A, denoted (Au
α[x], −), is the

following ring with involution. Define the (A,A)-bimodule

Au
α[x] :=

⊕

n∈Z≥0

xnA with commutation rule axn = xnαn(a).

For all a ∈ A, n ∈ Z≥0, its involution is given by

xna = a(xu−1)n.

Let F be a covariant functor from rings with antistructure to abelian groups,

and let ε ∈ A. Define an abelian group

Nu
ε,αF (A) := Ker (augε : F (Au

α[x]) → F (A)) .
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For each ε ∈ A, there is a decomposition

F (Au
α[x]) = F (A)⊕Nu

ε,αF (A).

Abbreviate

Nu
αF (A) := Nu

0,αF (A) and NF (A) := N1
idF (A);

the latter coincides with the notation of Bass [Bas68, Ch. XII].

Theorem 2.1.2. Let G be a group extension

1 −→ K −→ G −→ D∞ −→ 1,

and let R a ring with involution. Write the injective amalgam

G = G− ∗K G+ with [G± : K] = 2.

Suppose the extension is semitrivial:

G+ = K × C2.

Select a right coset representative t ∈ G− \K. Define an R-algebra automorphism

α : R[K] −→ R[K]; α(g) := t−1gt,

and define a unit

u := t2 ∈ K ⊂ R[K]×.

Then for all n ∈ Z and decorations κ = h, p, there exists an isomorphism

r : UNilκn(R[K]; R[G− \K], R[G+ \K]) −→ Nu
αLκ

n(R[K]).

The map r is natural in rings R with involution and in semitrivial extensions G. If

n is even, then r is given in terms of the indeterminate x by

r[P−, θ−; P+, θ+] =


(P− ⊕ P+)[x],


xθ− 1

0 θ+





 .

Corollary 2.1.3 ([CR05, Theorem A]). For any ring R with involution, there

is a natural isomorphism

r : UNilhn(R; R,R) −→ NLh
n(R).
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Proof. Take K = 1. Then α = id and u = 1. So R[G± \ K] ∼= R as (R, R)-

bimodules with involution. ¤

Remark 2.1.4. In the determination of these particular UNil-groups, the ad-

vantage of the Connolly-Ranicki isomorphism r is that the NL-groups fit into sev-

eral exact sequences. The NL-groups in some cases can be computed using ho-

mological algebra [CR05, BR06] and linking forms [CD04, BDK], whereas the

UNil-groups were originally designed to fit into Cappell’s L-theory Mayer-Vietoris

sequence [Cap74b]. A mirage of this isomorphism is proven earlier by Connolly-

Koźniewski [CK95, Thm. 3.9], in terms of a certain additive category (A, α) with

involution. However our result is not apparently its corollary.

Lemma 2.1.5. Let A be a ring with involution, let B be an (A,A)-bimodule with

involution ∧, and let P be a finitely generated projective left A-module. Suppose

θ : P × P → B is a sequilinear form over A with values in B. For any n ∈ Z≥0,

denote the tensor power

Bn := B ⊗A B ⊗A · · · ⊗A B︸ ︷︷ ︸
n copies

.

In particular, B0 := A.

(1) The tensor algebra

T (B) :=
⊕

n∈Z≥0

Bn

is a ring with its involution ∧ defined by

(β1 ⊗ · · · ⊗ βn)∧ := (βn)∧ ⊗ · · · ⊗ (β1)
∧.

It admits a split monomorphism power0 : A → T (B) of rings with involu-

tion and a split monomorphism power1 : B → T (B) of (A,A)-bimodules

with involution.

(2) The identification

ΦB : B ⊗A P ∗ −→ HomA(P, B); β ⊗ f 7−→ (p 7→ f(p) β∧)
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is an isomorphism of left A-modules. Its extension

ΦT (B) : T (B)⊗A P ∗ −→ HomA(P, T (B)); γ ⊗ f 7−→ (p 7→ f(p) γ∧)

is an isomorphism of left T (B)-modules.

(3) The left B-adjoint

θB : P → B ⊗A P ∗; p 7−→ (ΦB)−1(q 7→ θ(p, q))

is a morphism of left A-modules. Moreover, its extension

θT (B) : T (B)⊗A P −→ T (B)⊗A P ∗; γ ⊗ p 7−→ (ΦT (B))
−1(q 7→ θ(p, q)⊗ γ∧)

is a morphism of left T (B)-modules. ¤

Remark 2.1.6. Our main theorem generalizes to semitrivial extensions where

D∞ = C2 ∗ C2 is replaced with Q ∗ C2 for any group Q. The resulting NL-group

corresponds to the (α, u)-twisted noncommutative polynomial ring R[K]{xi}i∈|Q|−1,

isomorphic to the tensor algebra T (R[G− \ K]). Here α and u are multi-indices

corresponding to choices of nontrivial right coset representatives {ti}i∈|Q|−1. However

we do not pursue this generalization because our focus is on type III virtually cyclic

groups.

Definition 2.1.7. In the setting of Theorem 2.1.2, consider the ring A := R[K]

with involution. Define Au
α as the (A,A)-bimodule with involution, whose: right A-

module structure is the standard structure on A, left A-module structure is defined

by a · b := α(a)b, and involution is defined by (rg)∧ := rα(g−1)u−1. Indeed, the left

and right A-actions do associate, and the involution does distribute over products.

Furthermore, observe that

HomA(P, Q) −→ HomA(P,Au
α ⊗A Q); f 7−→ (p 7→ 1⊗ f(p))

is an isomorphism of abelian groups for all left A-modules P, Q.

Lemma 2.1.8. Consider the (A,A)-bimodule Au
α with involution.

(1) The identification

R[G± \K] −→ Au
α; rt±g 7−→ rg
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is an isomorphism of (A,A)-bimodules with involution.

(2) The identification

Ψ : T (Au
α) −→ Au

α[x]; β1 ⊗ · · · ⊗ βn 7−→ xβ1 · · · xβn

is an isomorphism of A-algebras with involution. It restricts to a morphism

x : Au
α → Au

α[x] of (A,A)-bimodules. ¤

The following lemma is key in the proof of the theorem. It validates our definition

of the ring B := Au
α[x] with involution, as introduced in Definition 2.1.1 and Theorem

2.1.2.

Lemma 2.1.9. Let ε = ±1. Consider a nonsingular ε-quadratic unilform u =

(P−, θ−; P+, θ+) over (A; Au
α, A). Using Lemmas 2.1.5 and 2.1.8, write

P±[x] := B ⊗A P± and θ± : P±[x] → P∓[x].

Then the following ε-quadratic form over B is nonsingular:

r(u) :=


(P− ⊕ P+)[x],


xθ− 1

0 θ+





 .

Proof. Consider the sesquilinear forms

θ− : P− × P− → B := Au
α and θ+ : P+ × P+ → A.

The adjoint of their ε-symmetrizations λ− and λ+ are defined by

λ− : P−×P− → B and λ+ : P+×P+ → A; p 7−→ Φ−1(q 7→ θ±(p, q)+εθ±(q, p)∧).

The unilform u = (P−, θ−; P+, θ+) satisfies the nilpotence condition: there exists

N > 0 such that

((λ−)B ◦ (λ+)A)N = 0 : P+ −→ (B ⊗A A)N ⊗A P+.

Observe, by extension to the tensor algebra, that

((λ−)T (B) ◦ (λ+)T (B))
N = 0 ∈ EndT (B)(T (B)⊗A P+).

Hence by Lemma 2.1.8 we obtain

(xλ− ◦ λ+)N = 0 ∈ EndB(P+[x]).
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Define a left B-module morphism Λ by

Λ :=


0 1

ε 0




2N∑
n=0

(−1)n


 0 εxλ−

λ+ 0




n

: (P− ⊕ P+)[x] −→ (P+ ⊕ P−)[x].

Note that our nilpotence condition implies on (P− ⊕ P+)[x] that the “geometric

series” Λ satisfies

Λ


xλ− 1

ε1 λ+


 = id =


xλ− 1

ε1 λ+


 Λ.

Therefore r(u) is a nonsingular ε-quadratic form over B. ¤

Higman linearization is the mechanism for defining the inverse of r, but we must

first check that it works in the generality of (α, u)-twisted cyclic extensions. Below

we again write P [x] := Au
α[x]⊗AP and identify P [x]∗ = P ∗[x] as (left) Au

α[x]-modules

using Lemma 2.1.5.

Lemma 2.1.10. Let A be a ring with involution, and let (α, u) with any x satisfy

Definition 2.1.1. Consider ϑ ∈ Lp
2k(A

u
α[x]). Then there exist a finitely generated

projective A-module P and morphisms f0, f1 : P → P ∗ such that

ϑ = [P [x], f0 + xf1].

Remark 2.1.11. The case of (α, u) trivial and x indeterminate is [Ran74,

Lemma 4.2]. Its generalization to the polynomial extension of an additive category

is provided in [CK95, Lemma 3.6a, Proposition 3.6b].

Proof. There exist a f.g. projective A-module P , a degree N > 0, and mor-

phisms fj : P → P ∗ for all 0 ≤ j ≤ N such that

ϑ =

[
P [x], f :=

N∑
j=0

xjfj

]
.

If N = 1 then we are done, so assume N > 1. We proceed by backwards induction

on N . Define a f.g. projective A-module

P ′ := P ⊕ P ⊕ P ∗
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and a morphism f ′ of degree N − 1 by

f ′ :=




f − xNfN 0 x

−xN−1fN 0 1

0 0 0


 : P ′[x] −→ P ′∗[x].

Define an A-module automorphism

ϕ :=




1 0 0

−α(u)−1x 1 0

xN−1fN 0 1


 : P ′[x] → P ′[x].

Note that the pullback of the quadratic form f ′ along ϕ is

ϕ∗ ◦ f ′ ◦ ϕ =




1 −x (xN−1fN)∗

0 1 0

0 0 1







f 0 x

0 0 1

0 0 0


 =




f 0 0

0 0 1

0 0 0


 .

Hence we have an isomorphism of (−1)k-quadratic forms over Au
α[x]:

(ϕ, 0) : (P [x], f)⊕H (P [x]) −→ (P ′[x], f ′).

Therefore the Witt class

ϑ =

[
P ′[x], f ′ =

N−1∑
j=0

xjf ′j

]

is represented by a form of one lesser degree (but thrice the rank). ¤

Now we induce homomorphisms between the desired L-groups.

Lemma 2.1.12. Let k ∈ Z, and let κ = s, h, p be a decoration. The function r

defined in Lemma 2.1.9 induces a natural homomorphism

r : UNilκ2k(A; Au
α, A) −→ Nu

αLκ
2k(A).

Proof. Write ε := (−1)k. Let u = (P−, θ−; P+, θ+) be a nonsingular ε-quadratic

unilform over (A; Au
α, A). The image of r(u) under aug0 : B → A is

aug0(r(u)) ∼= H (P−[x]).
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Then, since r(u) is nonsingular over B = Au
α[x] by Lemma 2.1.9, we obtain an

equivalence class

[r(u)] ∈ Nu
αLκ

2k(A).

Let u′ = (P ′
−, θ′−; P ′

+, θ′+) be a nonsingular ε-quadratic unilform over (A; Au
α, A).

Denote the switch automorphism

Sw := 1P−[x] ⊕ sw ⊕ 1P ′+[x], where sw : P+[x]⊕ P ′
−[x] −→ P ′

−[x]⊕ P+[x].

Observe

Sw∗(r(u⊕ u′)) = r(u)⊕ r(u′).

Hence

[r(u⊕ u′)] = [r(u)] + [r(u′)].

Thus [r] is additive.

Suppose (V−, V+) is a lagrangian of u; see Definition 1.1.5. Observe that

(V− ⊕ V+)[x]

is a lagrangian of r(u). Thus r induces a homomorphism, well-defined on Witt

classes. ¤

Lemma 2.1.13. Let P be an A-module, and write P [x] := B ⊗A P . A morphism

ν : P → Au
α ⊗A P

is nilpotent if and only if

1− xν : P [x] → P [x]

is an isomorphism.

Proof. The inverse must be given by a finite “geometric series”

∑

n∈Z≥0

(xν)n

as in Proof 2.1.9. ¤

Lemma 2.1.14. Let k ∈ Z; write ε := (−1)k. Consider the function s defined by

s(P [x], f0 + xf1) :=
(
P, f1; P

∗,−(f0 + εf ∗0 )−1f ∗0 (f0 + εf ∗0 )−1
)
,



2.1. FOUNDATIONAL RESULTS ON UNil 40

in terms of A-module morphisms

f0 : P −→ A⊗A P ∗ and f1 : P −→ Au
α ⊗A P ∗.

Then for all decorations κ = s, h, p, the function s induces a homomorphism

s : Nu
αLκ

2k(A) −→ UNilκ2k(A; Au
α, A).

Proof. Observe the isomorphism

f0 + εf ∗0 : P −→ P ∗.

Since the ε-quadratic form v = (P [x], f0 + xf1) over B = Au
α[x] is nonsingular, the

following map is an isomorphism:

(f0 + εf ∗0 ) + x(f1 + εf∧1 ) : P [x] −→ P ∗[x].

Then, by Lemma 2.1.13, we conclude that the following map is a nilpotent morphism:

(f0 + εf ∗0 )−1(f1 + εf∧1 ) : P −→ (Au
α ⊗A A)⊗A P.

Then s(v) is a nonsingular ε-quadratic unilform over (A; Au
α, A), so we obtain an

equivalence class

[s(v)] ∈ UNilκ2k(A; Au
α, A).

Let v′ = (P ′[x], f ′0 + xf ′1) be another such linearized ε-quadratic form. Then

s(v ⊕ v′) = s(v)⊕ s(v′)

on the nose, hence

[s(v ⊕ v′)] = [s(v)] + [s(v′)].

Thus [s] is additive.

Suppose S is a lagrangian of v. Necessarily, it is of the form S = P−[x], where

P− := S ∩ P ⊂ P [x].

Then P− is a lagrangian of both (P, f0) and (P, f1) with annihilator

(f0 + εf ∗0 )P− = P ◦
−,
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since S is a (f0 + xf1)-lagrangian. Observe (V−, V+) = (P−, P ◦
−) is a lagrangian of

s(v), see Proof 2.1.12. Thus by Lemma 2.1.10 the domain of the function [s] extends

to all nonsingular ε-quadratic forms ϑ over B with null-augmentation over A:

ϑ = (P [x], f =
N∑

j=0

xjfj).

Therefore we obtain an induced homomorphism

s : Nu
αLκ

2k(A) → UNilκ2k(A; Au
α, A),

well-defined on Witt classes. ¤

We are ready to prove the main theorem of this section.

Proof of Theorem 2.1.2. Observe that Lemma 2.1.8 performs the identifi-

cation

UNilκn(R[K]; R[G− \K], R[G+ \K]) ∼= UNilκn(A; Au
α, A).

Here A := R[K] is the group ring with involution rg := rg−1, and the (A,A)-

bimodule Au
α is defined above the lemma. By our definition (1.1.8) of UNilκn for n

odd, the Ranicki-Shaneson sequence in Lκ-groups, and naturality, it suffices to prove

the theorem for n = 2k even. That is, it remains to check that the homomorphisms

r and s defined in Lemmas 2.1.12 and 2.1.14 are inverses.

Write ε := (−1)k. Let u = (P−, θ−; P+, θ+) be a nonsingular ε-quadratic unilform

over (A; Au
α, A). Note

(s ◦ r)(u) =


P− ⊕ P+,


θ− 0

0 0


 ; P+ ⊕ P−,


θ+ −1

0 0





 .

Observe that it has a sublagrangian

(V−, V+) = (0⊕ P+, 0),

whose annihilator is

(V ◦
+, V ◦

−) = (P− ⊕ P+, P+ ⊕ 0).

So we obtain the Witt equivalent unilform (P−, θ−; P+, θ+), supported on the sub-

lagrangian construction (V ◦
+/V−; V ◦

−/V+). Therefore

(s ◦ r)[u] = [u].
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Using Lemma 2.1.13, let v = (P [x], f0 + xf1) be a nonsingular ε-quadratic form

over B with null-augmentation. Note

(r ◦ s)(v) =


(P ⊕ P ∗)[x],


xf1 1

0 −(f0 + εf ∗0 )−1f ∗0 (f0 + εf ∗0 )−1





 .

Observe that it has a sublagrangian

S = 0⊕ (f0 + εf ∗0 )S0[x],

where S0 is a lagrangian of the nonsingular ε-quadratic form (P, f0), and whose

annihilator is

S⊥ = S0[x]⊕ 0 + Graph(f0 + εf ∗0 : P → P ∗)[x].

So we obtain the Witt equivalent quadratic form (P [x], f0 + xf1), supported on the

sublagrangian construction S⊥/S. Therefore

(r ◦ s)[v] = [v].

Thus the homomorphisms r and s are inverses. ¤

2.1.2. Vanishing theorems. The sequel documents and directly proves known

results for UNil-groups in general and NL-groups in particular.

Theorem 2.1.15 (Cappell). Let A = A− ∗R A+ be a pure pushout of rings with

involution. Write A± = R ⊕B± as (R,R)-bimodules with involution. Suppose 2 is

a unit in R. Then, for all n ∈ Z,:

UNilhn(R; B−,B+) = 0.

Remark 2.1.16. The statement appears without proof as [Cap74b, Theorem

1(ii)]. However, Cappell does indicate the essence of a proof in [Cap76b, Page 137,

Remark 2]. There it is stated in the case of injective amalgams G = G− ∗H G+ of

finitely presented groups: R = R0[H] and B± = R0[G± \H], where Z[1
2
] ⊆ R0 ⊆ Q.

We begin with a numerical fact, which allows us to use the binomial theorem.

Lemma 2.1.17. For any r ∈ Z≥0, the rational number
(−1/2

r

)
lies in the ring Z[1

2
].
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Proof. Immediate from the observation
(−1/2

r

)
=

(
2r

r

)(
−1

4

)r

,

proven inductively, and the fact that
(
2r
r

) ∈ Z. ¤

Under the assumption that H is square-root closed in G, instead of the hypothesis

2 ∈ S× below, Cappell [Cap76b, Lem. II.7,8,9] recursively proved the existence of

a square-root of his operator 1− ρ. Our documentation is geared toward a slightly

different operator, compatible with [Far79, CR05].

Lemma 2.1.18. Suppose ρ is a nilpotent element of a ring S that contains 2 as

a unit. Then there exists a unit V of S commuting with ρ such that V 2 = (1 + ρ)−1.

Proof. Recall, by Lemma 2.1.13, that ρ ∈ S nilpotent implies 1 + ρ ∈ S×.

By Lemma 2.1.17 and the nilpotence of ρ, we can define an element V ∈ S which

commutes with ρ:

V :=
∞∑

r=0

(−1/2

r

)
ρr.

Then the binomial theorem implies

V 2 = (1 + ρ)−1.

In particular, we obtain V ∈ S×. ¤

The next theorem states a split injection from UNil to a certain L-group. It

has been stated by Andrew Ranicki, but a full proof has not yet appeared in print.

The case of finitely presented integral group-rings (2.1.16) was originally obtained

in [Cap74b] using manifold transversality. Algebraic transversality is now available

in [Ran04] and should be useful in writing a proof in the general case.

Theorem 2.1.19 ([FRR95, Ranicki, Remark 8.7]). Let A = A− ∗R A+ be a pure

pushout of rings with involution. Write A± = R ⊕ B± as (R,R)-bimodules with

involution. Then there exists a split monomorphism

UNilhn(R; B−,B+) −→ Lh
n(A).

¤
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Proof of Theorem 2.1.15. By Proposition 1.1.9, we may assume that n =

2k is even.

Write ε := (−1)k. Let [u] ∈ UNil2k(R; B−, B+) be a nonsingular ε-quadratic

unilform u = (P−, θ−; P+, θ+). Recall (cf. [Far79, CR05]) that the image of [u] in

L2k(A) is [v] = [(N, Θ)], where v is the nonsingular ε-quadratic form over A defined

by the f.g. projective A-module N and A-module endomorphism Θ of N :

N := A⊗R (P− ⊕ P+) and Θ :=


θ− 1

0 θ+


 .

Since 2 is a unit in R hence in A, the ε-symmetrization map is an isomorphism:

Ln(A)
1+Tε−−−→ Ln(A).

So by Theorem 2.1.19, it is equivalent to show the vanishing of the Witt class

(1 + Tε)[v] = [N, L ◦ (1 + ρ)].

Here, Cappell [Cap76b] denotes L as the standard ε-symplectic form on N = P⊕P ∗

with P := A⊗R P−. Moreover, ρ is necessarily nilpotent:

L :=


 0 1

ε1 0


 : N → N∗ and ρ :=


 0 ερ+

ρ− 0


 : N → N.

The morphisms ρ± denote the ε-symmetrizations of the quadratic forms θ±:

ρ± := θ± + εθ∗± : P± −→ B± ⊗R P∓.

By Lemma 2.1.18, there exists V ∈ EndA(N)× commuting with ρ such that

V 2 = (1 + ρ)−1. Observe that ρ ∈ EndA(N) is self-adjoint with respect to the

nonsingular form (N, L):

ρ∗ ◦ L =


 0 ερ−

ρ+ 0


 ◦


 0 1

ε1 0


 =


ρ− 0

0 ρ+


 =


 0 1

ε1 0


 ◦


 0 ερ+

ρ− 0


 = L ◦ ρ.

Hence the automorphism V defined in Proof 2.1.18 is also self-adjoint:

V ∗ ◦ L = L ◦ V.

Then note

V ∗ ◦ (L ◦ (1 + ρ)) ◦ V = L ◦ V ◦ V ◦ (1 + ρ) = L.
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Hence (N,L◦(1+ρ)) is homotopy equivalent to (N,L): its pullback V ∗(N, L◦(1+ρ))

along the automorphism V is equal to the symplectic form (N,L). In other words,

V (P ) is a lagrangian for the ε-symmetric form

(1 + Tε)(v) = (N, L ◦ (1 + ρ)).

Therefore

[u] = 0 ∈ UNil2k(R; B−,B+).

¤

Although the following theorem is a corollary of the previous result (2.1.15) and

Theorem 2.1.2, we provide a simple, direct proof. It will be an ingredient in our

theorem (3.2.1) on certain finite groups.

Theorem 2.1.20. Suppose 2 is a unit in a ring A with involution. Then

Nu
αLh

n(A) = 0

for all n ∈ Z and twistings (α, u).

Remark 2.1.21. A special case in the literature is Karoubi’s theorem [Oja84,

Thm. 7] on the level of symmetric Witt groups: if 2 is a unit in A, then

NL0(A, ε)
∼=−→ NL0(A, ε) = NW (A, ε) = 0 for all ε = ±1.

Proof. By the Ranicki-Shaneson sequence [Ran73b] for augmentation kernels:

0 −→ Nu
αLs

2k(A) −→ Nu
αLs

2k(A[C∞]) −→ Nu
αLh

2k−1(A) −→ 0,

we may assume that n = 2k is even. Our argument works for both projective and

free decorations.

By Higman linearization (2.1.10), let

ϑ = [P [x], f0 + xf1] ∈ Nu
αL2k(A)

be a nonsingular ε-quadratic form over the twisted polynomial extension B := Au
α[x]

with null-augmentation to A, where ε := (−1)k. Recall, since 2 is a unit in B, that

the ε-symmetrization map is an isomorphism:

Ln(B)
1+Tε−−−−→ Ln(B).
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In fact, the quadratic refinement is recovered, uniquely up to skew (−ε)-even mor-

phisms, as one-half of the symmetric part. So it is equivalent to show the vanishing

of the Witt class

(1 + Tε)(ϑ) = [P [x], λ0 + xλ1].

Here, for each i = 0, 1, the ε-symmetrizations are defined as

λi := fi + εf ∗i : P [x] −→ P [x].

There exists a lagrangian P0 of the ε-symmetric form (P, λ0) over A, since

eval0(ϑ) = 0 ∈ L2k(A).

By Lemma 2.1.13, we obtain a nilpotent element of the ring EndB(P [x]):

xν := λ−1
0 ◦ xλ1.

Then by Lemma 2.1.18, there exists

V ∈ EndB(P [x])×

commuting with xν such that V 2 = (1 + xν)−1. Observe that xν ∈ EndB(P [x]) is

self-adjoint with respect to the nonsingular form (P [x], λ0):

(xν)∗ ◦ λ0 = (λ−1
0 ◦ xλ1)

∗ ◦ λ0 = xλ1 ◦ λ−1
0 ◦ λ0 = xλ1 = λ0 ◦ (xν).

Hence the automorphism V defined in Proof 2.1.18 is also self-adjoint:

V ∗ ◦ λ0 = λ0 ◦ V.

Then note

V ∗ ◦ (λ0 + xλ1) ◦ V = V ∗ ◦ λ0 ◦ (1 + xν) ◦ V = λ0 ◦ V ◦ V ◦ (1 + xν) = λ0.

Hence (P [x], λ0 + xλ1) is homotopy equivalent to (P [x], λ0): its pullback

V ∗(P [x], λ0 + xλ1)

along the automorphism V is equal to the symplectic form (P [x], λ0). In other words,

V (P0) is a lagrangian for the ε-symmetric form (P [x], λ0 + xλ1). Therefore

ϑ = [P [x], λ0 + xλ1] = 0 ∈ Nu
αL2k(A).

¤
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There is an analogous result for Tate C2-cohomology

Ĥj(A) := Ĥj(C2; A) =
{ a ∈ A | a = εa }{

b + εb | b ∈ A
} ,

where the group C2 acts via the involution on A and ε := (−1)j.

Proposition 2.1.22. Suppose 2 is a unit in a ring A with involution. Then

Ĥj(A) = 0 for all j ∈ Z.

Proof. Write ε := (−1)j. Suppose a ∈ A is ε-symmetric. Define

b :=
1

2
a ∈ A.

Then note a = εa implies

a =
1

2
(a + a) =

1

2
(a + εa) = b + εb.

Therefore every ε-symmetric element of A is also ε-even. ¤

The following theorem states that our NL-groups (2.1.1) have exponent four.

Theorem 2.1.23. Any ring R with involution satisfies

4 ·Nu
αLh

n(R) = 0

for all twistings (α, u) arising from pure pushouts.

Remark 2.1.24. Originally, Cappell [Cap74b] had shown in the group-ring case

G = G− ∗H G+ (2.1.16) that UNil is 2-primary:

Z[
1

2
]⊗Z UNil = 0.

Then Farrell [Far79], cleverly using a factorization of the split monomorphism

(2.1.19) through UNil of the amalgam

G×D∞ = (G× C2) ∗G (G× C2)

and techniques from hyperelementary induction [Dre75] (see §2.3), sharpened the

vanishing result to exponent-four:

4 · UNil = 0.

Our result is a direct corollary of his theorem.
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Proof. Consider any pure pushout A = A− ∗R A+ of rings with involution, and

write A± = R ⊕ B± as (R, R)-bimodules with involution. Farrell’s exponent-four

theorem [Far79, Thm. 1.3] states that

4 · UNilhn(R; B−, B+) = 0

for all n ∈ Z and finitely presented group-rings R and A±. Its proof remains valid

(cf. [Far79, Intro.]) for all pure pushouts A of rings with involution, by Ranicki’s

UNil injectivity (2.1.19).

By hypothesis, there exists a pure pushout A with B± = Ru
α. Therefore we are

done by our twisted generalization (2.1.2) of the Connolly-Ranicki isomorphism

r : UNilhn(R; Ru
α, R) −→ Nu

αLh
n(R).

¤

2.2. Localization, completion, and excision for NL

The following basic theorem is useful in taking advantage of ring decompositions

of group rings.

Theorem 2.2.1. Let A be a ring with involution, and let j, n ∈ Z.

(1) For all N odd, the following induced maps are isomorphisms:

Ĥj(A) −→ Ĥj(A[ 1
N

]) and NLn(A) −→ NLn(A[ 1
N

]).

(2) The following induced maps are isomorphisms:

Ĥj(A) −→ Ĥj(Â(2)) and NLn(A) −→ NLn(Â(2)).

Proof. Let r > 0. Consider the localization-completion cartesian square Φ of

rings with involution:

Φ :=




A Â(r)

A[1
r
] Â(r)[

1
r
].

w

u u
w



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Then there exists (see Proof 2.2.3 for details) a Mayer-Vietoris exact sequence

Ĥj+1(Â(r)[
1
r
])

∂−−→ Ĥj(A) −→ Ĥj(A[1
r
])⊕ Ĥj(Â(r)) −→ Ĥj(Â(r)[

1
r
]).

By [Ran81, Prop. 6.3.1], and by naturality of the augmentation map aug0, we

obtain NL∗(Φ) = 0. That is, there is a Mayer-Vietoris exact sequence

NLn+1(Â(r)[
1
r
])

∂−−→ NLn(A) −→ NLn(A[1
r
])⊕NLn(Â(r)) −→ NLn(Â(r)[

1
r
]).

Since N is odd implies that 2 is a unit in Â(N) and Â(N)[
1
N

], by the vanishing results

(2.1.20) and (2.1.22), we obtain the desired isomorphisms of Part (1). Similarly

since 2 is a unit in A[1
2
] and Â(2)[

1
2
], by the vanishing results (2.1.20) and (2.1.22),

we obtain the desired isomorphisms of Part (2). ¤

Remark 2.2.2. It is false that the inclusion Â(2)[x] ↪→ Â[x](2) is an isomorphism

of rings. The reason is that

A[[y]][x] $ A[x][[y]] :

every element of the former has bounded degree in x whereas the latter has elements

which do not. Therefore

Â(2)[x] = A[[y]][x]/(y − 2) $ A[x][[y]]/(y − 2) = Â[x](2).

So in general, we should expect that

NL∗(A) ∼= NL∗(Â(2)) 6∼= Ker
(
aug0 : L∗(Â[x](2)) → Lh

∗(Â(2))
) ∼= NL∗(A/2A),

where the latter isomorphism is Wall’s reduction [Wal73, Thm. 6]. For example, the

induced map NLn(Z) → NLn(F2) is not an isomorphism for all n ≡ 0, 3 (mod 4);

see [CR05, CD04, BR06].

Now we establish a useful Mayer-Vietoris sequence for the excisive functor NL∗.

Proposition 2.2.3. Let R be a ring with involution of characteristic zero. Let

K be a finite normal subgroup of any group G. Its norm is defined as

ΣK :=
∑
g∈K

g ∈ R[G].
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(1) There is a cartesian square of rings with involution:

R[G] R[G]/ΣK

R[G/K] R
|K| [G/K].

w

u u
w

(2) There is a Mayer-Vietoris exact sequence of 2-periodic Tate cohomology

groups:

Ĥj(R[G]) −→ Ĥj(R[G/K])⊕ Ĥj(R[G]/ΣK)

−→ Ĥj( R
|K| [G/K])

∂−−→ Ĥj−1(R[G]).

(3) There is a Mayer-Vietoris exact sequence of 4-periodic quadratic NL-groups:

NLn(R[G]) −→ NLn(R[G/K])⊕NLn(R[G]/ΣK)

−→ NLn( R
|K| [G/K])

∂−−→ NLn−1(R[G]).

Proof. Evidently, there is such a commutative square of quotient maps, which

are denoted by [ ]. Let

S R[G]/ΣK

R[G/K] R
|K| [G/K].

wψ

u

ϕ

u
w

be a commutative square of rings with involution for some S. We indicate the

definition of a function

χ : S −→ R[G].

It is routine to check that χ is in fact a well-defined morphism of rings with invo-

lution, and that χ is uniquely determined by the commutativity of its composite

diagram.

Fix r ∈ S. There exists a natural number n, some K-coset representatives

{ g1, . . . , gn }, and integers ai, b
h
i for all 1 ≤ i ≤ n and h ∈ K such that

ϕ(r) =

[
n∑

i=1

aigi

]
and ψ(r) =

[
n∑

i=1

∑

h∈K

bh
i hgi

]
.
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Then [ϕ(r)] = [ψ(r)] implies that[∑
i

(
ai −

∑

h

bh
i

)
gi

]
= 0.

Since the gi lie in different K-cosets, for each 1 ≤ i ≤ n there must exist integers ci

such that

ai = ci |K|+
∑

h

bh
i .

Now define the image element

χ(r) :=
n∑

i=1

(
ciΣK +

∑

h∈K

bh
i h

)
gi ∈ R[G].

Thus the diagram of Part (1) is a pullback diagram of rings with involution. Since

both ϕ and ψ are surjective, an argument with R-module bases shows that it is also

a pushout. Therefore the diagram of Part (1) is cartesian.

In order to prove Part (2), given a finite group Γ, consider a short exact sequence

of Z[Γ]-modules:

0 −→ M0 −→ M− ⊕M+ −→ M −→ 0.

Let C be a contractible complex of f.g. free Γ-modules such that

Cok(∂ : C1 → C0) = Z,

which is the trivial Z[Γ]-module. Recall, for any coefficient Z[Γ]-module N , the

definition of Tate cohomology:

Ĥj(Γ; N) = Hj(HomZ[Γ](C,N)).

Then we obtain the Bockstein sequence:

· · · ∂−−→ Hj(Γ; M0) −→ Hj(Γ; M−)⊕Hj(Γ; M+) −→ Hj(Γ; M)
∂−−→ · · · .

We obtain the desired result from substitution:

Γ = C2 and M0 = R[G]

M− = R[G/K] and M+ = R[G]/ΣK and M = R
|K| [G/K].

Either of the quotient maps [ ] is surjective. Therefore, by the Mayer-Vietoris

sequence [Ran81, Prop. 6.3.1], and by naturality of the augmentation map aug0,

we obtain the exact sequence of Part (3). ¤
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2.3. Hyperelementary induction for NL

Our program for the determination of L∗(Z[V ]) for semitrivial type III virtually

cyclic groups V is thus reduced by (2.1.2) to the computation of Nu
αL∗(Z[F ]) for all

finite groups F with certain (α, u). Recall for any prime p that a finite group H is

p-hyperelementary if it is an extension

1 −→ CN −→ H −→ P −→ 1

with P a p-group and N coprime to p; the extension is necessarily split.

For the remainder of Part I, we shall restrict ourselves to the untwisted case;

that is, we assume (α, u) is trivial.

For every group G and prime p, define a category Hp(G) as follows. It objects

H are all the p-hyperelementary subgroups of G, and its morphisms are defined as

conjugate-inclusions:

ϕH,g,H′ : H −→ H ′; x 7−→ gxg−1,

for all possible p-hyperelementary subgroups H,H ′ and elements g of G. It is a

subcategory of the category FINITE GROUPS of finite groups and monomorphisms.

For any normal subgroup S of G, the category Hp(G) contains a full subcategory

Hp(G)∩S whose objects are all the p-hyperelementary subgroups of S. The inclusion

map also induces a functor

incl∗ : Hp(S) −→ Hp(G) ∩ S,

which is bijective on object sets and injective on morphism sets.

Definition 2.3.1. Fix n ∈ Z. Define a pair N = (N ∗, N∗) of functors by

N ∗ : FINITE GROUPSop −→ ABELIAN GROUPS

N∗ : FINITE GROUPS −→ ABELIAN GROUPS
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N ∗(F ) = N∗(F ) := NL〈−∞〉n (Z[F ])

N ∗
(
F

ϕ−→ G
)

:=

(
N (G)

incl∗−−→ N (ϕF )
ϕ−1∗−−→ N (F )

)

N∗
(
F

ϕ−→ G
)

:=
(
N (F )

ϕ∗−→ N (ϕF )
incl∗−−→ N (G)

)
.

The morphism incl∗ is the transfer map from G to the finite index subgroup ϕF .

Since the two functors agree on objects, we write N (F ) for the common value of

N ∗(F ) and N∗(F ).

The following reductions to colimits and coinvariants are consequences of Dress

induction [Dre75] and Farrell’s exponent theorem [Far79].

Theorem 2.3.2. Let F be a finite group and S a normal subgroup.

(1) The following induced map from the direct limit is an isomorphism:

incl∗ : colim
H2(F )

N −→ N (F ).

(2) The following map, from the group of coinvariants, is an induced isomor-

phism:

incl∗ :

(
colim
H2(S)

N

)

F/S

−→ colim
H2(F )∩S

N .

Lemma 2.3.3. The above N is a Mackey functor and moreover a module over

the Green ring functor

GW0(−,Z) : FINITE GROUPS −→ COMMUTATIVE RINGS.

Proof. Observe that N transforms inner automorphisms into the identity, by

Taylor’s Lemma [Tay73, Cor. 1.1], since we are assuming that all our groups are

equipped with trivial orientation character. Also, for any isomorphism ϕ : F → G =

ϕF , by Definition 2.3.1, we have

N ∗(ϕ) =

(
N (G)

ϕ−1∗−−→ N (F )

)
=

(
N (F )

ϕ∗−→ N (G)
)−1

= N∗(ϕ)−1.

Next we document the Mackey subgroup property (compare [Bak78, Thm. 4.1]).

However, we shall more generally do so for the analogously defined (2.3.1) quadratic

L-theory pair of functors

L = (L ∗,L∗) = L〈−∞〉n (R[−]) : FINITE GROUPS −→ ABELIAN GROUPS
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for any ring R with involution. Let H, K be subgroups of a finite group F . Then

we must show that the “double coset formula” holds, i.e. the following diagram

commutes (we suppress labels for the inclusions):

L (H) L (F ) L (K).

⊕

KaH∈K\G/H

L (a−1Ka ∩H)
⊕

KaH∈K\F/H

L (K ∩ aHa−1)

wL∗

u

L ∗

wL ∗

w(conja∗)

u

L∗

Let P be an arbitrary left R[H]-module. Denote the inclusions i : H ↪→ F and

j : K ↪→ F . For all double cosets KaH with a ∈ F , denote inclusions

ia : K ∩ aHa−1 ↪→ aHa−1 and ja : aHa−1 ↪→ K.

The Mackey Subgroup Theorem [CR88, Thm. 44.2] states, as an internal sum of

R[K]-modules, that

j∗i∗(P ) =
⊕

KaH∈K\F/H

ja∗i∗a(a⊗ P ).

Observe

conja∗(P ) = a⊗ P ⊆ R[F ]⊗R[H] P,

where the R[aHa−1]-module structure on the R-submodule a⊗ P is given by

(axa−1) · (a⊗ p) = a⊗ xp.

Denote an inclusion

ka : a−1Ka ∩H ↪→ H.

Since (conja)∗ = (conja∗)
−1 and the following diagram commutes:

a−1Ka ∩H H

K ∩ aHa−1 aHa−1

wka

u

conja ∼=
u

conja ∼=

wia

we obtain

i∗a(a⊗ P ) = i∗aconja∗(P ) = conja∗k
∗
a(P ).



2.3. HYPERELEMENTARY INDUCTION FOR NL 55

Hence the Mackey Subgroup Theorem is equivalent to the formula

j∗i∗(P ) =
⊕

KaH∈K\F/H

ja∗conja∗k
∗
a(P ),

and is functorial in left R[H]-modules P . Now consider its dual module

P ∗ := HomR[H](P, R[H])t.

There is a functorial R[K]-module morphism, which is an isomorphism if P is finitely

generated projective:

Φa : j∗aconja∗k
∗
a(P

∗) −→ j∗aconja∗k
∗
a(P )∗; Φa(r⊗a⊗f) := (s⊗a⊗x 7→ s k!

af(x)r).

The trace

k!
a : R[H] → R[a−1Ka ∩H]

is defined as projection onto the trivial coset (see [HRT87, 5.15]). Thus for all f.g.

projective R[H]-modules P , we obtain a functorial isomorphism, which respects the

above double coset decomposition:

Φ :=
∏
KaH

Φa : j∗i∗(P ∗) −→ j∗i∗(P )∗.

Then there is a commutative diagram of algebraic bordism categories and their

functors [Ran92a, §3]:

Λ(R[H]) Λ(R[G]) Λ(R[K])

∏
KaH

Λ(R[a−1Ka ∩H])
∏
KaH

Λ(R[K ∩ aHa−1])

wi∗

u

Q
k∗a

wj∗

w
Q

conja∗

u

Q
ja∗

with 〈−∞〉 decorations. So the desired commutative diagram is induced [Ran92a,

Prop. 3.8] on the level of L
〈−∞〉
∗ -groups. Therefore L (resp. N ) is a Mackey

functor. The module structure on L (resp. N ) over the Green ring functor

GW0(−,Z)

is defined (see [Bak78, p. 1452], resp. [Far79, p. 306]) using the diagonal F -action:

GW0(F,Z)×L (F ) −→ L (F ); ([M, λ], [C, ψ]) 7→ [M ⊗Z C, Ad(λ)⊗ ψ].
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This verifies all assertions for N . ¤

Proof of Theorem 2.3.2(1). Since Lemma 2.3.3 shows that Dress Induction

[Dre75, Thm. 1] is applicable in its covariant form [Oli88, Thm. 11.1], the functor

Z(2)⊗N is H2-computable. That is, the following induced map is an isomorphism:

incl∗ : colim
H2(F )

Z(2) ⊗N −→ Z(2) ⊗N (F ).

But Theorem 2.1.23 states for all groups G that N (G) has exponent 4. Hence the

prime 2 localization map

N (G) −→ Z(2) ⊗N (G)

is an isomorphism. The result follows immediately. ¤

Proof of Theorem 2.3.2(2). For existence and surjectivity of the map, it

suffices to show that the following commutative diagram exists:

colim
H2(S)

N colim
H2(F )∩S

N .

(
colim
H2(S)

N

)

F/S

uu

quotient

wwincl∗

�
�
�
�
�
��

incl∗

The group F/S has a covariant action on the categoryH2(S) defined by pushforward

along conjugation:

conj : F/S −→ Aut(H2(S)).

Its group of coinvariants is defined by
(

colim
H2(S)

N

)

F/S

:=

(
colim
H2(S)

N

)/〈
xH − conjg∗(xH)

∣∣∣∣ xH ∈ N (H) and gS ∈ F/S

〉
.

Recall that the direct limit of a functor is defined in this case by

colim
H2(S)

N :=


 ∏

H∈ObH2(S)

N (H)




/〈
xH −N∗(ϕ)(xH)

∣∣∣∣ ϕ ∈ MorH2(S)

〉
,

and similarly over the finite category H2(F ) ∩ S. This explains the terms in the

above diagram.
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In order to show that the induced map exists, let

z := xH − conjg∗(xH) ∈
∏

N (H)

represent a generator of the kernel of the quotient map, where xH ∈ N (H) and

g ∈ F . But note

z = xH −N∗(ϕH,g,gHg−1)(xH).

Hence it maps to zero in the direct limit over H2(F ) ∩ S. Thus the desired map

exists and is surjective.

In order to show that the induced map is injective, suppose [xH ] is an equivalence

class in the coinvariants which maps to zero in the direct limit over H2(F )∩S. Then

there exists an expression

(xH) =
r∑

i=1

(wi −N∗(ϕi)(wi)) ∈
∏

H∈ObH2(S)

N (H)

for some

H1, . . . , Hr ∈ ObH2(S) and wi ∈ N (Hi) and ϕi ∈ MorH2(F ) ∩ S.

But each monomorphism ϕi = ϕHi,gi,H′
i
admits a factorization

ϕi = ϕ′i ◦ conjgi∗

into an isomorphism conjgi∗ and an inclusion

ϕ′i := ϕgiHig
−1
i ,1,H′ ∈ MorH2(S).

Then note

[wi −N∗(ϕi)(wi)] = [wi − conjgi∗ (wi)] + [vi −N∗(ϕ′i)(vi)] = 0 ∈
(

colim
H2(S)

N

)

F/S

where

vi := conjgi∗ (wi).

Hence [xH ] = 0 in the coinvariants. Thus the desired incl∗ is injective. ¤

Therefore we are reduced to the computation of

N (H) = NL〈−∞〉∗ (Z[H])

for all 2-hyperelementary groups.
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Theorem 2.3.4. Suppose H is a 2-hyperelementary group:

H = CN oτ P

Consider the ring R := Z[ 1
N

]. Then for all n ∈ Z, there is an induced isomorphism

NLn(Z[H]) −→ NLn


(

⊕

d|N
R[ζd]) ◦τ ′ P


 .

Here the action τ ′ is induced by τ .

Moreover if τ is trivial, then it can be lifted to an induced isomorphism

NLn(Z[CN × P ]) −→
⊕

d|N
NLn (Z[ζd][P ]) .

Proof. For each divisor d of N , let ρd be the cyclotomic Q-representation of

CN defined by ρd(T ) := ζd. The ρd represent all the distinct isomorphism classes of

irreducible Q-representations of the group CN . Recall the polynomial quotients

Q[CN ] = Q[y]/(yN − 1) and Q[ζd] = Q[y]/Φd(y),

where Φd is the d-th cyclotomic polynomial of degree φ(d), and φ is the Euler phi-

function. Since

yN − 1 =
∏

d|N
Φd(y)

is a product of pairwise comaximal elements (distinct and irreducible in the Eu-

clidean domain Q[y] hence comaximal), by the chinese remainder theorem, we obtain

an isomorphism of Q-algebras with involution:

ρ :=
⊕

d|N
ρd : Q[CN ] −→

⊕

d|N
Q[ζd].

Now we claim that ρ restricts to an isomorphism of R-algebras with involution:

ρ′ : R[CN ] −→
⊕

d|N
R[ζd].

It suffices to show that the R-algebra

A⊕ := ρ−1(
⊕

d|N
R[ζd])

is contained in R[CN ]. Let a ∈ A⊕; we must prove for all g ∈ CN that ag−1 ∈ Q[CN ]

has constant coefficient in R. Recall for any f.g. Q-algebra A that the trace function
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Tr : A → Q is defined by taking the trace of right multiplication in A considered as

a f.g. free Q-module. Then there is a restriction

Tr′ : R[CN ] → R,

since for all g ∈ CN we have Tr(g) = 0 if g 6= 1 and Tr(1) = N . Therefore it suffices

to show for all b ∈ A⊕ that Tr(b) ∈ R, since A⊕ is invariant under CN and 1
N

R ⊆ R.

Observe

Tr =
∑

d|N
Trd ◦ ρd,

where each Trd is the trace function on Q[ζd]. Now, for all b ∈ A⊕ and d|N , it

suffices to show that

(Trd ◦ ρd)(b) ∈ R.

But this is immediate from the definition of A⊕ and the existence (in number theory)

of the restriction

Tr′d : R[ζd] → R.

Therefore we obtain a composition of isomorphisms (2.2.1):

NLn(Z[CN ] ◦τ P ) −→ NLn (R[CN ] ◦τ P )
ρ′∗−−−→ NLn


(

⊕

d|N
R[ζd]) ◦τ ′ P


 .

The assertion for τ trivial follows from (2.2.1) and the additivity of L∗ (hence NL∗)

under finite products of rings with involution; compare [HRT87, Cor. 5.13]. ¤

2.4. Generalized Banagl-Connolly-Ranicki theory of NQ

It turns out (see [CR05, Prop. 20]), in the case that R is a Dedekind domain or

more generally a hereditary noetherian ring, that NLh
n(R) is naturally isomorphic to

a homological gadget NQh
n+1(R). If the NL-groups of R are obtained from a mixture

of NQ-groups of certain component rings, we shall roughly say that R has NL-

groups of homological type. In general, the NL-groups consist of cobordism classes,

which are classically described as Witt type. Roughly speaking, one should think

of homological type as describing linear objects, which are effectively computable,
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and of Witt type as describing quadratic objects. This simplification motivates our

incursion into Michael Weiss’s realm of “chain bundles.”

2.4.1. Main result.

Theorem 2.4.1. Let A be a ring with involution such that there exist 1-dimensional

finitely generated projective A-module resolutions

(2.4.1.1)
0 C

(1)
1 C

(1)
0 Ĥ1(A) 0

0 C
(0)
1 C

(0)
0 Ĥ0(A) 0,

w wd(1) w w
w wd(0) w w

e.g. A is (a polynomial extension of) a Dedekind domain. Define a 2-dimensional

A-module chain bundle

(C, γ) := C




(d, 0) :




C
(1)
1

C
(0)
1

u
0 , 0



→




C
(1)
0

C
(0)
0

u
0 , δ







as the cone of the chain bundle map (d, 0) of 1-dimensional chain bundles, where

dj := d(j) for j = 0, 1. Here the chain bundle δ corresponds (2.4.3) to the isomor-

phisms ιj : H0(C
(j)) → Ĥj(A) for j = 0, 1.

(1) The following infinite-dimensional A-module chain bundle is universal:

(BA, βA) :=
⊕

k∈Z

Σ2k(C, γ).

(2) The 4-periodic twisted Q-groups of (BA, βA) fit into a commutative diagram

(see Figure 2.4.1) with outer and inner dodecagons exact.

Corollary 2.4.2 ([BR06, Proposition 56], see [CR05, §2.6] for the actual

proof). Suppose the hypotheses and notation of Theorem 2.4.1. Furthermore suppose

Ĥ1(A) = 0. Then the associated chain bundle is

(C, γ) := C
(
(d, 0) :

(
C

(0)
1 , 0

)
→

(
C

(0)
0 , δ

))
.

(1) The following infinite-dimensional A-module chain bundle is universal:

(BA, βA) :=
⊕

k∈Z

Σ2k(C, γ).
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Figure 2.4.1. The exact dodecagon of twisted Q-groups.
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(2) The 4-periodic twisted Q-groups of (BA, βA) are given by

Qn(BA, βA) ∼=





Q0(C, γ) if n ≡ 0 (mod 4)

Ker(J1
γ : Q1(C) → Q̂1(C)) if n ≡ 1 (mod 4)

0 if n ≡ 2 (mod 4)

Q−1(C, γ) if n ≡ 3 (mod 4).

2.4.2. Lemmas. We begin with a simplified version of [BR06, Proposition 36].

Lemma 2.4.3. Let A be a ring with involution. Suppose C is a f.g. projective

A-module chain complex of the form:

0 C1 C0 0.w w0 w

Then the following map involving Wu classes is an isomorphism of abelian groups:

( bv1bv0

)
: Q̂0(C0−∗) −→ HomA(C1, Ĥ

1(A))⊕ HomA(C0, Ĥ
0(A)).

Proof. This follows from the decomposition (cf. [Ran81, §1.1])

Q̂0(C0−∗) = Q̂0(C0−∗
1 )⊕ Q̂0(C0−∗

0 ),

where there are no cross terms (e.g. γ−1) by hypothesis, and from [BR06, Propo-

sition 35]. The proof of the latter uses the fact that each v̂k(γ) is an A-module

morphism. ¤

Remark 2.4.4. Recall, for a flat A-module chain complex C, that there is a

Künneth spectral sequence [McC01]:

E2
p,q =

⊕
i+j=q

Torp
A(Hi(C), Hj(C)) =⇒ Hp+q(C ⊗A C)

and Leray-Serre spectral spectral sequences (cf. [CR05, Proof 2.4(A)]):

E2
p,q = H−p(Hq(C ⊗A C)) =⇒ Hp+q(W

%C) = Qp+q(C)

Ê2
p,q = Ĥ−p(Hq(C ⊗A C)) =⇒ Hp+q(Ŵ

%C) = Q̂p+q(C).

Observe, for any chain bundle structure γ ∈ Q̂0(C−∗), that the twisted map

Jγ : Qn(C) −→ Q̂n(C); φ 7−→ J(φ)− (φ̂0)
%(Snγ)
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is induced by a morphism Jγ of the corresponding spectral sequences.

We shall construct, in Theorem 2.4.1, a 2-dimensional f.g. projective A-module

chain complex C such that Hj(C) = Ĥj(A) for all j = 0, 1 and Hj(C) = 0 for all

j 6= 0, 1. Consider the homology of C ⊗A C.

Lemma 2.4.5. Let A be a ring with involution. Suppose C is a f.g. projective

A-module chain complex such that Hj(C) = 0 for all j 6= 0, 1.

(1) For all a, b, j ∈ Z, there are desuspension isomorphisms

Hj+a+b(Σ
aC ⊗A ΣbC) −→ Hj(C ⊗A C)

and vanishing homology groups

Hj(C ⊗A C) = 0 for all except 0 ≤ j < 4.

(2) There are exact sequences:

0 −→ H3(C ⊗A C) −→ Tor1
A(H1(C), H1(C)) −→ 0

0 −→ H1(C)⊗A H1(C)
×−−→ H2(C ⊗A C)

−→ Tor1
A(H1(C), H0(C))⊕ Tor1

A(H0(C), H1(C)) −→ 0

0 −→ H1(C)⊗A H0(C)⊕H0(C)⊗A H1(C)

×−−→ H1(C ⊗A C) −→ Tor1
A(H0(C), H0(C)) −→ 0

0 −→ H0(C)⊗A H0(C)
×−−→ H0(C ⊗A C) −→ 0.

(3) Suppose there is a bundle structure βA on the chain complex

BA :=
⊕

k∈Z

Σ2kC

such that (BA, βA) is a universal bundle over A. Then for all r ∈ Z, there

is an isomorphism, dependent on βA:

kC : Hr

(
C ⊗ Σ2[ r

2 ]C
)
⊕Hr

(
C ⊗ Σ2([ r

2 ]−1)C
)

= Hr

(
C ⊗BA

) −→ Q̂r(C).

Proof. Immediate from Remark 2.4.4 and from [CR05, Statement (17)]. ¤
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The indeterminacy in the above homology groups of C ⊗A C is resolved by the

following lemma.

Lemma 2.4.6. Suppose for each j = 0, 1 that C(j) is 1-dimensional f.g. free

A-module complex whose differential d(j) equal to right multiplication by a non-

zerodivisor δ ∈ A. Consider the 2-dimensional mapping cone

C := C (δ : C
(∗)
1 → C

(∗)
0 ) where C

(∗)
i := (0 : C

(1)
i → C

(0)
i ).

Then the group extensions H∗(C ⊗A C) split as products in Lemma 2.4.5(2).

Proof. Observe that the 4-dimensional complex C ⊗A C equals

C2 ⊗ C2

d⊗4−−−→ C2 ⊗ C1 ⊕ C1 ⊗ C2

d⊗3−−−→ C2 ⊗ C0 ⊕ C1 ⊗ C1 ⊕ C0 ⊗ C2

d⊗2−−−→ C1 ⊗ C0 ⊕ C0 ⊕ C1

d⊗1−−−→ C0 ⊗ C0.

Here the differentials d of C equal

d1 := −

δ

0


 and d0 :=

(
0 δ

)
.

So the differentials d⊗ of C ⊗A C equal

d⊗4 =


1⊗ d2

d2 ⊗ 1


 and d⊗2 =


d2 ⊗ 1 1⊗ d1 0

0 −d1 ⊗ 1 1⊗ d2




d⊗3 =




1⊗ d1 0

−d2 ⊗ 1 1⊗ d2

0 d1 ⊗ 1


 and d⊗1 =

(
d1 ⊗ 1 1⊗ d1

)
.

The result now follows from direct computation, where the splitting map for the

cross product × occurs naturally as a sum of restrictions of projections on the chain

level. ¤

2.4.3. Main proofs. Now we generalize [BR06, Proposition 56], which is re-

covered from C(1) = 0. It is used in Theorem 3.2.1.

Proof of Corollary 2.4.2. Observe that [BR06, Prop. 56(i)] is exactly

Theorem 2.4.1(1). Since Ĥ1(A) = 0, we may take C(1) = 0. Then, by Lemma
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2.4.5(2) and [CR05, Rule 2.4(C)], we have

H3(C ⊗A C) = H2(C ⊗A C) = 0 and Q4(C) = Q3(C) = Q2(C) = 0.

So we obtain isomorphisms

∂γ : Q̂4(C) −→ Q3(C, γ) and ∂γ : H3(C ⊗A Σ2C) = Q̂3(C) −→ Q2(C, γ)

and a monomorphism

∂γ : H2(C ⊗A Σ2C) = Q̂2(C) −→ Q1(C, γ).

Therefore the outer dodecagon of Theorem 2.4.1(2) degenerates into exact sequences:

0 −→ Q−1(C, γ) −→ Q3(B
A, βA) −→ 0

0 −→ Q2(B
A, βA) −→ 0

0 −→ Q̂2(C)
∂γ−−−→ Q1(C, γ) −→ Q1(B

A, βA) −→ 0

0 −→ Q0(C, γ) −→ Q0(B
A, βA) −→ 0.

Now [BR06, Proposition 56(ii)] follows. ¤

Proof of Theorem 2.4.1(1). One checks using [BR06, Definition 32] and

(2.4.1.1) that (d, 0) is indeed a chain bundle map. For all k ∈ Z and j = 0, 1, there

is a commutative diagram

H2k+j(B
A) Ĥ2k+j(A)

Hj(C) Ĥj(A)

wbv2k+j(β
A)

u

∼=
u

∼=

wbvj(γ)=ιj

so that for all n ∈ Z, the Wu class is an isomorphism:

v̂n(βA) : Hn(BA) −→ Ĥn(A)

is an isomorphism. Therefore the chain bundle (BA, βA) is universal, by M. Weiss’s

characterization [BR06, Prop. 55(ii)]. ¤
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Proof of Theorem 2.4.1(2). Upon desuspension, there is a long exact se-

quence [CR05, Rule 2.4(B)]:

· · · ∂−−→
⊕

k∈Z

Qn−4k(C, γ)
q−−→ Qn(BA, βA)

p−−→
⊕

k∈Z
0<m

Hn−4k(C ⊗A Σ2mC)
∂−−→ · · · .

By Lemma 2.4.5(1), we have

Hj(C ⊗A Σ2mC) = 0 for all except 0 ≤ j − 2m < 4.

Then, since (BA, βA) is universal by Part (1), we obtain an isomorphism for all

j ∈ Z, by Lemma 2.4.5(3):

kC :
⊕

0≤j−2m<4

Hj(C ⊗A Σ2mC) = Hj(C ⊗A BA) −→ Q̂j(C).

So, by [CR05, Rule 2.4(A)], our sequence becomes:

· · · ∂−−→
⊕

−1≤n−4k

Qn−4k(C, γ)
q−−→ Qn(BA, βA)

p−−→
⊕

n−4k=2,3

Hn−4k(C ⊗A Σ2C)
⊕

4≤n−4k

Q̂n−4k(C)
∂−−→ · · · .

Then, by [CR05, Rule 2.4(C)] with H2(C) = 0, we have

Qj(C) = 0 for all except 0 ≤ j < 4.

Hence we obtain an isomorphism

∂γ : Q̂j+1(C) → Qj(C, γ) for all except − 1 ≤ j < 4.

Therefore our sequence becomes:

· · · ∂−−→
⊕

−1≤n−4k<4

Qn−4k(C, γ)
q−−→ Qn(BA, βA)

p−−→
⊕

n−4k=2,3

Hn−4k(C ⊗A Σ2C)
⊕

n−4k=4

Q̂n−4k(C)
∂−−→ · · · .

This establishes the outer exact dodecagon, where there is a monomorphism

∂4
γ : Q̂4(C) −→ Q3(C, γ).

The inner exact sequence is [CR05, Sequence (18)], where by [CR05, Rule 2.4(A)],

there is an epimorphism

∂0
γ : Q̂0(C) −→ Q−1(C, γ).
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¤



CHAPTER 3

L-theory of type III virtually cyclic groups: Reductions

Many standard techniques [Wal76, HM80] used to compute the quadratic L-

theory of finite groups, namely: hyperelementary induction, the Mayer-Vietoris se-

quence for cartesian squares, nilradical quotients, maximal involuted orders, and

Morita equivalence, along with our new technique of homological reduction (§3.1),

are employed in combination to determine the quadratic NL-theory of certain finite

groups (§3.2), up to extension issues addressed in Chapter 4.

3.1. Basic reductions

3.1.1. Orientable reduction.

Proposition 3.1.1. Suppose R is a ring with involution and G is a group with

trivial orientation character. Then there is a natural decomposition

NLn(R[G]) = NLn(R)⊕ ÑLn(R[G]),

where the reduced L-group is defined by

ÑLn(R[G]) := Ker (aug1 : NLn(R[G]) → NLn(R[1])) .

Proof. The covariant morphism on NL∗(R[−])-groups induced by the map

incl : 1 → G is a monomorphism split by the morphism of NL∗(R[−])-groups

induced by the augmentation aug1 : G → 1 of groups with orientation character. ¤

3.1.2. Hyperelementary reduction. For simplicity, we shall re-use (see §2.3)

the abbreviation N (G) := NL
〈−∞〉
n (Z[G]) for fixed n ∈ Z.

Theorem 3.1.2. Let F be a finite group and S a normal subgroup. Suppose

for all 2-hyperelementary subgroups H of F that the following induced map is an

68
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isomorphism:

incl∗ : N (H ∩ S) −→ N (H).

Then the following induced map, from the group of coinvariants, is an isomor-

phism:

incl∗ : N (S)F/S −→ N (F ).

Proof. Observe that the following diagram commutes:

colim
H2(F )∩S

N

(
colim
H2(S)

N

)

F/S

colim
H2(F )

N

N (S)F/S N (F ).

'
'
'
'
'')

incl∗

u
incl∗

wincl∗

u
incl∗

u

incl∗

wincl∗

The vertical maps are isomorphisms by Hyperelementary Induction (2.3.2). It fol-

lows from the hypothesis that the diagonal map is an isomorphism. Therefore the

bottom map is an isomorphism. ¤

3.1.3. Homological reduction.

Theorem 3.1.3. Let f : R → R′ be a morphism of rings with involution such

that the induced map f∗ : Ĥj(R) → Ĥj(R′) is an isomorphism for all j = 0, 1.

Suppose R satisfies (2.4.1.1) and that R′ is a flat R-module. Then for all n ∈ Z,

the induced map f∗ : NQn(R) → NQn(R′) is an isomorphism.

We employ general principles and Theorem 2.4.1(1) alone.

Proof. By Theorem 2.4.1(1) and naturality of null-augmentation, it is equiva-

lent to show for all n ∈ Z that the following induced map is an isomorphism:

f∗ : Qn(BR[x], βR[x]) −→ Qn(BR′[x], βR′[x]).

khanq
Sticky Note
CORRECTION:... such that the left $R'$-module morphism $R' \otimes_R \wh{H}^j(R) \longmapsto \wh{H}^j(R')$, defined by $b \otimes [a] \longmapsto [b f(a) \ol{b}]$, is an isomorphism.
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For all j = 0, 1, there exists a 1-dimensional f.g. projective R[x]-module resolution

C(j) of

Ĥj(R[x]) = R[x]2 ⊗R Ĥj(R).

It is obtained via tensor product, since R satisfies (2.4.1.1), and since R[x] is a flat

R-module. For all j = 0, 1, define an R′[x]-module chain complex

C ′(j) := R′[x]⊗R[x] C
(j).

It is a 1-dimensional f.g. projective R′[x]-module resolution of

Ĥj(R′[x]) = R′[x]2 ⊗R′ Ĥ
j(R′),

since f∗ : Ĥj(R) → Ĥj(R′) is an isomorphism of R-modules, and since R′[x] is a

flat R[x]-module. Using the resolutions C(j), define the 2-dimensional R[x]-module

chain bundle (C, γ) of Theorem 2.4.1. Similarly construct the chain bundle (C ′, γ′)

over R′[x].

Consider the natural R[x]-module chain bundle map g : (C, γ) → (C ′, γ′). It

induces isomorphisms

g∗ = ι′∗ ◦ f∗ ◦ ι−1
∗ : H∗(C) −→ H∗(C ′).

There is the commutative ladder of Figure 3.1.1 with long exact rows [BR06, Prop.

38(ii)]. Therefore, by the five-lemma, it suffices to show that the induced component

maps are isomorphisms:

g∗ : Qn(Σ2k(C, γ)) −→ Qn(Σ2k(C ′, γ′))(3.1.3.1)

g∗ : Hn(Σ2k(C)⊗R[x] Σ
2`(C)) −→ Hn(Σ2k(C ′)⊗R′[x] Σ

2`(C ′)).(3.1.3.2)

The latter (3.1.3.2) follows from the Künneth spectral sequence (see Remark

2.4.4) for C and C ′ over R[x] and R′[x]. This is since g∗ : C → C ′ induces an iso-

morphism in homology groups H∗. Hence it induces an isomorphism in Tor groups,

by the flatness hypothesis. Moreover, the same argument shows that the latter map

(3.1.3.2) is C2-equivariant with respect to switching the tensor factors if k = `.

khanq
Sticky Note
CLARIFICATION:It becomes a resolution due to the stronger hypothesis on $f$.

khanq
Sticky Note
COUNTER-EXAMPLE:

Such $f_*$ is an isomorphism for Z[i] --> Z[\zeta_8] but the Z[\zeta_8]-module structure on H^j(Z[\zeta_8]) is not tensored up from Z[i].

Guest
Comment
TYPO: The chain map $g: C \to C'$ induces $R[x]$-module isomorphisms \[ g_* = (\iota'_*)^{-1} \circ f_* \circ \iota_* : H_*(C) \longrightarrow H_*(C'). \]
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··
·

//⊕ k
∈Z

Q
n
(Σ

2
k
(C

,γ
))

//

g
∗

²²

Q
n
(B

R
[x

] ,
β

R
[x

] )
//

g
∗

²²

⊕ k
<

`

H
n
(Σ

2
k
(C

)
⊗ R

[x
]
Σ

2
` (

C
))

//

g
∗

²²

··
·

··
·

//⊕ k
∈Z

Q
n
(Σ

2
k
(C

′ ,
γ
′ )
)

// Q
n
(B

R
′ [x

] ,
β

R
′ [x

] )
//⊕ k

<
`

H
n
(Σ

2
k
(C

′ )
⊗ R

′ [x
]
Σ

2
` (

C
′ )
)

// ··
·.

Figure 3.1.1. Five-lemma argument for the universal twisted Q-groups.

Now the former (3.1.3.1) follows from the commutative ladder with exact rows

[BR06, Prop. 38(i)]:

· · · // Q̂n+1(C) //

g∗
²²

Qn(C, γ) //

g∗
²²

Qn(C) //

g∗
²²

Q̂n(C) //

g∗
²²

· · ·

· · · // Q̂n+1(C ′) // Qn(C ′, γ′) // Qn(C ′) // Q̂n(C ′) // · · · ,
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and the five-lemma (we desuspend to k = 0 for simplicity). This is since the C2-

equivariant map

g∗ : H∗(C ⊗R[x] C) −→ H∗(C ′ ⊗R′[x] C
′)

is an isomorphism, by the above argument for (3.1.3.2) with k = ` = 0 substituted,

and by the Leray-Serre spectral sequences (2.4.4) for C and C ′ over R[x] and R′[x].

The desired result now follows. ¤

3.1.4. Nilpotent reduction. The following is a special case of Wall’s reduction

[Wal73, Thm. 6], which was applied extensively in [Wal76]. In the classical L-

theory of finite groups, Wall’s reduction theorem is applied to the Jacobson radical

[Wal73, §3] of the 2-adic integral group ring of a finite 2-group [Wal76, §5.2].

In our case, a theorem of Amitsur [Ami56, Thm. 1] states that the Jacobson

radical of R[x] for any ring R is a two-sided ideal N [x], where N is a nil ideal of

R containing the locally nilpotent radical. Recall for left artinian rings R that its

locally nilpotent radical, nilradical, and Jacobson radical all coincide. Below we

limit ourselves to rings of nonzero characteristic (cf. Remark 2.2.2).

Proposition 3.1.4. Let R be a ring with involution.

(1) Suppose that I is a nilpotent, involution-invariant, two-sided ideal of R.

Then for all n ∈ Z, the map induced by the quotient map π : R → R/I is

an isomorphism:

π∗ : NLh
n(R) −→ NLh

n(R/I).

(2) Suppose for some prime p that F is a finite field of characteristic p and P

is a finite p-group. Then for all n ∈ Z, the following induced map is an

isomorphism:

aug1 : NLh
n(F[P ]⊗Z R) −→ NLh

n(F⊗Z R).

Proof. For Part (1), observe that I[x] is nilpotent implies that the map

R[x] → R̂[x]I[x],
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to the I[x]-adic completion, is an isomorphism of rings with involution. So we are

done by [Wal73, Theorem 6].

For Part (2), observe that the involution-invariant, two-sided ideal

J := ({ g − 1 | g ∈ P })

of F[P ] is its Jacobson radical. Since F[P ] is finite hence left artinian, we must have

that J is nilpotent. So we are done by Part (1) using I = J ⊗ 1R. ¤

3.2. Finite groups with Sylow 2-subgroup normal abelian

3.2.1. Statement of results. Our main theorem reduces the computation of

UNil for certain finite groups F to those of finite 2-groups. Necessarily [Bro94, Cor.

3.13], these certain groups are of the form of semidirect products

F = S o E,

for some finite abelian 2-group S and odd order group E. A consequence is that

our results combine with those of A. Bak in classical L-theory [Bak76] to yield

information about the polynomial L-groups L∗(Z[F ][x]), for the following groups F .

Theorem 3.2.1. Suppose F is a finite group that contains a normal abelian

Sylow 2-subgroup S. Then for all n ∈ Z, the following induced map, from the group

of coinvariants, is an isomorphism:

incl∗ : NL〈−∞〉n (Z[S])F/S −→ NL〈−∞〉n (Z[F ]).

The Connolly-Ranicki isomorphism (2.1.2) yields a complete computation in the

following case.

Corollary 3.2.2. Suppose F is a finite group of odd order. Then the induced

map is an isomorphism:

incl∗ : UNil∗(Z;Z,Z) −→ UNil∗(Z[F ];Z[F ],Z[F ]).

Moreover, a complete set of invariants for the latter, which is a summand of the

surgery group L∗(Z[F × D∞]), are obtained first by transfer to the trivial subgroup
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and then from the obstruction theory of Connolly-Davis [CD04] (compare [CR05,

BR06]). ¤

Remark 3.2.3. The classical L-groups Lh
∗(Z[F ]) are computed by Bak and Wall

in [Wal76, Corollary 2.4.3] and extended to the colimit L
〈−∞〉
∗ (Z[F ]) by Madsen and

Rothenberg [MR88]. Therefore, the following L-groups are calculable:

L〈−∞〉∗ (Z[F ][x]) and L〈−∞〉∗ (Z[F ×D∞]).

The first lemma is both a vanishing result and a reduction to the Gaussian

integers.

Lemma 3.2.4. Let ζr := e2π
√−1/r be a primitive r-th root of unity for some r > 0.

Write r = d 2e for some d > 0 odd and e ≥ 0. Note that

Z[ζr] = Z[ζd, ζ2e ]

as rings whose involution is complex conjugation. Then for all n ∈ Z, either:

(1) NLn(Z[ζr]) = NLn(Z) if d = 1 and e = 0, 1, or

(2) NLn(Z[ζr]) = 0 if d > 1, or

(3) incl∗ : NLn(Z[i]) → NLn(Z[ζr]) is an isomorphism if d = 1 and e > 1.

Its analogue in characteristic two is the following lemma.

Lemma 3.2.5. Let P be a finite 2-group, and let d > 0 be odd. Consider the

ring R = F2[P ] ⊗ Z[ζd] with involution. If d = 1, then for all n ∈ Z, the induced

map NLn(R) → NLn(F2) is an isomorphism. Otherwise if d > 1, then the groups

NL∗(R) vanish.

Remark 3.2.6. It seems appropriate to mention here that the techniques of

Connolly-Ranicki [CR05, Lem. 21, Eqn. (27)] and of Connolly-Davis [CD04, Lems.

4.6(2), 4.3] can be used to generalize their computations of UNil∗(F2). Namely, let F

be a perfect field of characteristic two with identity involution. Here perfect means

that the squaring endomorphism is surjective. For example, any finite field F2e of

characteristic two is perfect. If n is odd then NLn(F, id) vanishes. Otherwise if n is

khanq
Sticky Note
FALSE:

Fails due to stronger hypothesis needed for Homological Reduction.
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even, then the Arf invariant of symplectic forms over the function field F(x) defines

an isomorphism

Arf : NLn(F, id) −→ Cok(ψ − 1) =
⊕

d odd

xd F,

where the Frobenius automorphism ψ is defined as

ψ : F[x]/F −→ F[x]/F; f 7−→ f 2.

The next lemma is a vanishing result for cyclic 2-groups C.

Lemma 3.2.7. Let C be a cyclic 2-group, and let d > 1 be odd. Consider the ring

R = Z[ζd] whose involution is complex conjugation. Then the groups NL∗(R[C])

vanish.

Now we use induction to generalize this vanishing result from cyclic 2-groups C

to finite abelian 2-groups P .

Lemma 3.2.8. Let R be a ring with involution, and let P be a finite abelian 2-

group. If the groups NL∗(R[C]) vanish for all cyclic 2-groups C of exponent e(C) ≤
e(P ), then the groups NL∗(R[P ]) vanish.

The last lemma reduces our computation from abelian 2-hyperelementary groups

H to abelian 2-groups P .

Lemma 3.2.9. Consider any abelian 2-hyperelementary group H = CN×P . Then

for all n ∈ Z, the following induced map is an isomorphism:

incl∗ : NLn(Z[P ]) −→ NLn(Z[H]).

3.2.2. Proofs.

Proof of Lemma 3.2.4. Part (1) is immediate, since in this case Z[ζr] = Z.

So Parts (2) and (3) remain.

Write R := Z[ζ2e ], and consider d as a divisor of some odd N > 0. By the

ring decomposition ρ′ of Proof 2.3.4 and the isomorphisms of Theorem 2.2.1, the
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following induced upper map is an isomorphism:

Ĥj(R[CN ])

⊕

d|N
Ĥj(R[ζd])

Ĥj(R[ 1
N

][CN ])

⊕

d|N
Ĥj(R[ 1

N
][ζd]).

w

u
u

wρ′∗

But a direct computation shows that the upper map has image in the d = 1 factor.

That is, the following induced map is an isomorphism:

incl∗ : Ĥj(R[1]) −→ Ĥj(R[CN ]).

Moreover, for all d > 1, the corresponding Tate cohomology groups vanish:

Ĥj(R[ζd]) = 0.

If e > 1, then another direct computation using the Z-basis

{
(ζ2e)k | − 2e−2 < k ≤ 2e−2

}

for R shows that the following induced map is an isomorphism:

incl∗ : Ĥj(Z[i]) −→ Ĥj(R).

So by Homological Reduction (3.1.3), we obtain Parts (2) and (3) on the level of

NQ-groups.

Recall for any Dedekind domain A with involution that its symmetric NL-groups

vanish [CR05, Props. 9(iii), 11]. Hence the Weiss boundary map ∂ of the symmetric-

quadratic-hyperquadratic sequence [CR05, Intro.] is an isomorphism:

∂ : NQn+1(A) −→ NLn(A).

Therefore we obtain Parts (2) and (3) on the level of quadratic NL-groups, since

Z[i] and R and R[ζd] are in fact Dedekind domains, whose involutions are given by

complex conjugation. ¤
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Proof of Lemma 3.2.5. By Nilpotent Reduction (3.1.4), the following induced

map is an isomorphism:

NLn(R) −→ NLn(F2 ⊗ Z[ζd]).

Recall, in terms of the d-th cyclotomic polynomial Φd(x) ∈ Z[x], that

F2 ⊗ Z[ζd] = F2[x]/(Φd(x)).

Note, by taking formal derivative of xd − 1 with d odd, that Φd(x) is separable over

F2. Then, by the chinese remainder theorem, the ring F2 ⊗ Z[ζd] is a finite product

of fields1 hence is 0-dimensional.

Therefore, by the argument of Proof 3.2.4, it suffices to show that its Tate coho-

mology vanishes. But, as in the previous proof, this follows from the direct compu-

tation that

incl∗ : Ĥ∗(F2[1]) −→ Ĥ∗(F2[CN ])

is an isomorphism for all odd N . ¤

Proof of Lemma 3.2.7. We induct on the exponent of C. If e(C) = 1 then

NL∗(R[C]) = NL∗(R) = 0,

by Lemma 3.2.4(2). Otherwise suppose the lemma is true for all cyclic 2-groups

C ′ with e(C ′) < e(C). Then we may define a ring extension R′ of R and a group

quotient C ′ of C by

R′ := R[ζe(C)] and C ′ := Ce(C)/2,

and there is a cartesian square (2.2.3) of rings with involution:

R[C] R′

R[C ′] F2[C
′]⊗R.

w

u u
w

Note, by Lemma 3.2.4(2) and Lemma 3.2.5, that

NL∗(R′) = 0 and NL∗(F2[C
′]⊗R) = 0.

1It is in fact a product of φ(d)/n(d) copies of the finite field F2n(d) , where φ(d) is the Euler

φ-function and n(d) > 0 is minimal with respect to the congruence 2n(d) ≡ 1 (mod d).
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Therefore, by the Mayer-Vietoris sequence (2.2.3), the map induced by the left

column is an isomorphism:

NL∗(R[C])
∼=−−→ NL∗(R[C ′]).

But NL∗(R[C ′]) = 0 by inductive hypothesis. This concludes the argument. ¤

Proof of Lemma 3.2.8. We induct on the order of P . If |P | = 1 then

NL∗(R[P ]) = NL∗(R[1]) = 0,

by hypothesis. Otherwise suppose the lemma is true for all R and P ′′ with |P ′′| < |P |.
Since P is a nontrivial abelian 2-group, we can write an internal direct product

P = P ′ × Ce(P ).

Then we can define a ring extension R′ of R and a group quotient P0 of P by

R′ := R[ζe(P )] = R[x]/
(
xe(P )/2 + 1

)
and P0 := P ′ × Ce(P )/2.

Consider the cartesian square (2.2.3) of rings with involution:

R[P ] R′[P ′]

R[P0] F2[P0]⊗R.

w

u u
w

Note, by Nilpotent Reduction (3.1.4) and by hypothesis using both 2-groups C with

e(C) ≤ 2, that

NL∗(F2[P0]⊗R)
∼=−−→ NL∗(F2 ⊗R) = 0.

Also NL∗(R[P0]) = 0, by inductive hypothesis. Then, by the Mayer-Vietoris se-

quence (2.2.3), the map induced by the top row is an isomorphism:

NL∗(R[P ])
∼=−−→ NL∗(R′[P ′]).

We are done by induction if we can show that R′ and P ′ also satisfy the hypothesis

of the lemma.

Let C be any cyclic 2-group satisfying

1 ≤ e(C) ≤ e(P ′) ≤ e(P ).
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We now induct on e(C). If e(C) = 1 then

NL∗(R′[C]) = NL∗(R′) = 0.

The latter follows from the Mayer-Vietoris sequence of the cartesian square of ring

with involution:

R[Ce(P )] R′

R[Ce(P )/2] F2[Ce(P )/2]⊗R

w

u u
w

and from Nilpotent Reduction, as in the above argument, using the hypothesis of

the lemma.

Otherwise suppose e(C) > 1. Then we may define a quotient group

C ′ := Ce(C)/2

of C, and there is a cartesian square of rings with involution:

R′[C] R′[ζe(C)]

R′[C ′] F2[C
′]⊗R′.

w

u u
w

We are again done by Nilpotent Reduction and induction on e(C) if we show that

NL∗(R′[ζe(C)]) = 0.

Consider the primitive root of unity:

ω := (ζe(P ))
e(P )/e(C) ∈ R′.

Observe the quotient and factorization

R′[ζe(C)] = R[ζe(P )][x]/
(
xe(C)/2 + 1

)
and xe(C)/2 + 1 =

e(C)−1∏

odd d=1

(x− ωd).

Then, by the chinese remainder theorem, we obtain an isomorphism of rings with

involution:

R′[ζe(C)]
∼=−−→

e(C)−1∏

odd d=1

R′.
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Hence it induces an isomorphism

NL∗(R′[ζe(C)])
∼=−−→

e(C)−1⊕

odd d=1

NL∗(R′).

But we have already shown that NL∗(R′) = 0. This concludes the induction on

both e(C) and |P |. ¤

Proof of Lemma 3.2.9. Recall, by Theorem 2.3.4 and additivity of L-groups,

that the following induced map is an isomorphism:

NLn(Z[H]) −→
⊕

d|N
NLn(Z[ζd][P ]).

But all the d 6= 1 factors vanish by Lemmas 3.2.7 and 3.2.8. The result now follows.

¤

Proof of Theorem 3.2.1. Let H be a 2-hyperelementary subgroup of F .

Since S is normal abelian, the group H is abelian. Then we can write

H = CN × P

for some odd N , and P = H ∩ S a finite abelian 2-group. So, by Lemma 3.2.9, the

following map is an isomorphism:

incl∗ : N (H ∩ S) −→ N (H).

Therefore, by Hyperelementary Reduction (3.1.2), the following induced map is an

isomorphism:

incl∗ : N (S)F/S −→ N (F ).

¤

3.3. Abelian 2-groups

The following result shows that the NL-theory of abelian 2-groups is determined

up to iterated extensions from the Dedekind domains:

Z[i] and Z and F2.
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The latter two have identity involution and have been calculated [CK95, CR05,

CD04, BR06], whereas the involution of the former is complex conjugation, and

whose UNil-groups shall be calculated in another paper.

Proposition 3.3.1. Let P be a nontrivial abelian 2-group, and let n ∈ Z. Write

P = P ′ × Ce(P ) and P0 := P ′ × Ce(P )/2.

(1) The Weiss boundary map is an isomorphism:

NQn+1(Z[P ])
∂−−→ NLn(Z[P ]).

(2) There is an exact sequence

· · · −→ NLn+1(F2)
∂−−→ NLn(Z[P ]) −→ NLn(Z[P0])⊕ A −→ NLn(F2)

∂−−→ · · ·

where

A :=





NLn(R0[P
′]) if P ′ 6= 1

NLn(Z[i]) if P ′ = 1, e(P ) > 2

NLn(Z) if P ′ = 1, e(P ) = 2

and R0 := Z[ζe(P )].

(3) Suppose R is of the form

R = Z[ζe]

for some e ≥ e(P ) a power of 2. There is an exact sequence

· · · −→ NLn+1(F2)
∂−−→ NLn(R[P ]) −→

⊕
2

NLn(R[P0]) −→ NLn(F2)
∂−−→ · · · .

Remark 3.3.2. One should beware that Part (1) merely states that all finite

abelian 2-groups have NL-groups of homological type, which means they are clas-

sified theoretically by the generalized Arf invariant [BR06]. The statement itself is

not useful for their computation. For example, the Tate cohomology of the group

ring Z[C2] with involution vanishes in odd dimensions and has a minimal f.g. pro-

jective resolution of length two in even dimensions. Hence our generalization of

Banagl-Connolly-Ranicki theory (§2.4) is not applicable to compute its NQ-groups.

khanq
Sticky Note
FALSE:Homological reduction down to the subring Z[i] won't work anymore.
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Proof. The above sequences are derived from the Mayer-Vietoris exact se-

quences (2.2.3) of the cartesian squares

Z[P ] R0[P
′]

Z[P0] F2[P0]

w

u u
w

and

R[P ] R[P ′][ζe(P )]

R[P0] F2[P0].

w

u u
w

Part (1) follows by induction on |P | and the five-lemma using these exact se-

quences, along with a similar exact sequence for F2[P ]. Since Z[ζ] and F2 are

Dedekind domains with involution, the basic cases for the induction are isomor-

phisms

NQn+1(Z[ζ]) NLn(Z[ζ])w∂

∼= and NQn+1(F2) NLn(F2).w∂

∼=

For Parts (2) and (3), recall Nilpotent Reduction (3.1.4) shows that the following

induced map is an isomorphism:

NLn(F2[P0]) −→ NLn(F2).

If P ′ = 1 and e(P ) > 2, then Lemma 3.2.4 shows that the following induced map is

an isomorphism:

incl∗ : NLn(Z[i]) −→ NLn(R0).

Finally, since ζe ∈ R, observe that there exists an isomorphism of rings with involu-

tion:

f : R[ζe(P )] −→ R[Ce(P )]; ζe(P ) 7−→ (ζe)
e/e(P )T,

where T is a generator of the cyclic group Ce(P ). Therefore we obtain an induced

isomorphism

f∗ : NLn(R[P ′][ζe(P )]) −→ NLn(R[P0]).

¤

3.4. Special 2-groups

A finite group is special if every normal abelian subgroup is cyclic.
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Proposition 3.4.1 ([HTW84, 2.2.1]). A finite 2-group P is special if and only

if it is either:

(0) for some e ≥ 0, cyclic

Ce :=
〈
T | T 2e

= 1
〉

(1) for some e > 3, dihedral

De :=
〈
T, R | T 2e−1

= 1 = R2, RTR−1 = T−1
〉

(2) for some e > 3, semidihedral

SDe :=
〈
T, R | T 2e−1

= 1 = R2, RTR−1 = T 2e−2−1
〉

(3) for some e ≥ 3, quaternionic

Qe :=
〈
T, R | T 2e−1

= 1, R2 = T 2e−2

, RTR−1 = T−1
〉

.

The Mayer-Vietoris exact sequence for cyclic 2-groups Ce is provided in the

previous section; the Mayer-Vietoris exact sequence for the other special 2-groups

P ∈ {De, SDe, Qe } is provided in the following proposition. Its main ingredient is

the fact that P has an index two dihedral quotient De−1.

Proposition 3.4.2. Consider any noncyclic special 2-group P , and let n ∈ Z.

Let e ≥ 3, and write ζ := ζ2e−1 a dyadic root of unity. Denote ◦±c as twisting

a quadratic extension by ± complex conjugation. Then there are the long exact

sequences of Figure 3.4.1.

In the next subsection we shall take a closer look at the twisted quadratic ex-

tensions for the first two cases.

Proof. By Proposition 2.2.3, we obtain the Mayer-Vietoris exact sequence

NLn+1(F2[G/K])
∂−−→ NLn(Z[G])

−→ NLn(Z[G/K])⊕NLn(Z[G]/ΣK) −→ NLn(F2[G/K])

using the following order two subgroup K of the group G = De, SDe, Qe:

K =
〈
T 2e−2

〉
.
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Figure 3.4.1. Exact sequences for P = De, SDe, Qe.
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Observe that

G/K = De−1 and Z[De]/ΣK = Z[ζ] ◦c C2

Z[SDe]/ΣK = Z[ζ] ◦−c C2 and Z[Qe]/ΣK = Z[ζ] ◦c [i].

Finally, Nilpotent Reduction (3.1.4) shows that

NL∗(F2[De−1]) −→ NL∗(F2)

is an isomorphism. ¤
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3.4.1. Dihedral and semidihedral 2-groups. We now show that the above

twisted quadratic extensions for the dihedral and semidihedral cases can be com-

puted definitely from the NQ-groups of the Dedekind domains Z[ζ ± ζ−1] with

involution.

Proposition 3.4.3. Let e > 3 and write ζ := ζ2e. Then for all n ∈ Z, there is

an isomorphism

NLn(Z[ζ] ◦±c C2) −−−→ NLn(Z[ζ ± ζ−1]) ⊕ NLn

(
Z[ζ ± ζ−1] → Z[ζ] ◦±c C2

)
.

Proof. There is an exact sequence of a pair:

· · · ∂−−→ NLn(Z[ζ ± ζ−1]) −→ NLn(Z[ζ] ◦±c C2)

−→ NLn

(
Z[ζ ± ζ−1] → Z[ζ] ◦±c C2

) ∂−−→ · · · .

William Pardon [Par82, Proof 4.14] constructs an embedding of rings with involu-

tion:

f ′ : Z[ζ] ◦±c C2 −→ M2(Z[ζ ± ζ−1])

whose restriction to the center Z[ζ ± ζ−1] is the diagonal embedding. Here, the

standard involution on the matrix ring is defined as the conjugate transpose. Then

there is a commutative triangle

NLn(Z[ζ ± ζ−1]) NLn(Z[ζ] ◦±c C2)

NLn(M2(Z[ζ ± ζ−1])).

wincl∗

u

diag∗

AAAAAAAAAD f ′∗

The vertical map is an isomorphism, by quadratic Morita equivalence (see [HRT87]).

Therefore we obtain the desired left-split short exact sequence. ¤



CHAPTER 4

The cyclic group of order two

Consider the simplest nontrivial 2-group

P = C2 =
〈
T | T 2 = 1

〉
.

Recall (2.2.3) that its integral group ring fits into Rim’s cartesian square

Z[C2] Z

Z F2

wi−

u
i+

u

j−

wj+

of rings with involution, where i±(T ) = ±1. We focus on piecing together its NL-

data from the component rings Z and F2, using the Mayer-Vietoris sequence (2.2.3).

The additional structure on

UNil∗(R; R,R) ∼= NL∗(R)

computed below is its covariant (pushforward) module structure over the Ver-

schiebung algebra

V := Z[Vn | n > 0] = Z[Vp | p prime]

of n-th power operators

Vn := (x 7→ xn)

on any polynomial ring R[x]. An analogous structure in K-theory has been studied

by J. Grunewald [Gru05, Ch. 3] for the Bass Nil-groups

Nil∗(R) = NK∗(R).

4.1. Statement of results

The main computations of this section are Theorems 4.1.2 and 4.1.3.

87
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Remark 4.1.1. According to Connolly-Koźniewski [CK95], Connolly-Ranicki

[CR05], and Connolly-Davis [CD04], the group NLodd(F2) vanishes, and the Arf

invariant is an isomorphism

Arf : NLeven(F2) −→ xF2[x]

(f 2 − f)
.

The inverse of Arf is given by the map

q 7−→ Pq,1,

where for all p, g ∈ Z[x] the symplectic form Pp,g is defined by

Pp,g :=


⊕

2

F2[x],


0 1

1 0


 ,


p

g





 .

Also the group NLn(Z) vanishes if n ≡ 0, 1 (mod 4), the induced map to NL2(F2)

is an isomorphism if n ≡ 2 (mod 4), and there is a two-stage obstruction theory

[CD04, Proof 1.7] if n ≡ 3 (mod 4):

0 −→ xF2[x]

(f 2 − f)

P−−→ NL3(Z)
B−−→ xF2[x]× xF2[x] −→ 0.

It is given primarily by certain characteristic numbers B in Wu classes of (−1)-

quadratic linking forms over (Z[x], 2), and secondarily by the Arf invariant, of even

linking forms P , over the function field F2(x).

A general vanishing result and isomorphism are given by the following theorem.

Theorem 4.1.2. Suppose F is a finite group that contains a normal Sylow 2-

subgroup of exponent two. If n ≡ 0, 1 (mod 4), then the following abelian group

vanishes:

UNil〈−∞〉n (Z[F ]) = 0.

Furthermore, if n ≡ 2 (mod 4), then the following induced map is an isomorphism:

UNil〈−∞〉n (Z[F ]) −→ UNil〈−∞〉n (F2)
r∼=−→ NL〈−∞〉n (F2)

Arf∼=−−−→ xF2[x]/(f 2 − f).

Now we take a closer look at non-vanishing in the remaining dimensions.

Theorem 4.1.3. If n ≡ 3 (mod 4), then there exists a decomposition

UNil〈−∞〉n (Z[C2]) ∼= UNil
〈−∞〉
n+1 (F2)⊕ UNil〈−∞〉n (Z)⊕ UNil〈−∞〉n (Z).
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Proof. Immediate from Theorems 4.1.4 and 4.1.11. ¤

Theorem 4.1.4. Consider P = C2 with trivial orientation character. Then, as

Verschiebung modules, there is a decomposition

NL3(Z[C2]) = NL3(Z)⊕ ÑL3(Z[C2])

and there is an exact sequence (a three-stage obstruction theory):

0 NL0(F2) ÑL3(Z[C2]) NL3(Z) 0.w we∂ wi− w

Ingredients for the next theorem are as follows. Given a ring A with involution

and ε = ±1, there is an identification [Ran81, Prop. 1.6.4] between split ε-quadratic

formations over A and connected 1-dimensional ε-quadratic complexes over A. The

identification between (−ε)-quadratic linking forms over (A, (2)∞) and resolutions

by (2)∞-acyclic 1-dimensional ε-quadratic complexes over A is given by [Ran81,

Proposition 3.4.1].

The determination of the above extension 4.1.4(3) of abelian groups involves

algebraic gluing of quadratic complexes [Ran81, §1.7], given below (4.1.7) by a

choice M of set-wise section. Recall from group cohomology that an extension of

abelian groups

0 −→ A −→ B −→ C −→ 0

and a choice of set-wise section s : C → B determine a factorset

f : C × C −→ A; (c, c′) 7→ s(c) + s(c′)− s(c + c′).

Our main concern is the computation of such a function f , via generators of C and

an invariant for A in the above sequence 4.1.4(3) of abelian groups.

Remark 4.1.5. The Connolly-Davis computation of NL3(Z) ∼= NL4(Z, (2)∞)

involves generators Np,g indexed by polynomials p, g ∈ Z[x]. Either p or g must

have zero constant coefficient, and each generator is defined as the nonsingular (+1)-

quadratic linking form

Np,g :=


⊕

2

Z[x]/2,


p/2 1/2

1/2 0


 ,


p/2

g






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over (Z[x], (2)∞) of exponent two, see [CD04, Dfn. 1.6 and p. 1057]. For our

computation, we identify it with a choice of resolution by a nonsingular split (−1)-

quadratic formation

Np,g =




⊕
2

Z[x], (




p 1

1 2g

2 0

0 2




,


p 1

1 2g


)

⊕
2

Z[x]




.

Definition 4.1.6 ([Ran81, p. 69]). Let R be a ring with involution, and let

F, G be finitely generated projective R-modules. A nonsingular split ε-quadratic

formation


F, (


γ

µ


 , θ)G


 over R consists of the hyperbolic ε-quadratic form

Hε(F ) :=


F ⊕ F ∗,


0 1F

0 0







along with the standard lagrangian F ⊕ 0, a second lagrangian

Im(


γ

µ


 : G → F ⊕ F ∗),

and a hessian

θ : G −→ G∗,

which is a choice of de-symmetrization of the pullback form:

θ − εθ∗ =


γ

µ



∗ 
0 1F

0 0


 = γ∗ ◦ µ : G → G∗.

¤

Definition 4.1.7. For any polynomial q ∈ xZ[x], define the nonsingular split

(−1)-quadratic formation Qq over Z[C2][x], where q̂ := 2(1− T )q, by

Qq :=




⊕
2

Z[C2][x], (




0 q̂

q̂ 0

1 (1− T )q

(1− T ) 1




,


q̂ 0

q̂ qq̂


)

⊕
2

Z[C2][x]




.
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For any polynomials p, g ∈ Z[x] with pg ∈ xZ[x], define the nonsingular split

(−1)-quadratic formation Mp,g over Z[C2][x] by

Mp,g :=




⊕
2

Z[C2][x], (




p 1

1 (1− T )g

2 0

0 2




,


p 1

1 (1− T )g


)

⊕
2

Z[C2][x]




.

¤

Indeed each of these (−1)-quadratic formations consists of lagrangian summands,

since the associated 1-dimensional (−1)-quadratic complex over Z[C2][x] is connected

[Ran80a, Proof 2.3] and in fact Poincaré: the Poincaré duality map on the level of

projective modules induces isomorphisms on its homology groups. For example in

Mp,g, the nontrivial homological Poincaré duality map is
(

p 1
1 (1−T )g

)
: H0(C) → H1(C), where H0(C) = H1(C) = Z[C2][x]/2.

Its determinant (1 − T )pg − 1 is a unit mod 2 in the commutative ring Z[C2][x],

since

((1− T )pg − 1)2 = 2(1− T )(pg)2 − 2(1− T )pg + 1 ≡ 1 (mod 2).

Therefore the Poincaré duality map for Mp,g is a homology isomorphism. Also, the

formation Qq is obtained as a pullback of a nonsingular formation, cf Proof 4.1.8(1).

Proposition 4.1.8. The following formulas are satisfied for cobordism classes

in the reduced group ÑL3(Z[C2]).

(1) Boundary map: ∂̃[Pq,1] = [Qq]

(2) Lifts: i−[Mp,g] = [Np,g] and i+[Mp,g] = 0

Now we state the basic relations between our generators Q and M, established

by algebraic surgery. Their inspiration is the statement and proof of [CD04, Lemma

4.3], but they are proven independently.

Proposition 4.1.9. The following formulas are satisfied for cobordism classes

in the reduced group ÑL3(Z[C2]).
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(1) Additivity: [Mp1,g] + [Mp2,g] = [Mp1+p2,g] + [Qq] where q := (p1g)(p2g)

(2) Symmetry: [M2p,g] = [M2g,p]

(3) Square associativity: [Mx2p,g] = [Mp,x2g]

(4) Square root: [M2p2g,g] = [M2p,g]

Here are some useful formal consequences, which do not require the technique of

algebraic surgery.

Corollary 4.1.10. The following formulas are satisfied for cobordism classes

in the reduced group ÑL3(Z[C2]).

(1) Exponent four: 4 · [Mp,g] = 0

(2) Idempotence: 2(V2 − 1) · [Mp,1] = 0

(3) Exponent two: 2 · ([Mx,g]− [M1,xg]) = 0

(4) Nilpotence: V2 · ([Mx,g]− [M1,xg]) = 0

Finally we conclude with a determination of the Verschiebung module extension

UNil3(Z[C2]), through the eyes of the Connolly-Ranicki isomorphism (2.1.2).

Theorem 4.1.11. The extension of V-modules in Theorem 4.1.4(3) is trivial.

(1) A decomposition into irreducible V-modules is given by the isomorphism

Φ :=
(
ΦQ ΦM

1 ΦM
2 ΦN

1 ΦN
2

)
: Domain(Φ) −→ NL3(Z[C2]).
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The component maps are

ΦQ :
V

(2, V2 − 1)
−→ NL3(Z[C2]); [1] 7−→ [Qx]

ΦM
1 :

V
(4, 2(V2 − 1))

−→ NL3(Z[C2]); [1] 7−→ [Mx,1]

ΦM
2 :

⊕

e∈Z≥0

V
(2, V2)

−→ NL3(Z[C2]); [1]e 7−→ [Mx,xp ]− [M1,xxp ]

ΦN
1 :

V
(4, 2(V2 − 1))

−→ NL3(Z[C2]); [1] 7−→ ι([Nx,1])

ΦN
2 :

⊕

e∈Z≥0

V
(2, V2)

−→ NL3(Z[C2]); [1]e 7−→ ι([Nx,xp ]− [N1,xxp ]).

Here p := 2e is a power of two and ι : 1 → C2 is the inclusion of groups

with trivial involutions.

(2) Consider the V-module morphism

s : NL3(Z) −→ ÑL3(Z[C2])

given additively by

Vn · [Nx,1] 7−→ Vn · [Mx,1]

Vn · ([Nx,xp ]− [N1,xxp ]) 7−→ Vn · ([Mx,xp ]− [M1,xxp ]).

It is a splitting of the surjection of the short exact sequence of Theorem

4.1.4(3). Let p := p1x + · · · + pnx
n ∈ xZ[x] be a polynomial with null-

augmentation. Define polynomials p′, p′′ ∈ xZ[x] by

p′ :=
∑

i

κ(pi)x
i

p′′ :=
∑
i<j

pipjx
i+j

where

κ(c) :=





0 if c ≡ 0, 1 (mod 4)

1 if c ≡ 2, 3 (mod 4).
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Then s satisfies the formula

s([Np,1]) = [Mp,1] + [Qp′+p′′ ].

4.2. Proof of main results

Proof of Theorem 4.1.2. Denote S as the Sylow 2-subgroup of F . Since

S is normal and abelian, by the reduction isomorphism of Theorem 3.2.1 and the

Connolly-Ranicki isomorphism r of Corollary 2.1.3, it suffices to show that:

NLh
n(Z[S]) = 0 if n ≡ 0, 1 (mod 4)

and the following induced map is an isomorphism:

NLh
2(Z[S]) −→ NLh

2(F2).

We induct on the order of S. If |S| = 1, then recall from Remark 4.1.1 that

NLn(Z[S]) = NLn(Z[1]) = 0 if n ≡ 0, 1 (mod 4)

and the following induced map is an isomorphism:

NL2(Z[S]) = NL2(Z[1]) −→ NL2(F2).

Otherwise suppose |S| > 1. Since S has exponent two, there is a decomposition

S = S ′ × C2

as an internal direct product of groups of exponent two. Then the Mayer-Vietoris

sequence of Proposition 3.3.1 specializes to:

· · ·NLn+1(F2)
∂−−→ NLn(Z[S]) −→

⊕
2

NLn(Z[S ′]) −→ NLn(F2)
∂−−→ · · · .

Observe, by the inductive hypothesis and Remark 4.1.1, that

NLn(Z[S ′]) = 0 and NLn(F2) = 0 for all n ≡ 0, 1 (mod 4).

So we obtain

NL0(Z[S]) = 0

and an exact sequence

0 −→ NL2(Z[S]) −→
⊕

2

NL2(Z[S ′]) −→ NL2(F2)
∂−−→ NL1(Z[S]) −→ 0.
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But the following induced map is an isomorphism, by inductive hypothesis:

NL2(Z[S ′]) −→ NL2(F2).

Therefore

NL1(Z[S]) = 0

and the following composite of induced maps is an isomorphism:

NL2(Z[S]) −→ NL2(Z[S ′]) −→ NL2(F2).

This concludes the induction on |S|. ¤

Proof of Theorem 4.1.4. The exact sequence of Proposition 3.3.1 becomes

NLn+1(F2)
∂−−→ NLn(Z[C2])

�
i−
i+

�
−−−→ NLn(Z)⊕NLn(Z)

( j− −j+ )−−−−−−→ NLn(F2).

Since this sequence is functorial, it must consist of V-module morphisms. It follows

by Orientable Reduction (3.1.1) that there is the commutative diagram of Figure

4.2.1 with top row exact, where ε : C2 → C2 is the trivial map and

∂̃ := (1− ε) ◦ ∂.

The map ∂̃ is a monomorphism, since i+ ◦ ∂ = 0 and the left square commutes. The

map i− is an epimorphism, since the projection projskew-diag onto the skew-diagonal

is surjective and the right square commutes. Exactness at ÑL3(Z[C2]) follows from

its definition and exactness of the top row at NL3(Z[C2]). Thus the bottom row

exists and is an exact sequence of V-modules. ¤

Proof of Proposition 4.1.8(1). According to [Ran81, pp. 517–519], the

boundary map

∂ = ∂i− ◦ δ : L4(F2[x]) → L3(Z[C2][x])

for our cartesian square is defined in general in terms of pullback modules by

(A′r, ψ′) 7−→

(Br, 1, B′r), (


(1− (χ + χ∗) ◦ φ,0)

(φ, 1)


 , (ψ − φ ◦ χ ◦ φ,0))(Br, φ′, B′r)


 .
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Ñ
L

3
(Z

[C
2
])

N
L

3
(Z

)
0

w
w

∂

u

1
−ε

w
� i− i+

�
A
A
A
A
A
A
A
A
A AC

i−
−i

+

w

up
ro

j s
k
e
w

-d
ia

g

w
w

e ∂
w

i−
w

Figure 4.2.1

It sends a Witt class of a rank r nonsingular form over A′ = F2[x] to the Witt class

of split formation over A = Z[C2][x] obtained by pullback of the boundary formation

of the lifted form over B = Z[x] and of the hyperbolic formation over B′ = Z[x]. The

form ψ over B lifts the input form ψ′ over A′. Their symmetrizations are denoted

φ := ψ + ψ∗ : Br −→ (Br)∗ and φ′ := ψ′ + ψ′∗ : B′r −→ (B′r)∗.
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The morphism χ : (B′r)∗ → B′r lifts the map

χ′ := (φ′)−1 ◦ ψ′ ◦ (φ′)−1 : (A′r)∗ −→ A′r.

Now we compute these morphisms in our situation. Let p ∈ xZ[x]. Recall (4.1.1)

and take

(A′r, ψ′) = Pq,1 =


F2[x]2,


q 1

0 1





 .

Choose a lift

(Br, ψ) =


Z[x]2,


q 1

0 1





 .

Then we obtain and select

χ′ =


1 0

1 q


 : F2[x]2 → F2[x]2 χ =


−1 0

1 −q


 : Z[x]2 → Z[x]2.

Using the pullback module structure [Ran81, p. 507]

Z[C2][x]
∼=−−→ (Z[x], 1 : F2[x] → F2[x],Z[x]); (m + nT ) 7−→ (m− n,m + n),
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the pullback formation is

∂[Pq,1] =




(Z[x]2, 1,Z[x]2), (




(


4q 0

0 4q


 ,0)

(


2q 1

1 2


 , 1)




, (


4q2 4q

0 4q


 ,0))(Z[x]2,


0 1

1 0


 ,Z[x]2)




=




(Z[x]2, 1,Z[x]2), (




(


 0 4q

4q 0


 ,0)

(


1 2q

2 1


 , 1)




, (


4q 0

4q 4q2


 ,0))(Z[x]2, 1,Z[x]2)




=




Z[C2][x]2, (




0 2(1− T )q

2(1− T )q 0

1 (1− T )q

(1− T ) 1




,


2(1− T )q 0

2(1− T )q 2(1− T )q2


)Z[C2][x]2




= [Qq].

¤

Proof of Proposition 4.1.8(2). Clearly

i−(Mp,g) = Np,g.

Note that the second lagrangian G of i+(Mp,g) is

Im




p 1

1 0

2 0

0 2




= Im




0 1

1 0

2 0

−2p 2




= Im




1 0

0 1

0 2

2 −2p




.

Therefore i+(Mp,g) is a graph formation over Z[x], hence represents 0 in NL3(Z). ¤
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Proof of Corollary 4.1.10(1). Note, by Proposition 4.1.9(1) and the rela-

tions (4.1.1) in NL4(F2), that

4 · [Mp,g] = 2 · [Qpg] + 2 · [M2p,g]

= 2 · [Qpg] + [Q2pg] + [M4p,g]

= [M4p,g].

There is an isomorphism

(1, 1,


p 0

0 0


) : M0,g −→M4p,g

of split (−1)-quadratic formations over Z[C2][x], see [Ran81, p. 69, defn.]. There-

fore as cobordism classes in NL3(Z[C2]) we obtain

4 · [Mp,g] = [M4p,g]

= [M0,g]

= 0,

by [Ran81, Proposition 1.6.4] and since M0,g is a graph formation. ¤

Proof of Corollary 4.1.10(2). Note, by Proposition 4.1.9(1) and the rela-

tions (4.1.1) in NL4(F2), that

2(V2 − 1) · [Mp,1] = (V2 − 1) · ([Qp] + [M2p,1])

= [M2V2p,1]− [M2p,1]

=
n∑

k=1

pk ·
(
[M2(xk)2,1]− [M2(xk),1]

)

where we write the polynomial

p = p1x + · · ·+ pnxn ∈ Ker(aug0)

for some n ∈ Z≥0 and p1, . . . , pn ∈ Z. But by Proposition 4.1.9(4), we have

[M2(xk)2,1]− [M2(xk),1] = 0 for all k > 0.

Therefore

2(V2 − 1) · [Mp,1] = 0.

¤
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Proof of Corollary 4.1.10(3). Note by Proposition 4.1.9(1,2) and the re-

lations (4.1.1) in NL4(F2) that

2 · ([Mx,g]− [M1,xg]) = ([Qxg]− [Qxg]) + ([M2x,g]− [M2,xg])

= [M2g,x]− [M2xg,1].

By Proposition 4.1.9(1) using the fact that [Qq] = 0 if q is a multiple of 2, and since

g has Z-coefficients, we may assume that g = xk for some k ∈ Z≥0 in order to show

that the right-hand term vanishes. If k = 2i is even, then by Proposition 4.1.9(3,2),

note

[M2g,x] = [M2(xi)2,x] = [M2,(xi)2x] = [M2,xg] = [M2xg,1].

Otherwise suppose k = 2i + 1 is odd. Then by Proposition 4.1.9(4) twice and by

induction on k, note

[M2g,x] = [M2(xi)2x,x]

= [M2(xi),x]

= [M2(xi+1),1]

= [M2(xi+1)2,1]

= [M2xg,1].

Therefore for all g ∈ Z[x] we obtain

2 · ([Mx,g]− [M1,xg]) = 0.

¤

Proof of Corollary 4.1.10(4). Note by Proposition 4.1.9(3) that

V2 · ([Mx,g]− [M1,xg]) = [Mx2,V2g]− [M1,x2V2g]

= 0.

¤

Proof of Theorem 4.1.11(1). The section s is a well-defined V-module mor-

phism by Corollary 4.1.10(1,2,3,4). By Theorem 4.1.4(3), the asserted properties of

Φ follow immediately from the explicit Connolly-Davis calculation of NL4(F2) (see
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[CD04, Thms. 1.2, 1.3]) and of NL3(Z) (see [CD04, Prop. 1.4, Cor. 1.8]) as

V-modules. ¤

Proof of Theorem 4.1.11(2). We induct on the number of monomials. If

p = xm then

s([Nxm,1]) = s(Vm · [Nx,1])

= Vm · [Mx,1]

= [Mxm,1] + [Q0].

Otherwise assume the formula holds for a particular p ∈ xZ[x]. Then, by Proposition

4.1.9(1), note

s([Np+xm,1]) = s([Np,1] + [Nxm,1])

= ([Mp,1] + [Qp′+p′′ ]) + ([Mxm,1] + [Q0])

= [Mp+xm ] + [Qq]

where q := p′ + p′′ + pxm. Denote

q′ := (p + xm)′ and q′′ := (p + xm)′′.

Then observe

q′ =





p′ if pm ≡ 0 (mod 2)

p′ ± xm if pm ≡ 1 (mod 2)

and q′′ = p′′ + pxm − pmx2m

where pm = 0 if deg(p) < m. Therefore the Arf invariant is

[q] = [q′ + q′′] ∈ xF2[x]/(f 2 − f),

as desired. ¤

4.3. Some algebraic surgery machines

The proofs of all parts of Proposition 4.1.9 are technical– algebraic surgery and

gluing are required. The first machine has input certain quadratic formations and

outputs certain quadratic forms.
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Lemma 4.3.1. Suppose (C, ψ) is a 1-dimensional (−1)-quadratic Poincaré com-

plex over Z[C2][x] satisfying the following hypotheses.

(a) The 1-dimensional chain complex C over Z[C2][x] has modules C1 = C0 and

differential dC = 2 · 1.

(b) There is a null-cobordism

(f : i−(C) → D, (δψ, i−(ψ)) ∈ W%(f,−1)2)

over Z[x] such that f0 = 1 : C0 → D0 and δψ2 = 0 : D0 → D0.

(c) The quadratic Poincaré complex i+(C,ψ) over Z[x] corresponds to a graph

formation.

Then we obtain the following conclusions.

(1) There exists a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over

F2[x] such that

∂[S(F, Ψ)] = [S(C, ψ)].

Here,

∂ : L4(F2[x]) −→ L3(Z[C2][x])

is the boundary map of the Mayer-Vietoris sequence of Rim’s cartesian

square, and S is the skew-suspension isomorphism.

(2) The instant surgery obstruction Ω(F, Ψ) is Witt equivalent to the nonsingu-

lar (+1)-quadratic form j−(D1, δψ0) over F2[x].

The next machine constructs inputs for the above one given a lagrangian of a

certain linking form. It is obtained as a specialization of [Ran81, Proof 3.4.5(ii)]1

Lemma 4.3.2. Suppose (C, ψ) is a 1-dimensional (−1)-quadratic Poincaré com-

plex over Z[C2][x] satisfying the following hypotheses.

(a) The 1-dimensional chain complex C over Z[C2][x] has modules C1 = C0 and

differential dC = 2 · 1.

1See errata for the formulas at http://www.maths.ed.ac.uk/~aar/books/exacterr.pdf
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(b) There exists a lagrangian L of the nonsingular (+1)-quadratic linking form

(N, b, q) over (Z[x], (2)∞) associated to i−(C,ψ).

(c) The evaluation i+(C, ψ) corresponds to a graph formation over Z[x].

Choose a finitely generated projective module P over Z[C2][x] and morphisms

(i) π : P → C1 monic with image

i−(π)(P ) = e−1(L),

where the quotient map e is

e : i−(C1) −→ N := Cok
(
i−(d∗C : C0 → C1)

)

(ii) χ : P → P ∗ satisfying the de-symmetrization identity

(π−1 ◦ d∗C)∗ ◦ (χ + χ∗) = (ψ̃0 − ψ∗0) ◦ π : P → C0.

Then we obtain the following conclusions.

(1) Define a quadratic cycle ψ̂ ∈ W%(C,−1)1 by

ψ̂0 := ψ0 : C0 −→ C1
˜̂
ψ0 := ψ̃0 : C1 −→ C0

ψ̂1 := (π−1 ◦ d∗C)∗ ◦ χ ◦ (π−1 ◦ d∗C)− ψ̃0 ◦ d∗C : C0 −→ C0.

Then the quadratic cycle ψ̂ is homologous to ψ in W%(C,−1)1 over Z[C2][x].

(2) Define a chain complex D =
{

D1
dD−→ D0

}
with modules

D1 := i−(P ∗) and D0 := i−(C0)

and with differential

dD := i−(π−1 ◦ d∗C)∗.

Define a chain map f : i−(C) → D by

f0 := 1 : i−(C0) −→ D0 f1 := i−(π∗) : i−(C1) −→ D1.

Define a quadratic chain δψ ∈ W%(D,−1)2 by

δψ0 := −i−(χ)∗ : D1 −→ D1 δψ1 := −i−(χ) ◦ d∗D : D0 −→ D1

δ̃ψ1 := ψ̃0 ◦ i−(π) : D1 −→ D0 δψ2 := 0 : D0 −→ D0.
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Then (
f : i−(C) → D, (δψ, i−(ψ̂)) ∈ W%(f,−1)2

)

is a null-cobordism over Z[x].

(3) The evaluation i+(C, ψ̂) corresponds to a graph formation over Z[x].

Composition of the lemmas yields immediately the following result.

Proposition 4.3.3. Suppose (C, ψ) satisfies Hypotheses (a,b,c) of Lemma 4.3.2,

and choose P, π, χ accordingly. Then there exists a 2-dimensional (−1)-quadratic

complex (F, Ψ) over F2[x] such that

∂[(F, Ψ)] = [(C, ψ̂)] = [(C,ψ)]

as cobordism classes in

L1(Z[C2][x],−1)
S∼=−−−→ L3(Z[C2][x]),

and that its instant surgery obstruction is

[Ω(F, Ψ)] = [j−(D1, δψ0)] = [k(P,−χ∗)]

as Witt classes of the nonsingular (+1)-quadratic forms over F2[x]. ¤

Now we show why these machines work.

Proof of Lemma 4.3.1. We shall put together the information in the hy-

potheses using a technique called “algebraic gluing” [Ran81, §1.7]. The resultant

object (F, Ψ) is a union [Ran81, pp. 77–78] over F2[x]. The more efficient “direct

union” [Ran81, pp. 79–80] does not apply here since the null-cobordisms (D, δψ)

and (E, 0) are non-split in general.

First, define a chain complex E = {E1 → 0 } over Z[x] with module

E1 := i+(C1),

and a chain map g : i+(C) → E by

g1 := 1 : i+(C1) → E1.



4.3. SOME ALGEBRAIC SURGERY MACHINES 105

Then the quadratic pair

(
g : i+(C) → E, (0, i+(ψ) ∈ W%(g,−1)2)

)

is the data for an algebraic surgery. Consider the 2-dimensional mapping cone

C (g) =

(
i+(C1)

�−1
2·1
�

−−−→ E1 ⊕ i+(C0) −−−→ 0

)
.

Note that

H2(E) = H0(C (g)) = 0 and H0(E) = H2(C (g)) = 0.

Observe that

H1(E) = E1 and proj∗ : H1(C (g))
∼=−−→ i+(C0).

Then the homological Poincaré duality map H1(E) → H1(C (g)) is given by

i+(ψ̃0 − ψ∗0) : E1 −→ i+(C0).

By hypothesis, i+(C,ψ) represents a graph formation

F, (


γ

µ


 , θ)G


 ,

which means that γ : G → F an isomorphism. According to [Ran80a, Proof 2.5],

the representation is given by

F = i+(C1) and G = i+(C0)

γ = i+(ψ̃∗0 − ψ0) and µ = i+(d∗C) and θ = −i+(ψ + dC ◦ ψ0).

Thus the map H1(E) → H1(C (g)) is given by the isomorphism γ∗. Since the

Poincaré duality map E2−∗ → C (g) of projective module chain complexes induces

isomorphisms in homology, it must be a chain homotopy equivalence. Thus the

following 2-dimensional (−1)-quadratic pair is Poincaré:

(
g : i+(C) → E, (0, i+(ψ))

)
.

Next, define a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over F2[x]

as the union (see [Ran81, pp. 77–78])

(F, Ψ) := j−
(
f : i−(C) → D, (−δψ,−i−(ψ))

) ⋃

k(C,ψ)

j+
(
g : i+(C) → E, (0, i+(ψ))

)
,
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where k is composite morphism of rings with involution:

k := j− ◦ i− = j+ ◦ i+ : Z[C2] −→ F2.

By construction,

∂[(F, Ψ)] = [(C,ψ)],

where the boundary map

∂ : L4(F2[x]) −→ L3(Z[C2][x])

is defined in [Ran81, Props. 6.3.1, 6.1.3] for our cartesian square. For simplicity,

we suppress the morphisms i±, j±, k in the remainder of the proof.

The 2-dimensional chain complex F over F2[x] has modules

F2 = C1 F1 = D1 ⊕ C0 ⊕ E1 F0 = D0

and differentials

d2
F =




−f1

dC

−g1


 : F2 → F1 d1

F =
(
dD f0 0

)
: F1 → F0.

The quadratic cycle Ψ ∈ W%(F,−1)2 has components

Ψ2
0 =

(
−ψ0 ◦ f ∗0

)
: F 0 → F2 Ψ1

0 =




−δψ0 0 0

ψ̃0 ◦ f ∗1 ψ∗1 0

0 g1 ◦ ψ0 0


 : F 1 → F1

Ψ0
0 =

(
0
)

: F 2 → F0 Ψ1
1 =




−δψ1

ψ1 ◦ f ∗0

0


 : F 0 → F1

Ψ0
1 =

(
−δ̃ψ1 0 0

)
: F 1 → F0 Ψ0

2 =
(
0
)

: F 0 → F0.

The differential

(d1
F )∗ : F 0 −→ F 1
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is a split monomorphism, since f0 = 1 : C0 → D0. Hence the instant surgery

obstruction [Ran80a, Prop. 4.3] is represented by

Ω(F, Ψ) =


D1 ⊕ E1 ⊕ C1,




δψ0 0 −f1

0 0 −1

0 0 0





 .

This is Witt equivalent to the (necessarily) nonsingular (+1)-quadratic form (D1, δψ0)

over F2[x]. ¤

Proof of Lemma 4.3.2. Indeed ψ̂ ∈ W%(C,−1)1 is a quadratic cycle, since

ψ̂1 + ψ̂∗1 = (π−1 ◦ d∗C)∗ ◦ (χ + χ∗) ◦ (π−1 ◦ d∗C)− (ψ̃0 ◦ d∗C + dC ◦ ψ̃∗0)

= (ψ̃0 − ψ∗0) ◦ d∗C − ψ̃0 ◦ d∗C − dC ◦ ψ̃∗0

= −(dC ◦ ψ0 + ψ̃0 ◦ d∗C)∗

= (ψ1 + ψ∗1)
∗

= ψ1 + ψ∗1.

A similar check shows that f : i−(C) → D is a chain map and that
(
f : i−(C) → D, (δψ, i−(ψ̂))

)

is a 2-dimensional (−1)-quadratic pair over Z[x]. It is Poincaré (see [Ran81, p.

259]), since it is the data for an algebraic surgery to a contractible complex, killing

the lift i−(P ) of the lagrangian L.

The quadratic cycles ψ̂ and ψ are homologous2: the differences

ψ̂0 − ψ0 and
˜̂
ψ0 − ψ̃0

are zero, and the difference

ψ̂1 − ψ1

is (−1)-symmetric (see above calculation). Therefore, the latter difference is (−1)-

even since Ĥ0(Z[x],−1) = 0. Finally, i+(C, ψ̂) corresponds to the same graph for-

mation as i+(C,ψ), except that their hessians have difference θ̂ − θ = ψ1 − ψ̂1. ¤
2In the generality of [Ran81, Prop. 3.4.5(ii)], we only have that ψ̂ and ψ are quadratic

homotopy equivalent; see [Ran81, Defn., p. 71].
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4.4. Remaining proofs

Using our machine (4.3.3), we grind out the primary relations (4.1.9) in ÑL3(Z[C2])

as a V-module.

Proof of Proposition 4.1.9(1). Let (C,ψ) be a 1-dimensional (−1)-quadratic

Poincaré complex associated to the following nonsingular split (−1)-quadratic for-

mation over Z[C2][x]:

Mp1,g ⊕Mp2,g ⊕Mp1+p2,g.

In particular, it has modules C1 = C0 of rank 6 and differential dC = 2 ·1. Consider

the exponent two linking form (N, b, q) over (Z[x], (2)∞) associated to the evaluation

i−(C, ψ), defined as

(N, b, q) = Np1,g ⊕Np2,g ⊕−Np1+p2,g.

Define a lift π : P → C1 of a lagrangian L of (N, b, q) by

π :=




0 1 0 2 0 0

1 0 1 0 2 0

0 1 0 0 0 2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0




: P =
⊕

6

Z[C2][x] −→ C1 =
⊕

6

Z[C2][x].

Also define a morphism χ : P → P ∗ by

χ :=




g 1 g 1 2g 1

0 0 0 p1 1 p2

0 0 0 1 2g 0

0 0 0 p1 2 0

0 0 0 0 2g 0

0 0 0 0 0 p2




: P =
⊕

6

Z[C2][x] −→ P ∗ =
⊕

6

Z[C2][x].

It is straightforward to verify that i−(π)(P ) is the inverse image of a lagrangian L

and that χ satisfies the de-symmetrization identity. Therefore, by Proposition 4.3.3,
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we obtain a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over F2[x] such

that

∂[(F, Ψ)] = [(C, ψ̂)] = [(C,ψ)] and [Ω(F, Ψ)] = [k(P,−χ∗)].

In classical notation, we have that (F, Ψ) is represented by the nonsingular (+1)-

quadratic form

(M,λ, µ) :=




⊕
6

F2[x],




0 1 g 1 0 1

1 0 0 p1 1 p2

g 0 0 1 0 0

1 p1 1 0 0 0

0 1 0 0 0 0

1 p2 0 0 0 0




,




g

0

0

p1

0

p2







.

Its pullback along the choice (see [Wal99, Proof 5.3]) of automorphism

α :=




1 0 0 0 1 0

0 1 g 1 0 1

0 0 1 0 1 0

0 0 0 1 g 0

0 0 0 p1 1 + p1g p2

0 0 0 0 0 1




: M −→ M

is the symplectic form

α∗(M,λ, µ) =




⊕
6

F2[x],




0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0




,




g

0

0

p1

p1g
2

p2







which has Arf invariant [q], where

q := (p1g)(p2g).



4.4. REMAINING PROOFS 110

So, by Remark 4.1.1, as cobordism classes in L4(F2[x]), we must have

[(F, Ψ)] = [Pq,1]

Therefore, by Proposition 4.1.8(1), we obtain

[Mp1,g] + [Mp2,g]− [Mp1+p2,g] = [(C,ψ)] = ∂[(F, Ψ)]

= ∂[Pq,1]

= ∂̃[Pq,1]

= [Qq].

¤

Proof of Proposition 4.1.9(2). Let (C,ψ) be a 1-dimensional (−1)-quadratic

Poincaré complex associated to the following nonsingular split (−1)-quadratic for-

mation over Z[C2][x]:

M2p,g ⊕−M2g,p.

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 ·1. Consider

the exponent two linking form (N, b, q) over (Z[x], (2)∞) associated to evaluation

i−(C, ψ), defined as

(N, b, q) = N2p,g ⊕−N2g,p.

Define a lift π : P → C1 of a lagrangian L of (N, b, q) by

π :=




1 0 2 0

0 1 0 2

0 1 0 0

1 0 0 0




: P =
⊕

4

Z[C2][x] −→ C1 =
⊕

4

Z[C2][x].

Also define a morphism χ : P → P ∗ by

χ :=




0 0 2p 1

0 0 1 2g

0 0 2p 2

0 0 0 2g




: P =
⊕

4

Z[C2][x] −→ P ∗ =
⊕

4

Z[C2][x].
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It is straightforward to verify that i−(π)(P ) is the inverse image of a lagrangian L

and that χ satisfies the de-symmetrization identity. Therefore, by Proposition 4.3.3,

we obtain a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over F2[x] such

that

∂[(F, Ψ)] = [(C, ψ̂)] = [(C,ψ)] and [Ω(F, Ψ)] = [k(P,−χ∗)].

In classical notation, we have that (F, Ψ) is represented by the nonsingular (+1)-

quadratic form

(M, λ, µ) :=




⊕
4

F2[x],




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




,




0

0

0

0







.

Its pullback along the choice (see [Wal99, Proof 5.3]) of automorphism

α :=




1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0




is the symplectic form

α∗(M,λ, µ) =




⊕
4

F2[x],




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




,




0

0

0

0







which has Arf invariant 0. So [(F, Ψ)] = 0 in L4(F2[x]) hence in NL4(F2). Therefore

[M2p,g]− [M2g,p] = [(C, ψ)]

= ∂[(F, Ψ)]

= 0.

¤
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Proof of Proposition 4.1.9(3). Let (C,ψ) be a 1-dimensional (−1)-quadratic

Poincaré complex associated to the following nonsingular split (−1)-quadratic for-

mation over Z[C2][x]:

Mx2p,g ⊕−Mp,x2g.

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 ·1. Consider

the exponent two linking form (N, b, q) over (Z[x], (2)∞) associated to the evaluation

i−(C, ψ), defined as

(N, b, q) = Nx2p,g ⊕−Np,x2g.

Define a lift π : P → C1 of a lagrangian L of (N, b, q) by

π :=




1 0 0 0

0 x 0 2

x 0 2 0

0 1 0 0




: P =
⊕

4

Z[C2][x] −→ C1 =
⊕

4

Z[C2][x].

Also define a morphism χ : P → P ∗ by

χ :=




0 0 −xp 1

0 0 −1 2xg

0 0 −p 0

0 0 0 2g




: P =
⊕

4

Z[C2][x] −→ P ∗ =
⊕

4

Z[C2][x].

It is straightforward to verify that i−(π)(P ) is the inverse image of a lagrangian L

and that χ satisfies the de-symmetrization identity. Therefore, by Proposition 4.3.3,

we obtain a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over F2[x] such

that

∂[(F, Ψ)] = [(C, ψ̂)] = [(C,ψ)] and [Ω(F, Ψ)] = [k(P,−χ∗)].
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In classical notation, we have that (F, Ψ) is represented by the nonsingular (+1)-

quadratic form

(M, λ, µ) :=




⊕
4

F2[x],




0 0 xp 1

0 0 1 0

xp 1 0 0

1 0 0 0




,




0

0

p

0







.

Its pullback along the choice (see [Wal99, Proof 5.3]) of automorphism

α :=




0 0 1 0

0 1 −xp 0

1 0 0 0

0 0 0 1




is the symplectic form

α∗(M,λ, µ) =




⊕
4

F2[x],




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




,




p

0

0

0







which has Arf invariant 0. So [(F, Ψ)] = 0 in L4(F2[x]) hence in NL4(F2). Therefore

[Mx2p,g]− [Mp,x2g] = [(C,ψ)]

= ∂[(F, Ψ)]

= 0.

¤

Proof of Proposition 4.1.9(4). Let (C,ψ) be a 1-dimensional (−1)-quadratic

Poincaré complex associated to the following nonsingular split (−1)-quadratic for-

mation over Z[C2][x]:

M2p2g,g ⊕−M2p,g.

In particular, it has modules C1 = C0 of rank 4 and differential dC = 2 ·1. Consider

the exponent two linking form (N, b, q) over (Z[x], (2)∞) associated to the evaluation
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i−(C, ψ), defined as

(N, b, q) = N2p2g,g ⊕−N2p,g.

Define a lift π : P → C1 of a lagrangian L of (N, b, q) by

π :=




1 1 0 0

0 p 2 0

0 1 0 0

p 0 0 2




: P =
⊕

4

Z[C2][x] −→ C1 =
⊕

4

Z[C2][x].

Also define a morphism χ : P → P ∗ by

χ :=




0 p2g 1 −2pg

0 p2g 1 + 2pg −1

0 0 2g 0

0 0 0 −2g




: P =
⊕

4

Z[C2][x] −→ P ∗ =
⊕

4

Z[C2][x].

It is straightforward to verify that i−(π)(P ) is the inverse image of a lagrangian L

and that χ satisfies the de-symmetrization identity. Therefore, by Proposition 4.3.3,

we obtain a 2-dimensional (−1)-quadratic Poincaré complex (F, Ψ) over F2[x] such

that

∂[(F, Ψ)] = [(C, ψ̂)] = [(C,ψ)] and [Ω(F, Ψ)] = [k(P,−χ∗)].

In classical notation, we have that (F, Ψ) is represented by the nonsingular (+1)-

quadratic form

(M,λ, µ) :=




⊕
4

F2[x],




0 p2g 1 0

p2g 0 1 1

1 1 0 0

0 1 0 0




,




0

p2g

0

0







.

Its pullback along the choice (see [Wal99, Proof 5.3]) of automorphism

α :=




1 0 1 0

0 0 1 0

0 1 p2g 0

0 0 0 1



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is the symplectic form

α∗(M,λ, µ) =




⊕
4

F2[x],




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




,




0

0

0

0







which has Arf invariant 0. So [(F, Ψ)] = 0 in L4(F2[x]) hence in NL4(F2). Therefore

[M2p2g,g]− [M2p,g] = [(C,ψ)]

= ∂[(F, Ψ)]

= 0.

¤
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CHAPTER 5

Preliminaries for the connected sum problem

Our purpose here is to study phenomena specific to the infinite dihedral group D∞,

with particular interest in the connected sum RPn#RPn of real projective spaces.

5.1. The infinite dihedral group, D∞

The infinite dihedral group, defined below, is isomorphic to the fundamental

group of the connected sum of two real projective n-spaces for all n > 2. Otherwise,

note for n = 2 that RP2#RP2 is diffeomorphic to the Klein bottle with fundamental

group C∞ o C∞.

5.1.1. Action on the real line. Define the infinite dihedral group

D∞ := Isom(Z),

which is a crystallographic subgroup of the full isometry group

Isom(R) ∼= R1 oO(1).

Thus it has a decomposition

D∞ ∼= C∞ o C2 =
〈
t, a | a2 = 1, ata−1 = t−1

〉
,

where a is reflection through 0 and t is translation by −1. Remarkably, it has another

decomposition

D∞ ∼= C2 ∗ C2 =
〈
a, b | a2 = 1 = b2

〉
,

where b reflects through 1/2. Hence t = ab.

5.1.2. Subgroups. In this section we classify all the subgroups of the infinite

dihedral group. Consider the element

xi := tia ∈ D∞.

117
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Observe, by the above decompositions, that every element of D∞ is uniquely of the

form xi or ti for some i ∈ Z. For example, its generators can be expressed as

a = x0 and b = x−1 and t = t1.

Proposition 5.1.1.

(1) Any subgroup has a generating set uniquely of the form:

(i) { tj } for some j ∈ Z≥0, or

(ii) { xi, t
j } for some i ∈ Z, j ∈ Z≥0 such that if j 6= 0 then 0 ≤ i < j.

(2) Every subgroup of Form (i) is normal. A subgroup of Form (ii) is normal

if and only if it is either 〈a, t〉 or 〈a, t2〉 or 〈b, t2〉.
(3) The quotient of D∞ by the normal subgroup 〈tj〉 is the finite dihedral

group Dj := Cj o C2. The quotient of D∞ by the normal subgroup 〈a, t2〉
or 〈ta, t2〉 = 〈b, t2〉 is the cyclic group C2.

(4) Let j > 2 and 0 ≤ i < j. The index j, non-normal subgroup 〈xi, t
j〉 is

conjugate to the subgroup



〈a, tj〉 if j is odd

〈a, tj〉 or 〈ta, tj〉 if j is even.

If j is odd, then the normalizer of 〈xi, t
j〉 in D∞ is itself. If j is even, then

the normalizer of 〈xi, t
j〉 in D∞ is

〈
xi, t

j/2
〉

with quotient C2.

(5) Let j = 0 and i ∈ Z. The order 2, non-normal subgroup 〈xi〉 is conjugate

to the subgroup 



〈a〉 if i is even

〈ta〉 or 〈b〉 if i is odd.

The normalizer of 〈xi〉 in D∞ is itself.

Proof (1). Let S be a subgroup of D∞. There exist subsets I, J ⊆ Z such that

S = { xi }i∈I ∪
{

tj
}

j∈J
.

Note that the set { tj }j∈J generates the same subgroup as the singleton

{
tgcd(J)

}
.
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Also note for all i0 ∈ Z that the set { xi0 } ∪ { xi }i∈I generates the same subgroup

as the set

{ xi0 } ∪
{

xixi0 = tiati0a = ti−i0
}

i∈I
.

Then S is generated by

{
tj

}
or

{
xi, t

j
}

for some i ∈ Z, j ∈ Z≥0.

In the case j 6= 0, we may write

i = qj + r for unique q ∈ Z, 0 ≤ r < j,

and so the subgroup S is generated by

{
tj

}
or

{
xr = (tj)−qxi, t

j
}

.

The former possibility occurs if I = ∅.

Let T be the maximal infinite cyclic subgroup of S:

T := C∞ ∩ S,

where the subgroup C∞ ⊂ D∞ is generated by t. Then observe that j is uniquely

determined:

j = [S : T ].

Suppose j 6= 0. Let xi, xi′ ∈ S, where 0 ≤ i ≤ i′ < j. Then their product satisfies

xi′xi = ti
′−i ∈ T =

〈
tj

〉
.

Hence i′− i is a multiple of j. But 0 ≤ i′− i < j, thus i = i′. Therefore i is uniquely

determined also. ¤

Proof (2). It suffices to check normality by conjugation with the generators

{ a, t } of D∞. Note

atja−1 = t−j

ttjt−1 = tj

axia
−1 = ati = x−i

txit
−1 = ti+1at−1 = xi+2a.

Therefore 〈tj〉 is normal and 〈xi〉 is not normal.
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Suppose j 6= 0 and 0 ≤ i < j. If j > 2 then

i 6≡ i + 2 (mod j);

therefore 〈xi, t
j〉 is not normal. If j = 1, 2 then

−i ≡ i ≡ i + 2 (mod j);

therefore we have three normal subgroups:

〈
x0, t

1
〉

= 〈a, t〉 〈
x1, t

2
〉

=
〈
ta, t2

〉 〈
x0, t

2
〉

=
〈
a, t2

〉
.

¤

Proof (3). Note the relations

D∞/ 〈tj〉 ∼= 〈a, t | a2 = 1, ata−1 = t−1, tj = 1〉 ∼= Dj

D∞/ 〈a, t2〉 ∼= 〈a, t | a2 = 1, ata−1 = t−1, a = 1, t2 = 1〉 ∼= C2.

The remaining result follows by symmetry:

D∞/
〈
b, t2

〉 ∼= C2.

¤

Proof (4). Write i = 2i1 + i0 for unique i1 ∈ Z, 0 ≤ i0 < 2. Note

t−i1
〈
xi, t

j
〉
ti1 =

〈
xi0 , t

j
〉
.

Hence the subgroup 〈xi, t
j〉 is conjugate to

〈
x1 = ta, tj

〉
or

〈
x0 = a, tj

〉
.

If j is odd, then a conjugates the former to 〈xj−1, t
j〉, which conjugates to the latter.

If j is even, then ta = at−1 is not of the form a(tj)m(t2)n for any m,n ∈ Z, so the

former is not conjugate to the latter.

Note the conjugations

xk

〈
xi, t

j
〉
x−1

k =
〈
x2k−i, t

−j
〉

tl
〈
xi, t

j
〉
t−l =

〈
xi+2l, t

j
〉
.
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Then xk and tl normalize 〈xi, t
j〉 if and only if

i ≡ 2k − i (mod j)

i ≡ i + 2l (mod j).

If j is odd, then they normalize if and only if

k ≡ i (mod j)

l ≡ 0 (mod j)

if and only if

xk, t
l ∈ 〈

xi, t
j
〉
.

If j is even, then they normalize if and only if

k ≡ i (mod j/2)

l ≡ 0 (mod j/2)

if and only if

xk, t
l ∈ 〈

xi, t
j/2

〉
.

Therefore the normalizer of 〈xi, t
j〉 is itself if j is odd, and is

〈
xi, t

j/2
〉

if j is even. ¤

Proof (5). In the above argument for conjugacy classes, we did not use the

condition 0 ≤ i < j. By taking j = 0, it shows that 〈xi〉 is conjugate to the order

two subgroup

〈a〉 or 〈ta〉 .

The former occurs if i ≡ i0 ≡ 0 (mod 2), and the latter occurs otherwise. The above

argument for normalizers shows that xk and tl normalize 〈xi〉 if and only if k = i

and l = 0. Therefore the normalizer of 〈xi〉 is itself. ¤

5.1.3. Whitehead group and growth. The infinite dihedral group D∞ sat-

isfies the following properties important to geometric topology.

Proposition 5.1.2.

(1) The Whitehead torsion group Wh(D∞) vanishes. In particular for all n > 2,

any homotopy equivalence Mn → RPn#RPn is simple.

(2) The group D∞ is good (“small”), in the sense of Freedman-Quinn [FQ90].
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Proof. Part (1) follows from Waldhausen’s Mayer-Vietoris sequence in K-theory

(1.3.4) for the amalgam

D∞ ∼= C2 ∗1 C2,

using

Wh(1) = Ñil0(Z;Z,Z) = Wh(C2) = 0.

The vanishing of the Nil-group follows from [Bas68, Corollary XII.6.3], and the

calculation of the Whitehead groups is given in [Oli88, Theorem 14.1(i)].

Part (2) follows from [FQ90, Theorem 5.1A] for the polycyclic-by-finite group

D∞ ∼= C∞ o C2.

¤

5.2. TOP surgery theory: The real projective space, RPn

The purpose of this section is to compute the structure group STOP(RPn) for all

n > 3 in Theorem 5.2.10. It was initially López de Medrano [LdM71, Thm. IV.3.4,

§IV.5] who computed SCAT(RPn) as a based set; an alternative PL classification in

terms of surgery characteristic classes can be found in [Wal99, §14D]. However, we

simplify some of his invariants and determine the abelian group structure on the

structure group STOP(RPn).

5.2.1. Normal invariants.

Remark 5.2.1. The space Z×G/TOP is a 4-periodic infinite loop space, hence

the set of normal invariants

NTOP(X) = [X, G/TOP]

has an abelian group structure for all connected compact TOP n-manifolds X, and

similarly for the relative normal invariants

NTOP(X × (∆1, ∂∆1)) = [X, Ω(G/TOP)].

Moreover, the Quinn-Ranicki algebraic surgery sequence [Ran92a, §14] endows the

structure set STOP(X) with an abelian group structure, so that the maps ∂ and N
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and the surgery obstruction map

θ : NTOP(X) −→ Hn(π;L.ω)
asmb−−−−→ Ln(Z[πω])

are homomorphisms of groups (cf. Rem. 5.2.6). Here we abbreviate

L. := L.〈1〉(Z)

(π, ω) := (π1(X), w1(X)).

Proposition 5.2.2. The topological normal invariants of real projective n-space

are calculated by splitting invariants as follows for all n > 3.

(1) There is a group isomorphism

NTOP(RPn) −→
[n/2]⊕
i=1

Z2.

It is defined on degree one TOP normal maps f by the formula

(f : Mn → RPn) 7−→
[n/2]⊕
i=1

c
(
f |f−1(RP2i)

)
,

where c is the Kervaire-Arf invariant.

(2) Also there is a group isomorphism

NTOP(RPn × (∆1, ∂∆1)) −→
[(n−1)/4]⊕

j=0

Z2

[(n+1)/4]⊕

k=1

Z.

It is defined on degree one TOP normal bordisms F , with ∂F a homeomor-

phism, by the formula

(
F : (Mn, ∂M) → RPn × (∆1, ∂∆1)

)

7−→
[(n−1)/4]⊕

j=0

c
(
F |F−1(RP4j+1×∆1)

) [(n+1)/4]⊕

k=1

σ

8

(
F |F−1(RP4k−1×∆1)

)
,

where σ/8 is the signature invariant.

Remark 5.2.3. For i odd our result agrees with [LdM71, Theorem IV.2.3],

but for i = 2` even it gives a more direct geometric description than “the splitting

invariant along a singular Z2-manifold [Sul96] representing RP4`.” It is strange that

our observation was not made earlier, in light of Wall’s computation, see Remark

5.2.4 and [LdM71, §III.2.2, Remarks IV.2].
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Proof. Recall the commutative diagram of abelian groups:

N T
O

P
(R

P
n
)

re
st

r

²²

[R
P

n
,G

/T
O

P
]

in
cl
∗

²²

oo
∼ =

// [
R
P

n
,K

]

in
cl
∗

²²

[n
/
2
]

⊕ i=
1

H
2
i (
R
P

n
;π

2
i(

G
/T

O
P

))

in
cl
∗

²²

N T
O

P
(R

P
n
−1

)
[R

P
n
−1

,G
/T

O
P

]
oo

∼ =
// [
R
P

n
−1

,K
]

[(
n
−1

)/
2
]

⊕ i=
1

H
2
i (
R
P

n
−1

;π
2
i(

G
/T

O
P

))
.

Here K is the product H-space

K :=
∏
i>0

K(π2i(G/TOP), 2i),

and the right-most vertical map is a split epimorphism with zero kernel if n odd, and

with kernel Z2 if n = 2k even. In the latter case, this “top” Z2 summand is detected

by the Kervaire-Arf invariant c, and so it is flipped by connecting sum with the

Kervaire manifold K2k (cf. Rem. 5.2.4), which fixed the “lower” summands. Each
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middle horizontal map is a homomorphism, since it is induced by maps of infinite

loop space hence of H-spaces. They are themselves induced by maps of Ω-spectra1

L.
Loc(2)−−−→ (L.)(2)

k×`−−→ K(π∗(L.)(2))

K(π∗(L.)) −→ K(π∗(L.)(2)).

Moreover, each of these induced middle maps is a bijection by [LdM71, Theorem

IV.2.2]. Therefore the result for NTOP(RPn) follows by backwards induction on

n > 3.

A similar diagram, with the H-spaces Ω(G/TOP) and ΩK replacing G/TOP

and K, produces a homomorphism

restr : NTOP(RPn × (∆1, ∂∆1)) −→ NTOP(RPn−1 × (∆1, ∂∆1)).

This is a split epimorphism with zero kernel if n even, and with kernel Z2 (resp. Z)

if n = 4`+1 (resp. n = 4`−1). In the latter case, it is detected by the Kervaire-Arf

c (resp. signature σ/8) invariant and is altered by connecting sum with the Kervaire

manifold K4`+2 (resp. Milnor manifold M4`, cf. Rem. 5.2.4). Therefore the result

for the relative case (2) follows by backwards induction on n > 3. ¤

5.2.2. Surgery obstructions.

Remark 5.2.4. Recall for all k, ` > 0 the existence of the Kervaire manifold

K2k (resp. Milnor manifold M4`). Its construction is plumbing k-disc bundles

over k-spheres along certain graphs and then closing the result. It is an almost

parallelized, simply connected, closed TOP 2k- (resp. 4`)-manifold such that the

associated degree one TOP normal map f : K → S2k (resp. f : M → S4`) has

nontrivial Kervaire-Arf invariant c(f) = 1 ∈ Z2 (resp. signature σ(f)/8 = 1 ∈ Z).

1Here K denotes the product of Eilenberg-MacLane spectra. The latter map k × ` is the

Sullivan characteristic class [MM79] for L0 = G/TOP; see [TW79] for the proof that it is a

homotopy equivalence.
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Also recall [Wal99, Thm. 13A.1] the following table:

n mod 4 0 invariant 1 invariant 2 invariant 3 invariant

Ln(1, +1) Z σ/8 0 Z2 c 0

Ln(C2, +1) Z⊕ Z σ/8⊕ σ̃/8 0 Z2 c Z2 d

Ln(C2,−1) Z2 c 0 Z2 c 0.

Proposition 5.2.5. The surgery obstruction maps

NTOP(RPn)
θ0−−−→ Ln(C2, (−1)n+1)

NTOP(RPn × (∆1,RPn × ∂∆1))
θ1−−−→ Ln+1(C2, (−1)n+1)

satisfy

Ker(θ0) =

[n/2]−1⊕
i=1

Z2 ⊕





Z2 if n ≡ +1 (mod 4)

0 otherwise

Cok(θ1) =





Z if n ≡ −1 (mod 4)

0 otherwise.

They are detected by Kervaire-Arf invariants restricted transversally to RP2i and by

signature σ̃/8 on universal covers.

Proof. The maps θ0, θ1 are homomorphisms of groups by algebraic surgery

sequence. By Remark 5.2.4,

index Ker(θ0) =





1 if n ≡ 1 (mod 4)

2 if n ≡ 0, 2 (mod 4).

The latter follows by taking connected sum of a degree one TOP normal map f

to RP2k with the Kervaire manifold map K2k → S2k. This flips its Kervaire-Arf

invariant c(f) ∈ Z2 and fixes the transverse inverse image of RP2i for all 1 ≤ i < k.

Then

index Ker(θ0) = 2 if n ≡ −1 (mod 4),
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since the invariant d makes commutative the diagram

NTOP(RP4`+3)
restr //

θ0

²²

NTOP(RP4`+2)

c

²²
L4`+3(C2, +1)

d

∼=
// Z2.

A similar argument with the Kervaire manifold shows that

Ker(θ0) = NTOP(RPn−1) if n ≡ −1 (mod 4).

Also by Remark 5.2.4,

index Im(θ1) =





1 if n ≡ 0, 2 (mod 4)

1 if n ≡ 1 (mod 4).

The latter follows by taking interior connected sum of F with the Kervaire manifold

map K4`+2 → S4`+2. Here F is a degree one TOP normal map of manifold triads

that restricts to a homeomorphism on the boundary:

F : (W 4`+2, ∂W ) −→ (RP4`+1 × (∆1, ∂∆1)).

Finally, we show that

Im(θ1) = Z⊕ 0 if n ≡ −1 (mod 4).

The containment ⊇ holds, by taking interior connected sum of the identity map on

RP4`−1×∆1 with the Milnor manifold map M4` → S4`. Conversely, the containment

⊆ holds, since θ1 vanishes on the “lower” summands of NTOP(RP4`−1 × (∆1, ∂∆1)),

by Proposition 5.2.2. ¤

5.2.3. Structure group.

Remark 5.2.6. For any closed TOP n-manifold X with fundamental group π

and orientation character ω, the Quinn-Ranicki algebraic surgery sequence [Ran92a,

Dfn. 14.6] is an exact sequence of abelian groups equivalent to the classical surgery

sequence of based sets (n > 3):

· · · N−−−→ NTOP(X × (∆1, ∂∆1))
θ1−−−→ Ls

n+1(π, ω)

∂−−→ Ss
TOP(X)

N−−−→ NTOP(X)
θ0−−−→ Ls

n(π, ω).
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Here if n = 4 then we assume π is “good” in the sense of [FQ90], such as our main

concern π = C2.

Remark 5.2.7. The simple structure set

Ss
TOP(X)

is the set of s-bordism classes of simple homotopy equivalences g : M → X for some

closed TOP n-manifold M . By the s-cobordism theorem (cf. [FQ90]), this equiva-

lence relation is the same as pre-composition with any homeomorphism making the

appropriate triangle homotopy-commute. As stated above, the set Ss
TOP(X) can be

given the structure of an abelian group such that the surgery exact sequence consists

of homomorphisms.

Proposition 5.2.8. The structure group fits into a short exact sequence of

abelian groups:

0 −−−→ Cok(θ1)
∂−−−−→ STOP(RPn)

N−−−−→ Ker(θ0) −−−→ 0.

Proof. Immediate from the existence of the algebraic surgery sequence. ¤

Proposition 5.2.9. The above sequence splits for all n > 3.

Proof. By Proposition 5.2.5 we may assume n = 4` + 3 for some ` > 0, hence

Cok(θ1) = Z is detected by σ̃/8. Define a set map

BL : STOP(RP4`+3) −→ Z,

the Browder-Livesay desuspension invariant, as the composite of the following

three maps:

(1) the obstruction to splitting a homotopy equivalence g along the one-sided

submanifold RP4`+2:

split : STOP(RP4`+3) −→ LN4`+2(1 → C+
2 ),

(2) the antiquadratic kernel isomorphism

aqk : LN4`+2(1 → C+
2 ) −→ L4`+4(Z[1]),
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obtained from consideration of the lift of the transverse inverse image of

RP4`+2 to a C2-equivariant degree one normal map with target the universal

cover S4`+2, and

(3) the signature isomorphism

σ/8 : L4`+4(Z[1]) −→ Z.

The set map BL is in fact a homomorphism, since

split : Ss
TOP(Xn) = Sn+1(X) −→ LSn−q(Φ)

is a homomorphism for all codimensions q by [Ran92a, Prop. 23.2, 23.3].

It remains to show that

BL ◦ ∂ = 1 : Z −→ Z.

By Proposition 5.2.8 and the TOP version of [LdM71, Theorem V.2.1]2, the com-

posite BL ◦ ∂ is surjective3, hence equals ±1. But the sign is in fact + by the TOP

version of [LdM71, Theorem IV.4.1], which relates BL to σ̃/8. ¤

Theorem 5.2.10. Let n > 3 and write k := [n/2]. As abelian groups,

STOP(RPn) ∼=





(k − 1)Z2 if n ≡ 0, 2 (mod 4)

kZ2 if n ≡ +1 (mod 4)

Z⊕ (k − 1)Z2 if n ≡ −1 (mod 4).

For each homotopy equivalence g : M → RPn, it is detected in lower dimensions by

the Kervaire-Arf invariant c
(
g|g−1(RP2i)

)
for all 1 ≤ i < k. The structure group is

detected near the top dimension by



the Kervaire-Arf invariant c
(
g
∣∣
g−1(RPn−1)

)
if n ≡ +1 (mod 4)

the Browder-Livesay invariant BL(g) if n ≡ −1 (mod 4).

Proof. Immediate from Propositions 5.2.8, 5.2.9, 5.2.5. ¤

2Regard this as the one-sided precursor to Cappell’s nilpotent normal cobordism construction.

3See [Wal99, Lemma 12.10] for realization of the one-sided splitting invariants.
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5.2.4. Homotopy automorphisms. The group

hAut(X)

of homotopy automorphisms of a topological space X is defined as the set of

homotopy classes of all homotopy equivalences X → X under composition of maps.

Proposition 5.2.11. The group hAut(RPn) is isomorphic to Z×, generated by

reflection about RPn−1.

Proof. Since the reflection ρ of Sn about Sn−1 commutes with the antipodal

map of Sn, it induces a self-homeomorphism ρ of RPn such that the following dia-

gram commutes:

Sn Sn

RPn RPn
u

π

wρ

u

π

wρ

where π : Sn → RPn is the quotient map. Since ρ ◦ ρ = 1Sn , we have ρ ◦ ρ = 1RPn .

Then define a homomorphism

ϕ : Z× −→ hAut(RPn); −1 7−→ ρ.

Let ω : π1(RPn) → C2 be the orientation character of RPn: if n is even, then ω

is an isomorphism, and if n is odd, then ω is the trivial map. By computation with

the C2-equivariant cellular chain complex of Sn, for all n, observe that

Hn(RPn;Zω) ∼= Z.

Here, twice the generator [RPn] is the fundamental class π∗[Sn]. Then define a

homomorphism

ψ : hAut(RPn) −→ Z×; [h] 7−→ h∗[RPn].

Since reflection through a hyperplane reverses orientation of Sn for all n, we have

ρ∗[Sn] = −[Sn]. Hence ρ∗[RPn] = −[RPn]. Thus ψ ◦ ϕ = 1Z× and ψ is surjective.

Suppose [h] ∈ hAut(RPn) satisfies h∗[RPn] = [RPn]. We may assume that h is a

cellular map. Then the only two obstructions to constructing a homotopy between
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h and 1RPn are:

h# − 1# ∈ End (π1(RPn))

h∗ − 1∗ ∈ End (Hn(RPn;Zω)) .

But these difference classes vanish by hypothesis. So [h] = [1RPn ] ∈ hAut(RPn).

Thus ψ is injective and ϕ ◦ ψ = 1hAut(RPn). Therefore ϕ and ψ are inverses. ¤

Theorem 5.2.12. Let n > 3. Consider the set H of homeomorphism classes of

closed TOP n-manifolds in the homotopy type of RPn. There exist a bijection

H ←→





STOP(RPn) if n 6≡ −1 (mod 4)

STOP(RPn−1)× Z≥0 if n ≡ −1 (mod 4).

The former is a finite abelian group, computed in Theorem 5.2.10. The latter is a

finite abelian monoid, where the codimension one Browder-Livesay invariant modulo

orientation takes values in Z≥0 = Z/Z×.

Proof. By selection of a comparison homotopy equivalence, the desired set is

in bijection to the quotient of the finite abelian group STOP(RPn) by the group

hAut(RPn). The latter group is Z×, generated by reflection through RPn−1, by

Proposition 5.2.11. Since RPn−1 is fixed, all invariants in Theorem 5.2.10 are fixed

except possibly the top one. Under the flip of orientation in Sn induced by the

reflection, observe that the Arf invariant is fixed but the codimension one Browder-

Livesay invariant is flipped. ¤

Remark 5.2.13. Every fake RPn is a homotopy RPn for all n > 1, by [Wal99,

Theorem 14E.1].

5.3. The connected sum of real projective spaces, RPn#RPn

Consider the quotient map f in the definition of real projective space:

C2 −→ Sn−1 f−−→ RPn−1.

Then observe that the connected sum

X := RPn#RPn
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of real projective spaces admits a decomposition

X = Sn × I
⋃

f×1∂I

RPn−1 × ∂I.

Remark 5.3.1. The analogous result to Theorem 5.2.12 is the TOP classification

of closed manifolds in the simple homotopy type of X. This is the main result of

the paper of Brookman-Davis-Khan [BDK] (compare with Jahren-Kwasik [JK06]

for n = 4). The analysis involves the study of the complicated action of hAut(X)

on the structure set STOP(X), in particular the action of the switch automorphism,

interchanging the two factors of C2 ∗ C2, on the surgery group L∗(Z[C2 ∗ C2]).

The following list is a classification of covers of the manifold X = RPn#RPn;

see Figure 5.3.1.

Theorem 5.3.2.

(1) The universal cover

D∞ −→ Sn−1 × R −→ X

is defined by the proper action

(p, r) · tiaε := ((−1)εp, (−1)ε(r + i)) for all i ∈ Z and ε ∈ { 0, 1 } .

(2) For 1 ≤ j, the regular covers

Dj −→ Sn−1 × S1 −→ X

are given by the induced free action

(p, q) · tiaε :=


(−1)εp, e−2π

√−1 i/j ·





q if ε = 0

q if ε = 1


 .

In particular, if n is even then the orientation cover

C2 −→ Sn−1 × S1 −→ X

is given by the free involution

(p, q) · a := (−p, q),

which reverses orientation. If n is odd, then X is already orientable.
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(3) The two regular self-covers

C2 −→ X −→ X

are obtained as the orbit spaces of Sn−1 × R by the subgroups

〈
a, t2

〉
and

〈
b, t2

〉
.

(4) For 2 < j odd, the irregular self-cover (with trivial covering group)

j −→ X −→ X

is obtained as the orbit space of Sn−1 × R by the subgroup

〈
a, tj

〉
.

(5) For 2 < j even, the two irregular self-covers (with covering group C2)

j −→ X −→ X

are obtained as the orbit spaces of Sn−1 × R by the subgroups

〈
a, tj

〉
and

〈
ta, tj

〉
.

(6) The two irregular, one-ended covers (with trivial covering group)

∞ −→ X \ pt −→ X

are obtained as the orbit spaces of Sn−1 × R by the subgroups

〈a〉 and 〈b〉 .

Proof of 5.3.2. Part (1) is immediate from the above description of X. Then

Parts (2)–(6) follow from the conjugacy classification of subgroups of π1(X) = D∞

in Proposition 5.1.1. ¤
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(1) (2) (3)

(4)

(5) (6)

Figure 5.3.1. Covers of X = RPn#RPn by folding.



CHAPTER 6

Splitting homotopy equivalences in finite covers

Definition. A group G is self-similar of index k if there exists a subgroup

of index k which is isomorphic to G.

We are motivated by Parts (4) and (5) of Proposition 5.1.1 and Theorem 5.3.2.

For an earlier study of this concept, see [Far79, §4, Introduction].

Tom Farrell showed that

Lh
3(D

+,+
∞ ) = Lh

3(C
+
2 ∗ C+

2 )

is either Z2 ⊕ Z2 or not finitely generated [Far79, Thm. 4.1]. Also, he proved that

each element, under a sufficiently large self-similar transfer [Far79, Lem. 4.2], has

zero component in Cappell’s summand

UNilh3(Z;Z+,Z+) ∼= UNilh5(Z;Z−,Z−).

His method was a reduction to a topological result of Browder on splitting a proper

homotopy equivalence to M × R, where M is a certain simply-connected closed

(4k + 1)-manifold.

Bjørn Jahren and SÃlawomir Kwasik later conclude [JK06, Thm. 1, Rmk. 1], us-

ing Farrell’s result, that the infinitely many non-homeomorphic non-split topological

4-manifolds in the tangential homotopy type of RP4#RP4 are, in fact, finitely cov-

ered by RP4#RP4 itself. These manifolds are obtained from the Freedman-Quinn

surgery sequence (compare §8.2).

Shmuel Weinberger suggested that there should be a proof in terms of controlled

topology– I am grateful to Jim Davis for communicating and outlining this alterna-

tive method of proof to me. This method has the advantage of generalizing Farrell’s

result to Lh
n(Dω

∞) for all n and orientation characters ω : D∞ → C2.

135
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Consider the Bass-Heller-Swan fundamental theorem of algebraic K-theory (see

[Bas68, §XII.7]). Let

η ⊂ Wh(π × C∞)

be the subgroup consisting of all the elements that vanish under transfer to the

self-similar subgroup π× kC∞ for some k > 0. It can be shown that η is exactly the

internal direct sum of the two copies of the Bass group Ñil0(Z[π]) and the torsion

subgroup of the Whitehead group Wh(π).

Of course, there is an analogous proof of this vanishing theorem for Wh(π×C∞)

using controlled K-theory. But there is also a purely algebraic approach involving

only elementary row and column operations. In Theorem 6.2.3, we provide a similar

elementary operation proof for the self-similar transfers in the L-theory of the infinite

dihedral group Dω
∞. This theorem is a quantitative, algebraic alternative to Theorem

6.1.1 because it does not require stabilization in the Witt group, and the required

degree is straightforward to compute from a matrix representative.

6.1. Existence of the required cover

Recall the notation of §1.2 and Proposition 1.3.8, the latter of which is stated in

the language of controlled topology.

Theorem 6.1.1 (Weinberger). Let n ∈ Z and ε := (−1)n. Consider the infinite

dihedral group

Gω = Cε
2 ∗ Cε

2

with the given orientation character ω. Then for any element

ϑ ∈ Lh
n(Gω),

there exists K > 0 such that for every k ≥ K the geometric self-similar transfer

ι!k(ϑ) lies in the summand

Lh
n([0, 1]; p).

That is, it gains infinitesimal control. Equivalently, for any

ϑ ∈ UNilhn(Φω),
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there exists K > 0 such that k ≥ K implies

splitL(ι!k(ϑ)) = 0.

In particular, for all m > 3, any homotopy equivalence of manifolds

h : Wm+1 −→ RPm+1#ΣRPm+1

is splittable along the homotopy sphere Σm in sufficiently large self-similar covers.

Remark 6.1.2. Consider the lower dimensional cases. If m = 4, then Cappell’s

5-dimensional splitting theorem is applicable (see Chapter 7). If m = 3 and Σ = S3

and h is tangential, then Jahren and Kwasik [JK06, Thm. 1, Rmk. 1] have a

stronger conclusion (compare Chapter 8).

Remark 6.1.3. The above controlled L-groups have been calculated as follows.

Observe that

Ln([0, 1]; p) ∼= Hn([0, 1];L.(p))

fits into a Mayer-Vietoris sequence (§1.3), consisting of the classical L-groups of the

trivial group 1 and the order two group Cε
2 (see Table 5.2.4). Implicitly using this

result, Farrell showed [Far79, §4] for ε = +1 that

L3([0, 1]; p) ∼= Z2 ⊕ Z2

and is detected by codimension one Arf invariants at both endpoints { 0, 1 }, since

the group 1 is a retract of C+
2 implies that

L2(1) −→ L2(C
+
2 )⊕ L2(C

+
2 )

is a split monomorphism (see Remark 5.2.4).

More generally, for ε = +1 note that Ln([0, 1]; p) is isomorphic to the canonical

complementary summand of Ln(1) in Ln(C+
2 )⊕ Ln(C+

2 ). Hence

L2([0, 1]; p) ∼= Z2

and is detected by the codimension zero Arf invariant at either endpoint 0 or 1, and

L1([0, 1]; p) = 0.
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Also

L0([0, 1]; p) ∼= Z⊕ Z⊕ Z

and is detected by the signature on the universal cover at both endpoints { 0, 1 },
and by the signature at either endpoint 0 or 1.

On the other hand, for ε = −1 note [Wal99, §13A] that

L3([0, 1]; p) = 0,

and

L2([0, 1]; p) ∼= Z2

and is detected by codimension zero Arf invariant at either endpoint 0 or 1. Also

L1([0, 1]; p) ∼= Z

and is detected by codimension one signature at the midpoint 1/2, and

L0([0, 1]; p) ∼= Z2 ⊕ Z2

and is detected by the codimension zero Arf invariant at both endpoints { 0, 1 }. ¤

Proof of Theorem 6.1.1. Recall the notation of §5.1.2, where for each k > 0

there is defined (cf. [Far79, §4, Intro.]) a group monomorphism

ιk : D∞ −→ D∞; t, a 7−→ tk, a.

It is an extension of the self-covering of the circle, mentioned above for K-theory.

In correspondence with passage to the k-fold irregular self-cover ιk : E → E, the

geometric transfer map

ι!k : LB
n (Gω) −→ LB

n (Gω)

induces a homomorphism

splitL ◦ ι!k ◦ incl : UNilhn(Φω) −→ UNilhn(Φω).

This transfer map leaves the summand Ln([0, 1]; p) invariant, since infinitesimal

control is preserved.
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Let (C,ψ) be the geometric n-dimensional Poincaré quadratic complex1 repre-

senting ϑ, as defined in [Yam87, Proof 3.5]. In particular, recall that C consists of

geometric based Z-modules in the space

E = EG×G R ' BG ' RP∞#RP∞,

and that each morphism, of the chain complex C and the quadratic structure ψ, is

a matrix of loops which represent the elements of G.

Our goal is to gain infinitesimal control over the radius of ι!k(C, ψ) for sufficiently

large k.

The Squeezing Lemma of Connolly-Davis [CD, Lems. 4, 6], which is a sharper

version of the Shrinking Lemma of Yamasaki [Yam87, Lem. 3.10], gives the fol-

lowing conclusion. There exists 0 < ε ≤ 1 such that: if ι!k(C, ψ) has radius < ε in

X = [0, 1] then the cobordism class

[ι!k(C, ψ)]

lies in the image of the infinitesimally controlled classes:

forgetcontrol : Ln([0, 1]; p) −→ Ln(E).

Consider the index two subgroup generated by t = ab:

H = C∞ ⊂ G = D∞.

Then there is a right coset decomposition

G = H tHa.

Define loops

τ, α : [0, 1] −→ E

representing the generators t, a as follows. Their lifts to the universal cover

Ẽ = EG = S∞ × R

1The control space X = [0, 1] technically should be [0, 1/2], but for convenience we re-scale its

metric by a factor of two.
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are given by the paths

τ̃(θ) :=





exp(4θ)× 0 if θ ∈ [
0, 1

4

]

exp(1)× (2θ − 1
2
) if θ ∈ [

1
4
, 1

2

]

exp(3− 4θ)× 1
2

if θ ∈ [
1
2
, 3

4

]

exp(0)× (2θ − 1) if θ ∈ [
3
4
, 1

]
,

and α̃(θ) := exp(θ)× 0.

where the exponential is defined by

exp : [0, 1] −→ S1 ⊂ S∞; θ 7−→ eiπθ ∈ R2.

Consider the control map p : E → X. It equals the quotient of the G-invariant

composite map

Ẽ −→ R −→ S1 −→ X,

where the last map folds the circle S1 onto the upper semi-circle exp(1
2
X).

Note, for all ε ∈ { 0, 1 } and m ∈ Z, by measuring a path in X via post-

composition with p, that the diameter of the image is

diamX(τmαε) =





1 if m 6= 0

0 if m = 0.

Select K > 0 such that 1/K < ε. Also select N > 0 such that every matrix element

τmαε of (C,ψ) satisfies |m| ≤ N . Now let k ≥ KN . Note that each path

ι!k(τ
mαε) : [0, 1] −→ E

satisfies that its lift to the universal cover Ẽ has projection to R being the closed

interval from 0 to m/k of diameter |m| /k < ε. Therefore the radius in X of the

transfer ι!k(C, ψ) is < ε, so we are done. ¤

6.2. Degree of the required cover

As mentioned in the introduction, we compute an upper bound on the degree

of the self-similar cover required for splitting a homotopy equivalence to RPn#RPn

(n > 4). Only basic algebraic definitions are involved, but the number of the ele-

mentary row and column operations in the proof is substantial.
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6.2.1. Notation for Laurent transfers (see [HRT87, §5] for definitions).

Let R be a ring with involution, and let τ ∈ C2. The ring of Laurent polynomials

R[t, t−1]τ =
⊕

i∈Z

Rti

has an involution − defined over sums by

rti := τ irti for all r ∈ R and i ∈ Z.

Topologically, R[t, t−1]τ corresponds to the group ring R[C∞] with the involution

(t 7→ t−1), but with a certain twisting; see Theorem 6.2.1 and Corollary 6.2.2.

Let k > 0 be an integer, and write

υ := τ k ∈ C2.

Define a morphism ιk of rings with involution by

ιk : R[u, u−1]υ −→ R[t, t−1]τ ; ru 7−→ rtk.

Define an ιk-trace X by

X : R[t, t−1]τ −→ R[u, u−1]υ; rti 7−→





rui/k if k|i

0 else.

Topologically, X corresponds to projection onto the trivial coset of the index k

subgroup kC∞ in the infinite cyclic group C∞.

Let κ = s, h, p be a decoration. Denote ιXk as the transfer homomorphism induced

by (the coform induced by the form induced by) the ιk-trace X:

ιXk : Lκ
n(R[t, t−1]τ ) −→ Lκ

n(R[u, u−1]υ).

Topologically, ιXk corresponds to lifting the (simple, free, projective) surgery obstruc-

tion of a degree one normal map to the k-fold self-similar cover.

By abuse of notation, we shall call by the same names the extension (a 7→ a) of

the maps ιk and X from C∞ to the infinite dihedral group with orientation character:

D∞ =
〈
t, a | ata−1 = t−1, a2 = 1

〉
with ω : D∞ −→ C2.

Suppose ω(t) = τ , and define

ν(u) := ω(tk) = υ.



6.2. DEGREE OF THE REQUIRED COVER 142

Then there are extensions

ιk : R[Dν
∞] −→ R[Dω

∞] and X : R[Dω
∞] −→ R[Dν

∞].

Therefore we obtain an extension of the transfer homomorphism:

ιXk : Lκ
n(R[Dω

∞]) −→ Lκ
n(R[Dν

∞]).

6.2.2. Statement of results. The following algebraic theorems and topologi-

cal corollaries concern nilpotence of elements under the self-similar transfers ιXk .

Theorem 6.2.1. Let κ = h, p be a decoration, and let τ ∈ C2. Select an element

ϑ ∈ Im
(
Lκ

n(R[t]τ )⊕ Lκ
n(R[t−1]τ ) −→ Lκ

n(R[t, t−1]τ )
)
.

Then there exists even k > 0 such that the self-similar transfer vanishes:

ιXk (ϑ) = 0

if and only if the element has null-augmentation:

eval0(ϑ) = 0.

Moreover, on the level of matrix representatives of ϑ, the vanishing of transfers can

be achieved without stabilization in the L-group.

Corollary 6.2.2. Let (Y, ∂Y ) be a connected, finite Poincaré pair of dimension

m > 5. Suppose that the fundamental group of Y is a product of the form

π1(Y ) = π ×D∞

and that its orientation character ω : π1(Y ) → C2 satisfies2

ω(π × 1) = 1 and ω(1× t) = 1.

Write

R = Z[π] and ε = ω(a).

Let (X, ∂X) be a properly embedded, connected, one-sided Poincaré subpair of (Y, ∂Y ).

Suppose W is a compact m-manifold and

g : (W,∂W ) −→ (Y, ∂Y )

2These orientation hypotheses are only assumed for simplicity of the conclusion.
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is a homotopy equivalence that restricts to a homeomorphism on the boundary.

Then g is splittable along X in some self-similar (π × kD∞)-cover of X, if and

only if the anti-quadratic signature3

BL(g) ∈ LNh
m−1(R[C∞] → R[D∞])

aqk∼=−−−→ Lh
m+ε(R[t, t−1])

has zero component in Lp
m+ε(R) and has null-augmentation in Lh

m+ε(R). ¤

Theorem 6.2.3. Let κ = h, p be a decoration, and let υ ∈ C2. Select an element

ϑ ∈ Im (UNilκn(R; Rυ, Rυ) −→ Lκ
n(R[Dυ,υ

∞ ])) .

Then there exists odd k > 0 such that the self-similar transfer vanishes:

ιXk (ϑ) = 0.

Moreover, on the level of matrix representatives of ϑ, the vanishing of transfers can

be achieved without stabilization in the L-group.

Corollary 6.2.4. Let (Y, ∂Y ) be a connected, finitely dominated Poincaré pair

of dimension m > 5. Let (Z, ∂Z) be a properly embedded, connected, separating

Poincaré subpair, and denote

π := π1(Z).

Suppose that the fundamental group of Y is a product of the form

π1(Y ) = π ×D∞

and that its orientation character ω : π1(Y ) → C2 satisfies

ω(1× t) = 1.

Suppose W is a compact m-manifold and

g : (W,∂W ) −→ (Y, ∂Y )

is a homotopy equivalence that restricts to a homeomorphism on the boundary.

Then g is splittable along Z in some odd self-similar (π× kD∞)-cover of Y . ¤

3See Proof 5.2.9 for the Browder-Livesay invariant in the simply-connected case.
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6.2.3. Proofs.

Proof of Theorem 6.2.1. It suffices, by the Ranicki-Shaneson exact sequence

in L-theory, to prove the theorem for all n even and decorations κ = s, h, p.

Let ε := (−1)n/2. Abbreviate

A := R[t, t−1].

Represent ϑ ∈ Lκ
n(Aτ ) by a (simple) nonsingular ε-quadratic form (C, Θ). By Hig-

man linearization (2.1.10) and hypothesis on ϑ, we may assume

Θ = θ0 + (t− 1)θ1 and C = P ⊕ P ∗,

where each θi is induced from R and P = A ⊗R P0 for some finitely generated

projective R-module P0. Define R-module morphisms

θ := θ0 − θ1 and λi := θi + εθ∗i and λ := θ + εθ∗ = λ0 − λ1.

Since the following map Λ is an isomorphism of A-modules:

Λ := Θ + εΘ∗ : C −→ HomA(C,A),

by Lemma 2.1.13, the R-module morphism

ν := λ−1
0 λ1

is nilpotent, say, of degree r > 0. Then, since eval0(Λ) = λ is isomorphism of

R-modules, we must have that the following map η is also nilpotent of degree r:

η := λ−1λ1 = (1− ν)−1ν.

Now we shall define k := 2r. It suffices to show that

ιXk (ϑ) = eval0(ϑ).

Note that our transfer ιXk lands in the subring

B := R[u, u−1],

which has trivial involution on u:

υ(u) = τ(t2r) = 1.
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We shall employ k × k blocks of morphisms and use 0 ≤ i, j < k to index rows

& columns. Unless otherwise indicated, blocks are 0.

First, we compute some basic transfers. For any Laurent polynomial f ∈ A,

define a left A-module morphism

rmultf : A −→ A; a 7−→ a · f.

The transfer of the free module of rank one is indexed by right cosets:

ι!k(A) =
⊕

0≤h<k

Bth.

Then, for f = 1 and f = t, we calculate left B-module morphisms ι!k(A) → ι!k(A)∗:

ιXk (rmult1) =





1 if i + j = 0

u if i + j = k

and ιXk (rmultt) =

{
u if i + j = k − 1.

We remind the reader that 0 ≤ i, j < k are the indices for these (k × k)-matrices.

Therefore, since Θ = θ + tθ1 is a linear combination of left R-module morphisms,

we obtain

ιXk (Θ) =





θ if i + j = 0

uθ if i + j = k

uθ1 if i + j = k − 1

and ιXk (eval0(Θ)) =





θ if i + j = 0

uθ if i + j = k.

Next, we set up some short-hand notation, to be used in our formal algebraic

manipulations. Recursively define left R-module morphisms

A1 := u(η∗θ − λ1)η and Ah+1 := η∗Ahη for all h ∈ Z≥0.

Note Ar = 0.

Let 0 ≤ x 6= y < k be indices. For any left R-module morphism Γ : C → C∗,

define an elementary-block-operation isomorphism

δΓ
x,y :=





1 if i = j

Γ if (i, j) = (x, y)
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Define (−ε)-even morphisms

εΓ
x,y :=





Γ if (i, j) = (x, y)

−εΓ∗ if (i, j) = (y, x)

and εΓ
x,x :=

{
Γ− εΓ∗ if (i, j) = (x, x) .

Finally, as ε-quadratic forms ι!k(C) → ι!k(C)∗ over B, it suffices to show that the

transfer ιXk (Θ) is (simple) homotopy equivalent [Ran80a] to the ε-quadratic form

∆h :=





θ if i + j = 0

uθ if i + j = k

uθ1 if i + j = k − 1, h ≤ i, j

uAh if i = k − h = j

for each 1 ≤ h ≤ r. We shall proceed by induction on h. Observe for h = r that

Ar = 0 and { (i, j) | i + j = k − 1 and h ≤ i, j } = ∅.

Hence, we can conclude that ιXk (Θ) is (simple) homotopy equivalent to

∆r = ιXk (eval0(Θ)).

Therefore

ιXk (ϑ) = ιXk (eval0(ϑ))

as Witt classes over B, as desired.

Basic Step: Suppose h = 1.

Note
(
δ−uη
0,k−1

)% (
ιXk Θ

)
+

(
εuη∗θ−uθ1

k−1,0 + εu2η∗θ
k−1,k−1

)
= ∆1.

So the transfer ιXk (Θ) is (simple) homotopy equivalent to the ε-quadratic form ∆1.

Inductive Step: Suppose that the transfer ιXk (Θ) is (simple) homotopy equiv-

alent to the ε-quadratic form ∆h for some 1 ≤ h < r.
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First, note
(
δ
−λ−1∗A∗h
h,k−h

)%

(∆h) +
(
ε

uθλ−1∗A∗h
k−h,k−h + ε

uθ1λ−1∗A∗h
k−(h+1),k−h

)

= ∆′
h :=





θ if i + j = 0

uθ if i + j = k

uθ1 if i + j = k − 1, h ≤ i, j

−uAhη if i = k − h, i− j = 1

.

So ∆h is (simple) homotopy equivalent to ∆′
h.

Next, note
(
δλ−1Anη
h,k−(h+1)

)%

(∆′
h) +

(
ε
−uη∗A∗hλ−1∗θ
k−(h+1),k−h + ε

−uη∗A∗nλ−1∗θ1

k−(h+1),k−(h+1)

)

= ∆′′
h :=





θ if i + j = 0

uθ if i + j = k

uθ1 if i + j = k − 1, h ≤ i, j

uAh+1η if i = k − (h + 1) = j

.

So ∆′
h is (simple) homotopy equivalent to ∆′′

h.

Finally, note
(
δ−η
k−h,k−(h+1)

)%

(∆′′
h) +

(
εuη∗θ−uθ1

k−(h+1),h

)
= ∆h+1.

Therefore ∆′′
h, hence the transfer ιXk (Θ), is (simple) homotopy equivalent to the

ε-quadratic form ∆h+1. This completes the induction on h. ¤

Proof of Theorem 6.2.3. It suffices, by Proposition 1.1.9 and the Ranicki-

Shaneson exact sequence in L-theory, to prove the theorem for all n even and deco-

rations κ = s, h, p. Let ε := (−1)n/2.

First, we set up some short-hand notation. Define an R-algebra and (R, R)-

bimodule4 with involution

C := R[Dυ,υ
∞ ] and B := R[Cυ

2 \ 1] = a±Rυ.

4For symmetry of notation, we present D∞ = C2 ∗ C2 =
〈
a−, a+ | (a−)2 = 1 = (a+)2

〉
.
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Represent ϑ ∈ Lκ
n(C) by a (simple) nonsingular ε-quadratic unilform over (R; B,B):

(P±, θ̂± : P± → B ⊗R P∓).

Its image is the (simple) nonsingular (±1)-quadratic form over C:

ϑ =


P− ⊕ P+, Θ :=


a−θ− 1

0 a+θ+





 .

Here, the finitely generated projective R-modules and R-module morphisms

P± and θ± : P± −→ P∓

are extended over C and B as

P± := C ⊗R P± and θ̂±(x)(y) := a±θ±(x)(y) ∈ B.

Recall that non-singularity of the unilform means there are canonical identifications

P∓ = P ∗
±. The dual morphisms are defined by

θ∗± : P± → P∓; θ∗±(x)(y) := θ±(y)(x)

θ̂∗± : P± → B ⊗R P∓; θ̂±(x)(y) := υa±θ∗±(x)(y).

Their ε-symmetrizations are defined by

λ± := θ± + ευθ∗± : P± −→ P∓

λ̂± := θ̂± + εθ̂∗± : P± −→ B ⊗R P∓.

Then λ̂± = a±λ±. Their composites are defined by

λ := λ+ ◦ λ− : P− −→ P−

λ̂ := λ̂+ ◦ λ̂− : P− −→ B ⊗R B ⊗R P− ⊂ P−.

Then λ̂ = t−1λ, where

t := a+a− ∈ C∞ ⊂ D∞.

By the definition of unilform, there exists r > 0 such that λ̂r−1 = 0 hence λr−1 = 0.

Now we shall define k := 2r + 1. Consider the element

u := tk ∈ C∞ ⊂ D∞



6.2. DEGREE OF THE REQUIRED COVER 149

and the subring5 with involution

D := R[〈u, a | aua−1 = u−1, a2 = 1〉]

of the ring with involution

C = R[〈t, a | aua−1 = t−1, a2 = 1〉].

We shall employ 2k × 2k blocks of morphisms and use 0 ≤ i±, j± < k to index

rows & columns. Unless otherwise indicated, blocks are 0. Furthermore, we re-

use the notation for transfers (ι!k, ι
X
k ), right multiplication (rmult), and elementary

operations (δ, ε) from Proof 6.2.3.

First, we compute some basic transfers. The transfer of the free module of rank

one is indexed by right cosets:

ι!k(C) =
⊕

0≤h<k

Dth.

Then we calculate left D-module morphisms ι!k(C) → ι!k(C)∗:

ιXk (rmulta) =





a if i + j = 0

ua if i + j = k

and ιXk (rmultb) =





a if i + j = 1

ua if i + j = k + 1.

Therefore, since Θ =
(

aθ− 1
0 bθ+

)
is a block matrix of left R-module morphisms, we

obtain

ιXk (Θ) =





1 if i+ = j−

aθ+ if i+ + j+ = 0

uaθ+ if i+ + j+ = k

aθ− if i− + j− = 1

uaθ− if i− + j− = k + 1.

Next, we set up some more short-hand notation, to be used in our formal alge-

braic manipulations. For any left R-module morphisms Γ : P+ → P− and 0 ≤ h ≤ r,

5For readability of the manipulations, we revert our notation: a := a− and b := a+ = ta.
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we define a nonsingular ε-quadratic form ∆Γ
h over D by

∆Γ
h :=





1 if i+ = j−

aθ− if i− + j− = 1

uaθ− if i− + j− = k + 1

−υθ∗+λ− if j− = i+ + 1, i = 0

−ελ if j− = i+ + 1, 0 < i ≤ r

Γ if i+ = r − h = j+.

On the D-module ι!k(P+⊕P−), it suffices to show that the transfer ιXk (Θ) is (simple)

homotopy equivalent [Ran80a] to the ε-quadratic form

∆
υuaλhλ∗+ θ− λ+(λ∗)h

h

for each 0 ≤ h < r. We shall proceed by induction on h. Observe for h = r− 1 that

∆0
r−1

is a ε-hyperbolic form with (simple) lagrangian ι!k(P+). Here Γ = 0, since λr−1 = 0

by nilpotence of ϑ. Hence, by pullback of this lagrangian, we can conclude that the

transfer ιXk (Θ) is a (simple) ε-hyperbolic form. Therefore

ιXk (ϑ) = 0

as a Witt class over D, as desired.

Basic Step: Suppose h = 0.

Note
(

δ
−aθ+

0−,0+ ◦
∏

0<j≤r

δ
−uaλ+

k−j−,j+

)%

(ιXk Θ)

+

( ∑
0<i≤r

ε
−uaθ+

i+,k−i+ + ε
θ−θ+

1−,0+ +
∑

0<j≤r

ε
θ−λ+

1+j−,j+

)

= ∆
υuaλ∗+θ−λ+

0 .

So the transfer ιXk (Θ) is (simple) homotopy equivalent to the ε-quadratic form

∆
υuaλ∗+θ−λ+

0 .
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Inductive Step: Suppose that the transfer ιXk is (simple) homotopy equivalent

to the ε-quadratic form

∆
υuaλhλ∗+ θ− λ+(λ∗)h

h

for some 0 ≤ h < r − 1.

Abbreviate

Γ := υuaλhλ∗+θ−λ+λ∗h.

Note the pullback

(
δ
−υuaλ∗−Γ∗λ∗

r+2+h+,r−1−h+

)%

( (
δ

υuaλ∗−Γ

r+2+h+,r−h+ ◦ δΓ∗λ∗
r−h−,r−1−h+

)%

((
δ−Γ
r−h−,r−h+

)%

(∆Γ
h) +

(
εελΓ

r−1−h+,r−h+ + ε
uaθ−Γ
r+2+h−,r−h+

))

+
(
ε
−uaθ−Γ∗λ∗

r+2+h−,r−1−h+ + ε
υuaλ(h+1)λ∗+λ−λ+λ∗(h+1)

r−1−h+,r−1−h+

) )

= ∆λΓλ∗
h+1 .

So the transfer ιXk (Θ) is (simple) homotopy equivalent to the ε-quadratic form

∆
υuaλ(h+1)λ∗+θ−λ+λ∗(h+1)

(h+1) .

This completes the induction on h. ¤

6.3. Kernel and image of self-similar transfers

Our purpose here is to negatively resolve a question of Shmuel Weinberger: Are

the kernels in quadratic L-theory of the self-similar transfers of the infinite dihedral

group D∞ finitely generated Z-modules? There is some overlap with concurrent

work of Frank Connolly and Bjørn Jahren.

Let k > 0, and recall the notation of §6.2.1. There is a unique extension ιk of

the index k inclusion of maximal infinite cyclic subgroups:

ιk : D∞ −→ D∞; u, a 7−→ tk, a.

For simplicity, we write the corresponding geometric transfer as ι!k = ιXk .
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In the following lemma, there exists an extension ι!k to the Browder-Livesay

LN -groups of the index two subgroup C∞ ⊂ D∞. Refer to Proof 5.2.9 for the

antiquadratic kernel isomorphism aqk.

Lemma 6.3.1. For all k > 0 and n ∈ Z the following diagram commutes:

Ln(Z[t, t−1]) LNn(Z[C+
∞] → Z[D−,−

∞ ]) Ln(Z[D+,+
∞ ])

Ln(Z[u, u−1]) LNn(Z[C+
∞] → Z[D−,−

∞ ]) Ln(Z[D+,+
∞ ]).

waqk−1

u
Wk

w∂

u
ι!k

u
ι!k

waqk−1 w∂

¤

Recall from §4 the Verschiebung algebra

V := Z[Vn | n > 0] = Z[Vp | p prime]

of n-th power operators

Vn := (x 7−→ xn)

on the polynomial ring Z[x].

Theorem 6.3.2. Consider UNil2(Z) and the self-similar transfer homomorphism

ι!k : L2(Z[D∞]) −→ L2(Z[D∞]).

(1) Suppose k is even. Then there is an inclusion

UNil2(Z) ⊆ Ker(ι!k).

(2) Suppose k > 1 is odd. Then

Ker
(
ι!k|UNil2(Z)

)

is not a finitely generated Z-module but is a finitely generated Z[Vk]-submodule.

Moreover, there is an inclusion

UNil2(Z) ⊆ Im
(
ι!k|UNil2(Z)

)
.
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Proof. The following statement6 is a consequence of Lemma 6.3.1 and the

Connolly-Ranicki isomorphism (see Thm. 2.1.2)

r : UNil2(Z) −→ NL2(Z).

The monomorphic image of NL2(Z) in L2(Z[t, t−1]) maps isomorphically to the

monomorphic image of UNil2(Z) in L2(Z[D∞]). So it suffices to compute the image

of L2(Z[t]) under the transfer homomorphism for Laurent polynomials:

Wk : L2(Z[t, t−1]) −→ L2(Z[u, u−1]).

By [CD04, Theorem 4.6(2)], the Witt group L2(Z[t]) is isomorphic to the idem-

potent quotient of the Tate homology group Ĥ1(C2;Z[t]):

F2[t]/
{

p2 − p | p ∈ F2[t]
}

.

The map from L2(Z[t]) to this quotient is given by restriction of the Arf invariant

of the characteristic 2 field F2(t). The map from the quotient to L2(Z[t]) is defined

[CD04, 4.4(1)] for all representatives p ∈ F2[t] by

[p] 7−→ Pp,1 =


Z[t]e1 ⊕ Z[t]e2,


 0 1

−1 0


 ,


p

1





 .

Denote Fp as the image of Pp,1 in L2(Z[t, t−1]). Write the polynomial

p = p0 + · · ·+ prt
r ∈ F2[x].

Observe

Wk(Fp) =

[ ⊕

0≤i<k

Z[u, u−1]tie1

⊕

0≤i<k

Z[u, u−1]tie2,


 0 Ak

−Ak 0


 ,


p0E

0
k + · · ·+ prE

r
k

E0
k




]
.

6This observation was the starting point for the computations of the switch map in [BDK].
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Here, using indices 0 ≤ i, j < k, we define a matrix Ak and vector Er
k by

(Ak)i,j :=





1 if i + j = 0

u if i + j = k

0 else

and (Er
k)i :=





u` if r + 2i = `k

0 else.

Consider the homomorphism

Arf : L2(Z[u, u−1]) −→ F2[u, u−1]/
{

f 2 − f | f ∈ F2[u, u−1]
}

.

Using the fundamental theorem of algebraic L-theory ([Ran81, §5, p. 430], [Ran74,

§4]) and [CD04, Theorem 4.6(2)], Arf is an epimorphism. Its kernel is the image of

the right-hand term L2(Z) ∼= F2. This image is generated by the Witt class

⊕

2

Z[t, t−1],


t 0

0 −1





⊗


⊕

2

Z[t, t−1],


 0 1

−1 0


 ,


1

1







=




⊕
4

Z[t, t−1],




0 t 0 0

−t 0 0 0

0 0 0 −1

0 0 1 0




,




t

t

−1

−1







.

This particular example comes from the L-theory product (see [Ran81, §1.9]):

Lm(R)⊗ Ln(S) −→ Lm+n(R⊗Z S).

A symplectic basis for the nonsingular (−1)-quadratic form Wk(Fp) is

{
t0e1, t

0e2; t1e1, u
−1 · tk−1e2; t2e1, u

−1 · tk−2e2; . . . ; tk−1e1, u
−1 · t1e2

}
.

Therefore a direct computation shows that

Arf(Wk(Fp)) =





p0 + pku + · · ·+ prku
r if k odd

0 if k even.

The desired conclusions now follow. ¤



CHAPTER 7

Codimension one splitting for DIFF 5-manifolds

The goal of this chapter is to relax the Cappell/Wall fundamental group condi-

tions (see [Cap76b, Ch. V] and [Wal99, §16]) for splitting homotopy equivalences

between DIFF = PL 5-dimensional manifolds along a two-sided 4-submanifold. In-

stead, they are replaced with the vanishing of a surgery characteristic class (7.1.1).

7.1. On exactness of the surgery sequence for PL 4-manifolds

Recall that the PL normal invariant set and structure set of a manifold pair

(X, ∂X) satisfy (see [Wal99, p. 106]) that the restriction of each representative

f : (M,∂M) → (X, ∂X) to the boundary is a PL homeomorphism, and that the base

point of each set is the identity map 1(X,∂X). Throughout we denote L. := L.h〈1〉(Z)

as the 1-connective cover G/TOP of the Z-graded 4-periodic Ω-spectrum L.h(Z). Its

relevant homotopy groups π2(L.) and π4(L.) are given by Arf invariant and signature.

7.1.1. Statement of results.

Theorem 7.1.1. Let (X, ∂X) be a compact connected oriented PL 4-manifold

with fundamental group π.

(1) The surgery sequence

Ss
PL(X, ∂X)

N−−−−→ NPL(X, ∂X)
σ−−−−→ Ls

4(Z[π])

of based sets is exact if

(7.1.1.1) Ker (I0 + κ2) ∩ [u0(A ∩ [X])⊕ u2(Ker v2)] = 0.

(2) The subgroup A is uniquely determined by the index formula

[H4(X, ∂X;Z) : A] + [H2(X;Z2) : Ker v2] = 3.

We comment on the terms in Condition (7.1.1.1) of surgery characteristic classes.

155
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(i) The element

[X] ∈ H4(X, ∂X;Z)

is a choice of orientation in the orientation cover.

(ii) The subgroup A is defined by

A :=
{

f ∗(2ι4) ∈ H4(X, ∂X;Z) | ∃ f : X/∂X → G/PL
}

.

(iii) The following maps are induced by the classifying map u : X → Bπ of the

universal cover:

u0 : H0(X;Z) −→ H0(π;Z) and u2 : H2(X;Z2) −→ H2(π;Z2).

(iv) The element

v2 = w2 ∈ H2(X;Z2)

is the second Wu class.

(v) The following maps are the 0- and 2-dimensional components of the assem-

bly map asmb:

I0 : H0(π;Z) → Lh
4(Z[π]) and κ2 : H2(π;Z2) → Lh

4(Z[π]).

Taylor and Williams [TW79] show that the spectrum L.(Z[π])(2) is a co-

product of Eilenberg-MacLane spectra, such as K(Z(2), 0) and K(Z2, 2).

The maps I0 and κ2 are induced from the inclusion of these factors by the

smash product with Bπ.

Remark 7.1.2. Observe that u0 is an isomorphism, and that u2 is an epimor-

phism with kernel a homomorphic image of π2(X) ⊗ Z2, by the Hopf sequence of

pullback fibration

X̃ −→ X
u−−→ Bπ.

Hence if the compact 4-manifold X is aspherical, then u2 is an isomorphism.

Remark 7.1.3. Let f : X/∂X → G/PL be a normal invariant, and recall

[Dav05, Proposition 3.6] as follows (its proof adapts to ∂X nonempty, see Remark
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7.1.9). The surgery characteristic class f ∗(ι2) equals the codimension two Kervaire

class

kerv(f) ∈ H2(X, ∂X;Z2).

The surgery characteristic class f ∗(2ι4) equals the signature class

1

8
sign(f) · [X]∗ ∈ H4(X, ∂X;Z).

Its surgery obstruction in Ls
4(Z[π]) equals

σ(f) = (I0 ◦ u0)(f
∗(2ι4) ∩ [X]) + (κ2 ◦ u2)(f

∗(ι2) ∩ [X]).

Corollary 7.1.4. The assembly map

asmb = I0 + κ2 + · · · : H∗(π;L.) −−−→ Ls
∗(Z[π]) −−−→ Lh

∗(Z[π])

is known to be injective (that is, the Borel/Novikov conjecture is true [FRR95]) for

a large class of groups π. Then any compact connected oriented PL 4-manifold X

with such a fundamental group π has its surgery sequence exact. ¤

Corollary 7.1.5 ([Wal99, Theorem 16.6]). Let X be a compact connected

oriented DIFF or PL 4-manifold. Suppose that

H2(π1(X);Z2) = 0.

Then the following surgery sequence of based sets is exact:

Ss
PL(X, ∂X)

N−−−−→ NPL(X, ∂X)
σ−−−−→ Ls

4(Z[π1(X)]).

Proof. Observe that Ker(I0) = 0 since X is oriented and that Ker(κ2) = 0 by

assumption. ¤

Corollary 7.1.6. The surgery sequence is exact at NPL(T 4). This example is

excluded in the previous corollary, see [Wal99, Thm. 16.6, Remark].

Proof. This follows from Corollary 7.1.4, using Novikov’s proof that the as-

sembly map asmb : H4(π;L.) → L4(Z[π]) is an isomorphism for all poly-Z groups π,

see [Wal99, §15AB, §17H]. ¤
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Remark 7.1.7. Since RP4 is non-orientable, we cannot apply Theorem 7.1.1(1)

to obtain exactness of the surgery sequence at NPL(RP4). In fact, this case remains

unknown, see [Wal99, Thm. 16.6, Remark] [CS76] [FS81]. I am grateful to Julius

Shaneson for emphasizing this issue.

Remark 7.1.8. The closed simply-connected case [Wal99, Thm. 16.5] (whose

proof is erroneous) of Corollary 7.1.5 is proven correctly as a corollary of [CH90,

Theorem 5.2]. The proof below of Theorem 7.1.1 uses the Cochran-Habegger formula

[CH90, Thm. 5.1] for normal invariants, and so their formula cannot be returned

as a corollary for π1(X) = 1 and ∂X = ∅.

7.1.2. Proofs.

Remark 7.1.9. We comment on extension to nonempty ∂X in our references.

(1) The Davis surgery characteristic class formula [Dav05, Prop. 3.6] for ∂X =

∅ relies on the Sullivan-Wall factorization of the surgery obstruction map

σ through reduced bordism:

Ω̃STOP
4 (Bπ+ ∧G/TOP ) −→ Ls

4(Z[π]).

However this ingredient remains the same if we assume a homeomorphism

on ∂X (as opposed to a homotopy equivalence on ∂X), which is required

for transverse inverse images in the codimension two Kervaire invariant (see

[Dav05, Dfn. 3.5]).

(2) The Kirby-Taylor generalization [KT01, Thm. 18, Remarks] of the Cochran-

Habegger formula [CH90, Thm. 5.1] already includes arbitrary ∂X. The

original formula of [CH90] is stated for simply-connected compact topo-

logical 4-manifolds X with ∂X = ∅.

(3) The Siebenmann-Morita formulas [KS77, Thm. C.15.1] in the Puppe se-

quence, for the identification of the image of [X, TOP/PL] with the cokernel

of reduction modulo 2 on H3(X), and for the Kirby-Siebenmann invariant

ks in terms of the Postnikov tower for G/TOP, only rely on X being a
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countable finite-dimensional simplicial complex. So it is already true for

arbitrary ∂X.

Proof of Theorem 7.1.1. Since any simple homotopy equivalence has van-

ishing surgery obstruction, the image of N is contained in the kernel of σ. For the

remainder of the proof, we show that the kernel of σ is contained in the image of N .

Recall the commutative diagram:

N P
L
(X

,∂
X

)
σ

// L
s 4
(Z

[π
ω
])

[X
/∂

X
,G

/P
L
]

//

re
d
T

O
P

²²

Ω̃
S
P

L
4

(B
π

+
∧

G
/P

L
,ω

)

66 m m m m m m m m m m m m m m m m m m m m m m m m m m m

re
d
T

O
P

²²

H
4
(π

;L
.ω

)

a
sm

b

OO

[X
/∂

X
,G

/T
O

P
]

// H̃
4
(B

π
+
∧

G
/T

O
P

;M
S
T

O
P

ω
)

a
ct
∗

((QQQQQQQQQQQQQQQQQQQQQQQQQQQ
H

0
(π

;Z
ω
)
⊕

H
2
(π

;Z
2
)

H
0
(X

,∂
X

;G
/
T

O
P

)
∩[

X
] L
·

// H
4
(X

;G
/
T

O
P

ω
)

u
∗

// H
4
(B

π
;G

/
T

O
P

ω
)
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due to Sullivan-Wall [Wal99, Thm. 13B.3] and Quinn-Ranicki [Ran92a, Thm.

18.5]. It follows that the image σ̂(f), through the scalar product act1, in H4(π;L.ω)

of a normal invariant f : X/∂X → G/PL consists of two characteristic classes:

σ̂(f) = u0(f
∗(2ι4) ∩ [X])⊕ u2(f

∗(ι2) ∩ [X]),

which are determined by the TOP manifold-theoretic invariants of Remark 7.1.3.

Now let f : X/∂X → G/PL be a normal invariant with vanishing surgery ob-

struction. Then

0 = σ(f) = (I0 + κ2) σ̂(f).

Observe by definition and Lemma 7.1.10 that

f ∗(2ι4) ∈ A and f ∗(ι2) ∩ [X] ∈ Ker(v2).

Then the components of σ̂(f) vanish:

u0(f
∗(2ι4) ∩ [X]) = 0 and u2(f

∗(ι2) ∩ [X]) = 0,

by hypothesis (7.1.1.1). So

f ∗(2ι4) = 0 and f ∗(ι2) ∩ [X] = (red2 ◦ Hurewicz)(α)

for some spherical class α ∈ π2(X), by Remark 7.1.2 and Poincaré duality. There-

fore the Kirby-Taylor generalization [KT01, Thm. 18, Remarks] of the Cochran-

Habegger formula [CH90, Thm. 5.1] to arbitrary (π, ω) is applicable. We obtain

that the Novikov pinch map hα : (X, ∂X) → (X, ∂X), which is a simple homotopy

equivalence of X restricting to a PL homeomorphism on ∂X, has normal invariant

redTOP (N(hα)) = (1 + 〈v2, f
∗(ι2) ∩ [X]〉) · f ∗(ι2) = f ∗(ι2)

in

H2(X, ∂X;Z2) = Ker(NTOP(X, ∂X)
retr−−→ H4(X, ∂X;Z)).

Both the lifts of f ∗(ι2):

f, N(hα) ∈ NPL(X, ∂X) = [X/∂X, G/PL]

1Recall that L. = G/TOP is a module spectrum over the ring spectrum L· = MSTOP via

Brown representation; see [Ran92a, Rmk. B9] [Wal99, Thm. 9.8] on homotopy groups and

Sullivan’s method of proof in his thesis/notes.
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have vanishing pullback of 2ι4, as detected by signature in Remark 7.1.3. The class

2ι4 ∈ H4(G/PL;Z)

is the pullback of the class

ι4 ∈ H4(K(Z, 4);Z)

under the composite

G/PL
redTOP−−−−→ G/TOP

retr−−→ K(Z, 4).

Therefore there exists a TOP normal bordism F , which restricts to a homeomor-

phism on ∂X×∆1, from the PL normal map f with σ(f) = 0 to the simple homotopy

self-equivalence hα of X. Consider the exact sequence of triangulation obstructions

in Proof 7.1.10. By Poincaré duality with twisted coefficients, the difference class

(i.e. the existence of a PL normal bordism) between f and hα in NPL(X, ∂X) is

identified with an element of the cokernel of the reduction modulo 2 map

Ker(ω)ab = H1(X;Zω)
red2−−−−−−→ H1(X;Z2) = πab ⊗ Z2.

Here ω : π → C2 is the orientation character. But X is oriented, so this cokernel

vanishes. Therefore f and hα are PL normally bordant, thus we are done.

Part (2) of the theorem is relegated to Lemma 7.1.11. ¤

For the purpose of comparison between the following arguments and the litera-

ture, we refer the reader to [CH90, p. 435, par. 1] [Wal99, Proofs 16.5, 16.6].

Lemma 7.1.10. Ker(v2) = B ∩ [X] where the subgroup B is defined as

B :=
{
f ∗(ι2) ∈ H2(X, ∂X;Z2) |

∃f : X/∂X → G/PL satisfying f ∗(2ι4) ≡ 0 (mod 2)
}
.

Proof. Recall the Siebenmann-Morita exact sequence [KS77, Thm. C.15.1]:

0 −→ Cok
(
red2 : H3(X, ∂X;Z) → H3(X, ∂X;Z2)

) −→ [X/∂X, G/PL]

redTOP−−−−→ [X/∂X, G/TOP]
ks−−−→ [X/∂X, B(TOP/PL)].
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Therein is stated that for all

(a, b) ∈ H4(X, ∂X;Z)×H2(X, ∂X;Z2)

= [X/∂X, K(Z, 4)×K(Z2, 2)] = [X/∂X, G/TOP[5]],

the Kirby-Siebenmann invariant is given by

ks(a, b) = red2(a) + Sq2(b) ∈ H4(X, ∂X;Z2) = [X/∂X, K(Z2, 4)].

Let b ∈ H2(X, ∂X;Z2). There exists a ∈ H4(X, ∂X;Z) such that

red2(a) = Sq2(b),

since (X, ∂X) is a 4-dimensional Poincaré pair implies that

red2 : H4(X, ∂X;Z) → H4(X, ∂X;Z2)

is surjective. Define a map

t := (a, b) : X/∂X → G/TOP.

Hence b = t∗(ι2) is satisfied. Then there exists a lift f : X/∂X → G/PL of t ∈
Ker(ks). Note

f ∗(2ι4) = f ∗(red∗TOP(ι4)) = t∗(ι4) = a.

Therefore b ∈ B if and only if Sq2(b) = 0, if and only if b ∩ [X] ∈ Ker(v2). Thus

B ∩ [X] = Ker(v2).

¤

Lemma 7.1.11. [H4(X, ∂X;Z) : A] + [H2(X;Z2) : Ker v2] = 3.

Proof (an analogous argument). Let a ∈ H4(X, ∂X;Z). Then

a = f ∗(2ι4) for some f : X/∂X −→ G/PL

if and only if

red2(a) = Sq2(b) = v2 ∪ b for some b ∈ H2(X, ∂X;Z2).

Thus if v2 = 0 then

A = Ker(red2).
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Hence the subgroup A has index 2, independent of the orientability of X. If v2 6= 0

then, since (X, ∂X) is a 4-dimensional Poincaré pair, there exists b such that

〈v2 ∪ b, red2[X]〉 = 1,

so the reduction modulo two map is surjective:

red2 : A → H4(X, ∂X;Z2).

Hence the subgroup A has index 1, independent of the orientability of X, and the

subgroup Ker(v2) has index 2. ¤

7.2. Stable splitting obstructions between DIFF 5-manifolds

The main theorem (7.2.1) determines the existence and uniqueness of smooth

split solutions in dimension five. Throughout this section, we use the notation of §1.2

for splitting homotopy equivalences, with dim(Y ) = 5 and dim(X) = 4 substituted.

Recall that the structure set Sh
PL(X, ∂X) denotes the set of PL h-bordism classes

rel ∂ of homotopy equivalences from compact PL 4-manifolds to X which are PL

homeomorphisms on ∂X.

Let r ∈ Z≥0 be a stabilization parameter. By trivial handle-exchanges in Y ,

denote the r-stabilized submanifold

Xr := X#r(S2 × S2).

The stable surgery exact sequence of Cappell-Shaneson [CS71] for smooth 4-manifolds

is the motivation to define (see [KT01, p. 393]) the r-stable structure set

rS̃ h
PL(X, ∂X) :=

{
f ∈ Sh

PL(Xr, ∂X) |

the normal invariant of f is stabilized from NPL(X, ∂X)
}
.

In particular for r = 0, we recover Sh
PL(X, ∂X). We remark that the TOP version

of the main theorem for ∂X = ∅ and H, G± small is achieved without stabilization

by S. Weinberger in [Wei87, Theorem 1].
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7.2.1. Statement of results. Recall the topological notation of §1.2.1.

Theorem 7.2.1. Consider a two-sided incompressible PL 4-submanifold (X, ∂X)

of a compact connected DIFF 5-manifold (Y, ∂Y ). Suppose that (X, ∂X) satisfies

Condition (7.1.1.1) and that there exists r ∈ Z≥0 such that Wall realization restricts

as follows:

(7.2.1.1) Lh
5(Z[H])× Sh

PL(X, ∂X) −−−→ rS̃ h
PL(X, ∂X).

Let (W,∂W ) be a compact DIFF 5-manifold, and let g : W → Y be any homotopy

equivalence that restricts to a diffeomorphism on ∂Y . Then, relative to the boundary,

the map g : (W,∂W ) → (Y, ∂Y ) is

(1) normally bordant to a split map along X2r if the following K-theory class

vanishes:

[∂K(τ(g))] ∈ Ĥ5(Iω),

(2) h-bordant to a split map along X2r if and only if in addition the following

L-theory element vanishes:

splith
L(g) ∈ UNilh6 (Φω) ,

(3) homotopic to a split map along X2r if and only if the following K- and

L-theory elements vanish:

(∂K ⊕ splitK)(τ(g)) ∈ I ⊕ Ñil0(Φ) and then splits
L(g) ∈ UNils6(Φ

ω).

(4) Furthermore, the set of split homotopy classes of split solutions stands in

bijection with the controlled L.-homology group

Hh→h
6 (T/G;L.(p)).

Corollary 7.2.2 ([Cap76b, Theorem 5, Remark]). Consider a connected in-

compressible, oriented two-sided 4-submanifold X of a closed DIFF 5-manifold Y .

Write H = π1(X) and G = π1(Y ). Suppose the following conditions are satisfied:

(1) (Cappell) the fundamental group H is square-root closed in G,

(2) (Wall) the group homology H2(H;Z2) vanishes, and



7.2. STABLE SPLITTING OBSTRUCTIONS BETWEEN DIFF 5-MANIFOLDS 165

(3) the surgery obstruction map

(7.2.2.1) NPL(X × (∆1, ∂∆1))
σ−−−−→ Lh

5(Z[H]) is surjective.

Then any homotopy equivalence g : W → Y , for W a closed DIFF 5-manifold,

is

(1) h-bordant to a split map along X = X0 if and only if the following K-theory

class vanishes:

[∂K(τ(g))] ∈ Ĥ5(Iω),

(2) homotopic to a split map along X = X0 if and only if the following K-theory

elements vanish:

(∂K ⊕ splitK)(τ(g)) ∈ I ⊕ Ñil0(Φ).

Proof. Note ∂X = ∂Y = ∅. Since H is square-root closed in G, by [Cap74b,

Corollary 4], we have

UNilh6(Φ
ω) = 0.

Also, by Corollary 7.1.5, since

H2(H;Z2) = 0,

we have that Condition (7.1.1.1) is satisfied. Finally, observe that Condition (7.2.2.1)

implies Condition (7.2.1.1) for r = 0, since the L5-action must be trivial.2 ¤

Remark 7.2.3. Cappell observed [Cap76b, Ch. V] that the proofs of [CS71,

Theorems 4.1, 5.1] can be modified as to not depend on the Cappell-Shaneson stable

surgery sequence [CS71, Thms. 2.1, 3.1]. Observe our theorem generalizes the

conditions of [Cap76b, Theorem 5, Remark] and below generalizes its proof, which

is essentially contained in [CS71, Theorems 4.1, 5.1] when UNil vanishes.

2This occurs if Lh
5 (Z[Hω]) = 0, e.g. if H is an odd torsion group [Bak75].
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7.2.2. Proof of main theorem. For simplicity, we shall abbreviate

Ln(π) := Ln(Z[πω])

Ñil0 := Ñil0(Φ)

UNiln := UNiln(Φω).

Throughout the proofs of the four parts, we write DIFF instead of PL in order

to deal with rounding corners. This notational convenience is justified by the fact

that any PL 4- or 5-manifold admits a unique DIFF structure compatible with the

triangulation [FQ90, Ch. 8].

For the reader’s convenience, we recall a version of Cappell’s Mayer-Vietoris

sequence (1.3.5):

· · · ∂L−−−→ Lh
n(H)

i−−i+−−−−−→ Lh
n(J)

j−−→ LB
n (G)

UNilsn

∂L−−−→ Lh
n−1(H) −→ · · · .
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Remark 7.2.4. Consider

Z := CP4#2(S3 × S5),

which is a simply-connected closed PL 8-manifold whose Euler characteristic and

signature are equal to one (see [Wei87, Thm. 1]). Let n ∈ Z≥0. Suppose h is a

homotopy equivalence between n-manifolds with fundamental group π and orien-

tation character ω. Now let κ be a ∗-invariant subgroup of Wh(π). Observe that

the surgery obstruction σ(f) maps to σ(f × 1Z) under the decorated periodicity

isomorphism3

⊗σ∗(Z) : Lκ
n(π) −−−→ Lκ

n+8(π).

This follows from Kwun-Szczarba’s torsion product formula [Lüc02, Thm. 2.1] and

from Ranicki’s surgery product formula [Ran80b, Prop. 8.1(ii)]. ¤

Throughout the proofs, the reader should keep in mind the following figure.

g g0

G0

• ◦α ◦ ◦β

g1

G1

E1

• ◦

• ◦

◦

◦

g2

G2

E2

◦ ◦

◦ ◦
◦ ◦γ

g3

G3

◦ ◦

◦ ◦
◦ ◦f2

δ

//

Y 5

• X4

Figure 7.2.1. Our extended Cappell-Shaneson replacement G for

the high-dimensional Cappell nncc.

3If R is a ring with involution then L.(R) is a module spectrum over the ring spectrum L·(Z);

see [Ran92a, p. 318, line 4] on the level of spectra and [Ran80a, Prop. 8.1] on the level of

homotopy groups.
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Proof of Theorem 7.2.1(1). Let g : W → Y be a homotopy equivalence

which restricts to a PL homeomorphism on ∂Y , where W is a compact PL 5-

manifold. Since

[∂K(τ(g))] = 0 ∈ Ĥ5(Iω),

by [Cap76b, Lemma II.4] and Waldhausen’s Mayer-Vietoris sequence (1.3.4) and

Milnor’s torsion duality, there exists an h-bordism

G0 : W × [0, 1] −→ Y rel ∂Y

from g to a homotopy equivalence g0 : W → Y such that

(∂K ⊕ splitK)(τ(g0)) = 0 ∈ I ⊕ Ñil0.

Hence τ(g0) ∈ B. By general position, we may assume that g0 is transversal to X.

Consider the degree one normal map

f := g0|M : M −→ X,

where M := g−1
0 (X) is the PL transverse inverse image.

By [Cap76b, Lemma I.1], there exists a homotopy from g0×1Z to a certain ho-

motopy equivalence g. The homotopy itself is obtained via handle-exchanging along

“nilpotent” relative homotopy elements. The map g is transversal to X := X × Z

and restricts to a 4-connected degree one normal map f : M → X. Then by

[Cap76b, Lemma II.1], there exists a f.g. projective lagrangian P for the nonsin-

gular (+1)-quadratic form σ(f) over Z[Hω]. The lagrangian P is obtained from a

certain null-bordism in the cover of Y := Y × Z corresponding to the subgroup H.

Moreover by [Cap76b, Lemma II.2], its projective class is

[P ] = ∂K(τ(g)) ∈ I

and satisfies [P ∗] = −[P ].

We now replace the use of Condition (d) occurring in [Cap76b, Lemmas II.2,3,4]

at the cost of losing control of the resultant bordism. However, in a roundabout fash-

ion, we will obtain a replacement for Cappell’s nilpotent normal cobordism construc-

tion, which was observed in neither [Cap76b] nor [CS71].
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Consider the Ranicki-Rothenberg exact sequence [Ran80a, Prop. 9.1] over the

ring Z[Hω] with involution:

Lp
13 −−−→ Ĥ13(K̃0) −−−→ Lh

12 −−−→ Lp
12.

The existence of P implies that σ(f) has zero image in Lp
12(H). Hence it is the

image of the Tate cohomology class

[[P ]] ∈ Ĥ13(K̃0(Z[H])ω).

Namely, σ(f) ∈ Lh
12(H) is the cobordism class of the hyperbolic construction H+(P ).

Note that it vanishes in a stronger sense:

[P ] = ∂K(τ(g))

= ∂K(τ(g0)) · χ(Z)

= ∂K(τ(g0))

= 0 ∈ I.

Then σ(f) = 0, so σ(f) = 0 by normal bordism invariance and periodicity of

the surgery obstruction map σ. Therefore, by Exactness at the Normal Invariants

(7.1.1), there exists a PL normal bordism α from f to a homotopy equivalence f0.

Now consider the degree one normal map of triads, relative to the PL homemo-

rphism ∂W → ∂Y :

W \M ×
◦

D1
⋃

Domain(α)× ∂D1 e0−−−−−−−−→ Y \X ×
◦

D1.

It is defined by cutting g0 along f , and then pasting in two copies of α (see Fig-

ure 7.2.1). In particular, the degree one normal map e0 restricts to a homotopy

equivalence on the “seams” X × ∂D1. Observe that

G0

⋃
α× 1D1

is a normal bordism over Y between e0 ∪ ∂+(α) × 1D1 and the original homotopy

equivalence g. Then its surgery obstruction σ(e0) has zero image in LB
5 (G). So by

Cappell’s Mayer-Vietoris sequence (1.3.5), the surgery obstruction

σ(e0) ∈ Lh
5(J)
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is the image of some element y ∈ Lh
5(H).

By Condition (7.2.1.1),4 there exists a PL normal bordism β over Xr from

f0 := f0#1r(S2×S2)

to another homotopy equivalence f1 with surgery obstruction σ(β) = −y. Then the

degree one normal map

e′0 := e0

⋃

f0×1D1

β × 1∂D1

over Y \ Xr ×
◦

D1 restricts to the homotopy equivalence f1 × 1∂D1 on the seam

Xr × ∂D1. Note that its surgery obstruction is

σ(e′0) = σ(e0) + i−σ(β ×−1)− i+σ(β × 1)

= σ(e0)− (i− − i+)(y)

= 0.

So by the 5-dimensional surgery exact sequence [Wal99, Thm. 10.8], there exists a

PL normal bordism E1 of triads over Y \ Xr ×
◦

D1 from e′0 to a homotopy equiva-

lence e1, which restricts to the fixed homotopy equivalence f1 × 1∂D1 on the seam.

Therefore we obtain a normal bordism (see Figure 7.2.1)

G1 :=


g0 × 1[0,1]

⋃

f×1D1

(α
⋃

f0

β)× 1D1


 ∪ E1.

Note G0 ∪G1 connects the original g to a B-torsion homotopy equivalence

g1 :=
⋃

f1

e1

split along Xr.

In a sense, the splitting problem is now solved, except that we would like more

precise control on the path to the split solution. Namely, its surgery obstruction

should equal the splitting obstruction in UNilh6 .

4We perform r trivial 2-handle exchanges along X in Y in order to internalize the desired

stabilization.
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Since its boundary has torsion τ(∂G1) ∈ B, we can define the intermediate

surgery obstruction

x := σ(G1) ∈ LB
6 (G).

By Condition (7.2.1.1), there exists a PL normal bordism γ over X2r from

f1 := f1#1r(S2×S2)

to a homotopy equivalence f2 with

σ(γ) = −∂L(x) ∈ Lh
5(H).

Note that the Mayer-Vietoris sequence (1.3.5) implies that

(i− − i+)σ(γ) = 0.

Then by the 5-dimensional surgery exact sequence, there exists a PL normal bordism

E2 over Y \X2r ×
◦

D1 from the degree one normal map

e′1 := e1

⋃

f1×1∂D1

γ × 1∂D1

to a homotopy equivalence e2, which restricts to the homotopy equivalence f2×1∂D1

on the seam. Therefore we obtain a normal bordism (see Figure 7.2.1)

G2 := γ × 1D1

⋃
E2

over Y from g1 to another B-torsion homotopy equivalence g2 split along X2r.

Observe from the definition of ∂L, using periodicity and the action of the group

LB
14(G) on the split homotopy structure g1 × 1Z (see Remark 1.3.7), that

∂L(σ(G2)) = ∂L(σ(G2 × 1Z))

= σ(γ × 1Z)

= σ(γ)

= −∂L(x− splitL(x)).

Then the surgery obstruction of G2 must satisfy

σ(G2) ≡ −(x− splitL(x)) mod Ker(∂L).
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So by the Mayer-Vietoris sequence (1.3.5), there exists z ∈ Lh
6(J) such that

σ(G2) + (x− splitL(x)) ≡ j(z) mod UNils6.

By the 5-dimensional surgery exact sequence, there exists a PL normal bordism δ

over Y \ X2r ×
◦

D1, which restricts to the homotopy equivalence f2 × 1∂D1 on the

seam, whose surgery obstruction is

σ(δ) = −z.

Lastly, define a PL normal bordism (see Figure 7.2.1) over Y :

G3 := (f2 × 1[0,1])× 1D1

⋃

(f2×11)×1∂D1

δ

from g2 to another B-torsion homotopy equivalence g3 split along X2r. Then

σ(G3) = jσ(δ).

The advantage of uniting G1 with G2 and G3 is that (see Figure 7.2.1) the normal

bordism over Y :

G := G1

⋃
G2

⋃
G3

has surgery obstruction in the summand UNils6 of LB
6 (G):

σ(G) ≡ x + (j(z)− (x− splitL(x))) + j(−z)

= splitL(x)

≡ 0 mod UNils6.

Consider the PL normal bordism G × 1Z between the B-torsion homotopy equiva-

lences g0 × 1Z and g3 × 1Z . Recall Cappell’s decomposition [Cap74a, Thm. 7] of

the B-torsion structure set:

nncc : SB
PL((Y, ∂Y )× Z)

∼=−−−−→ Ssplit
PL ((Y, ∂Y )× Z; (X, ∂X)× Z)× UNils14.

It is a careful form of Wall realization, and so the connecting normal bordism enjoys

the same uniqueness properties (see Remark 1.3.7 and [Wal99, Thm. 5.8(iii)]).

Hence

nncc([g0 × 1Z ]) = ([g3 × 1Z ], σ(G× 1Z)).
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Therefore the L-theory splitting obstructions must be:

σ(G) = σ(G× 1Z)

= splitL(g0 × 1Z)

= splits
L(g0)

σ(G0 ∪G) = splith
L(g).

¤

Proof of Theorem 7.2.1(2). Suppose the primary K-theory class and sec-

ondary L-theory element vanish:

[∂K(τ(g))] ∈ Ĥ5(Iω)

splith
L(g) ∈ UNilh6 .

Then, by Part (1), since

σ(G0 ∪G) = splith
L(g)

= 0,

we may perform surgery on the interior of the normal bordism G0 ∪ G to obtain

an h-bordism between the homotopy equivalences g and g3. The latter map is split

along the stabilization X2r.

Conversely, suppose that there exists an h-bordism G′ from g to a split homotopy

equivalence g′. Then, by decorated periodicity and Cappell’s bijection nncch in high-

dimensions (1.2.4), note that

splith
L(g) = splith

L(g × 1Z)

= σ(G′ × 1Z)

= 0 ∈ UNilh14.

¤
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Proof of Theorem 7.2.1(3). Suppose the primary K-theory and secondary

L-theory elements vanish:

(∂K ⊕ splitK)(τ(g)) ∈ I ⊕ Ñil0(Φ)

splits
L(g) ∈ UNils6(Φ

ω).

Then

τ(G0) = 0

σ(G1) = splits
L(g)

= 0.

Therefore we may perform surgery on the interior of the normal bordism G0 ∪ G1

so that it becomes an s-bordism between the homotopy equivalences g to g3. The

latter map is split along the stabilization X2r. We are done by the s-cobordism for

a smooth 5-manifold base.

Conversely, suppose that there exists a homotopy G′ from g to a split homotopy

equivalence g′. Hence

τ(g) = τ(g′) ∈ B.

So, by Waldhausen’s Mayer-Vietoris sequence (1.3.4), we must have

(∂K ⊕ splitK)(τ(g)) = 0 ∈ I ⊕ Ñil0(Φ).

Then, by decorated periodicity and Cappell’s bijection nnccs in high-dimensions

(1.2.4), note that

splits
L(g) = splits

L(g × 1Z)

= σ(G′ × 1Z)

= 0 ∈ UNils14.

¤

Proof of Theorem 7.2.1(4). Observe that any other candidate for G has

surgery obstruction in the same coset of

Hh→h
6 (T/G;L.(p)).
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But by Proposition 1.3.8, this controlled homology group has zero intersection with

the image in LB
6 (G) of

UNils6(Φ
ω).

Therefore we have a well-defined decomposition nnccs. ¤

Remark 7.2.5. In summary, by assuming a relaxation of the Borel/Novikov

Conjecture (7.1.1.1) and Bounded Stable Realization (7.2.1.1) on the smooth four-

submanifold (X, ∂X), we have shown that there are decomposition of the decorated

structure sets:

nnccs : SB
DIFF(Y, ∂Y )

∼=−−−−→ Ssplit
DIFF(Y, ∂Y ; X2r, ∂X)× UNils6(Φ

ω)

nncch : Sh
DIFF(Y, ∂Y )

∼=−−−−→ Ssplit
DIFF(Y, ∂Y ; X2r, ∂X)× Ĥ5(Iω)× UNilh6(Φ

ω).

They constitute the extensions to smooth five-manifolds (Y, ∂Y ) of Cappell’s nilpo-

tent normal cobordism construction. This is the main geometric ingredient of two-

sided splitting obstruction theory for high-dimensional manifolds and for the Mayer-

Vietoris sequence in the L-theory of generalized free products.



CHAPTER 8

Classification within a stable TOP type of 4-manifold

Suppose X is a compact connected smooth 4-manifold, with fundamental group

π and orientation character ω : π → C2. Our motivation here involves that the

Cappell-Shaneson stable surgery sequence [CS71, Thm. 3.1] produces certain stable

diffeomorphisms. This leads to a modified Wall realization

Ls
5(Z[πω])× Ss

DIFF(X, ∂X) −−−→ Ss

DIFF(X, ∂X),

where S is the simple smooth structure set and S and is the stable structure set

(compare §7.2). Recall that the equivalence relation on these structure sets is smooth

s-bordism of smooth homotopy structures. The actual statement of [CS71, The-

orem 3.1] is sharper in that the amount of stabilization, i.e. number of connected

summands of S2 × S2, depends only on the rank of a given representative of the

L-group.

In the case X is sufficiently large in that it contains a two-sided incompressible

smooth 3-submanifold Σ, an elementary periodicity argument using Cappell’s de-

composition (1.2.3) shows that the restriction of the above action on SB
DIFF(X, ∂X)

to the summand1 UNils5 of LB
5 (Z[πω]) is free2. Therefore for each nonzero element of

this exotic UNil-group, there exists a distinct stable smooth homotopy structure on

X, restricting to a diffeomorphism on ∂X, which is not Z[π1(Σ)]-homology splittable

along Σ. For X a connected sum of two copies of RP4 and Σ a homotopy 3-sphere,

see the case studies [JK06] and [BDK].

1We gave a general definition of UNilsodd in (1.1.8), without assuming Waldhausen’s vanishing

condition on Ñil0.
2The same argument shows that the restricted action of UNils5 on SB

TOP(X, ∂X) is free, if X is

a compact connected topological 4-manifold with good fundamental group.

176
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For any r ≥ 0, denote (cf. §7.2) the r-stabilization of X by

Xr := X#r(S2 × S2).

8.1. On the TOP classification of 4-manifolds

The main theorem of this section is an upper bound on the number of S2 × S2

connected-summands sufficient for a stable homeomorphism, where the fundamental

group of X lies in a certain class of good groups. If X is sufficiently large, instead

by using Freedman-Quinn surgery [FQ90, Ch. 11], each nonzero element ϑ of the

UNil-group yields a certain TOP 4-manifold Yϑ simple homotopy equivalent to X,

which stabilizes to a manifold TOP s-cobordant to the above DIFF manifold Y .

8.1.1. Statement of results. The following result and technique are similar

to Hambleton-Kreck [HK93, Thm. B] for finite groups π.

Theorem 8.1.1. Suppose π is a good group (in the sense of [FQ90]) with ori-

entation character ω : π → C2. Define the following rings with involution:

A := Z[πω]

R ⊆ Center(A)

R0 :=

{ ∑
i

xixi

∣∣∣∣ xi ∈ R

}
.

Suppose A is a finitely generated R0-module. Further suppose the commutative ring

R0 is noetherian and

d := dim(maxspec R0) < ∞.

Now suppose that X is a compact connected TOP 4-manifold with

(π1(X), w1) = (π, ω)

and that it has the form

(X, ∂X) = (X−1, ∂X)#(S2 × S2).

If Xr is homeomorphic to Yr for some r ≥ 0, then Xd is homeomorphic to Yd.

Our primary examples are the virtually cyclic groups considered in Chapter 3.
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Proposition 8.1.2. The product F ×D∞ of any finite group F and the infinite

dihedral group, with any choice of ω, satisfies the above hypotheses with d = 2.

Corollary 8.1.3. Let X be a compact connected TOP 4-manifold with fun-

damental group π1(X) ∼= F × D∞ and F finite. If a TOP 4-manifold Y is stably

homeomorphic to X, then Y #3(S2 × S2) is homeomorphic to X#3(S2 × S2). ¤

8.1.2. Definitions and lemmas. An exposition of the following concept with

applications is available in the book of Anthony Bak [Bak81].

Definition 8.1.4 ([Bas73, I.4.1]). A unitary ring (A, λ, Λ) consists of a ring

with involution A, an element

λ ∈ Center(A) satisfying λλ = 1,

and a form parameter Λ. This is an abelian subgroup of A satisfying

{ a + λa | a ∈ A } ⊆ Λ ⊆ { a ∈ A | a− λa = 0 }

and

rar ∈ Λ for all r ∈ A and a ∈ Λ.

The following subgroup of unitary automorphisms can be realized by diffeomor-

phisms [CS71, Thm. 1.5].

Definition 8.1.5 ([Bas73, I.5.1]). Let (M, 〈·, ·〉 , µ) be a quadratic module over

a unitary ring (A, λ, Λ). A transvection σu,a,v is an isometry of M defined by

σu,a,v(x) := x + 〈v, x〉u− λ 〈u, x〉 v − λ 〈u, x〉 au

where u, v ∈ M and a ∈ A satisfy

µ(u) = 0 ∈ A/Λ

µ(v) = [a] ∈ A/Λ

〈u, v〉 = 0 ∈ A.
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The following lemmas involve, for any finitely generated projective A-module

P = P ∗∗, a nonsingular (+1)-quadratic form over A called the hyperbolic con-

struction

H (P ) := (P ⊕ P ∗, 〈·, ·〉 , µ);

〈x + f, y + g〉 := f(y) + g(x)

µ(x + f) := [f(x)].

Topologically, H (A) is the equivariant intersection form of S2×S2 with coefficients

in A.

Lemma 8.1.6. Consider a compact connected TOP 4-manifold X with good fun-

damental group π and orientation character ω : π → C2. Define a ring with involu-

tion

A := Z[πω].

Suppose that there is an orthogonal decomposition

K := Ker w2(X) = V0 ⊥ V1

as quadratic submodules of the intersection form of X over A, with a nonsingular

restriction to V0.

Define a homology class and a free A-module

p+ := [S2
+ × pt]

P+ := Ap+.

Consider the summand

H (P+) = H2(S
2
+ × S2; A)

of

H2(X#(S2
+ × S2)#(S2

− × S2); A).

Then for any transvection σp,a,v on the quadratic module K ⊥ H (P+) with p ∈
V0 ⊕ P+ and v ∈ K, the stabilized isometry σp,a,v ⊕ 1H2(2(S2×S2);A) can be realized by

a self-homeomorphism of X#3(S2 × S2) which restricts to the identity on ∂X.
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Remark 8.1.7. In the case that ∂X is empty and π1(X) is finite, then Lemma

8.1.6 is exactly [HK93, Corollary 2.3]. Although it turns out that their proof

works in our generality, we include a full exposition, providing details absent from

Hambleton-Kreck [HK93].

Lemma 8.1.8. Suppose X and p satisfy the hypotheses of Lemma 8.1.6. If p

is unimodular in V0 ⊕ P+, then the summand X1 = X#(S2
+ × S2) of X2 can be

topologically re-split so that S2 × pt represents p.

Proof. Since V0 ⊥ H (P+) is nonsingular, there exists an element q ∈ V0 ⊥
H (P+) such that (p, q) is a hyperbolic pair. Since p, q ∈ Ker w2(X1) and w2 is the

sole obstruction to framing the normal bundle in the universal cover, each homology

class is represented by a canonical regular homotopy class of framed immersion

α, β : S2 × R2 −→ X1

with transverse double-points. Then, since the self-intersection number of α van-

ishes, all its double-points pair to yield framed immersed Whitney disks; we consider

each disk separately:

W : D2 × R2 −→ X1.

Upon performing finger-moves to regularly homotope W , we may assume that one

component of

α(S2 × 0) \W (∂D2 × R2)

is a framed embedded disk

V : D2 × R2 −→ X1

and, by an arbitrarily small regular homotopy of β, that β|S2 × 0 is transverse to

W |int D2 × 0 with algebraic intersection number 1 in Z[π1(X1)]. Hence W is a

framed properly immersed disk in

X1 := X1 \ Im V.
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So, since π1(X1) ∼= π1(X) is a good group, by Freedman’s disk theorem [FQ90,

Thm. 5.1A], there exists a framed properly TOP embedded disk

W ′ : D2 × R2 −→ X1

such that

W ′ = W on ∂D2 × R2 and Im W ′ ⊂ Im W.

Therefore, by performing a Whitney move along W ′, we obtain that α is regularly

homotopic to a framed immersion with one fewer pair of self-intersection points.

Thus α is regularly homotopic to a framed TOP embedding α′. A similar argument,

allowing an arbitrarily small regular homotopy of α′, shows that β is regularly ho-

motopic to a framed TOP embedding β′ transverse to α′, with a single intersection

point

α′(x0 × 0) = β′(y0 × 0)

such that the open disk

∆ := β′(y0 × R2) ⊂ α′(S2 × 0).

Define a closed disk

∆′ := S2 \ (α′)−1(∆).

Surgery on X1 along β′ yields a compact connected TOP 4-manifold X ′. Hence X1

is recovered by surgery on X ′ along the framed embedded circle

γ : S1 × R3 ≈ nbhdS2(∂∆′)× R2 α′−−−→ X1 \ Im β′ ⊂ X ′.

But the circle γ is trivial in X ′, since it extends via α′ to a framed embedding of the

disk ∆′ in X ′. Therefore we obtain a TOP re-splitting of the connected sum

X1 ≈ X ′#(S2 × S2)

so that S2 × pt of the right-hand side represents the image of p. ¤

The next algebraic lemma decomposes certain transvections so that the pieces

fit into the previous topological lemma.
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Lemma 8.1.9. Suppose (A, λ, Λ) is a unitary ring such that: the additive monoid

of A is generated by a subset S of the unit group (A×, ·). Let K = V0 ⊥ V1 be a

quadratic module over (A, λ, Λ) with a nonsingular restriction to V0, and let P± be

free left A-modules of rank one. Then any stabilized transvection

σp,a,v ⊕ 1H (P−) on K ⊥ H (P+) ⊥ H (P−)

with p ∈ V0 ⊕ P+ and v ∈ K is a composite of transvections σpi,0,vj
with unimodular

pi ∈ V0 ⊕ P+ and isotropic vj ∈ K ⊕H (P−).

Proof. Using a symplectic basis { p±, q± } of each hyperbolic plane H (P±),

define elements of K ⊕H (P+ ⊕ P−):

v0 := v + p− − aq−

v1 := −p−

v2 := aq−.

Then

v =
2∑

i=0

vi.

Observe that each vi ∈ K ⊕H (P−) is isotropic with 〈vi, p〉 = 0. So transvections

σp,0,vj
are defined. Note, by Definition 8.1.5, for all x ∈ K ⊕H (P+ ⊕ P−), that

(σp,0,v2 ◦ σp,0,v1 ◦ σp,0,v0)(x) = x +
∑

i

〈vi, x〉 p−
∑

i

λ 〈p, x〉 vi − λ 〈p, x〉
∑
i<j

〈vj, vi〉 p

= x + 〈v, x〉 p− λ 〈p, x〉 v − λ 〈p, x〉 ap

= σp,a,v(x)⊕ 1H (P−).

Therefore it suffices to consider the case that v ∈ K⊕H (P−) is isotropic. Write

p = p′ ⊕ p′′ ∈ V0 ⊕ P+.

Define a unimodular element

p0 := p′ ⊕ 1p+.
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Note, since P+ has rank one and by hypothesis, there exist n ∈ Z≥0 and unimodular

elements p1, . . . , pn ∈ Sp+ ⊆ P+ such that

p− p0 = p′′ − 1p+ =
n∑

i=1

pi.

For each 1 ≤ i ≤ n, write

pi := sip+ for some si ∈ S.

Observe for all 1 ≤ i, j ≤ n that

〈v, pi〉 = 0

µ(pi) = siµ(p+)si

= 0

〈pi, pj〉 = si 〈p+, p+〉 sj

= 0.

Hence, we also have

〈v, p0〉 = 0

µ(p0) = 0.

Then transvections σpi,0,v are defined and commute, so note

σp,0,v =
n∏

i=0

σpi,0,v.

¤

Proof of Lemma 8.1.6. Define a homology class and a free A-module

p− := [S2
− × pt]

P− := Ap−.

Consider the A-module decomposition

H2(X2; A) = H2(X; A)⊕H (P+)⊕H (P−).

Observe that the unitary ring

(A, λ, Λ) = (Z[πω], +1, { a− a | a ∈ A })
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satisfies the hypothesis of Lemma 8.1.9 with the multiplicative subset

S = π ∪ −π.

Therefore the stabilized transvection

σp,a,v ⊕ 1H (P−)

is a composite of transvections σpi,0,vj
with unimodular pi ∈ V0 ⊕ P+ and isotropic

vj ∈ K ⊕H (P−). Then by Lemma 8.1.8, for each i, a TOP re-splitting

fi : X1 ≈ X ′#(S2 × S2)

of the connected sum can be chosen so that S2×pt represents pi. So by the Cappell-

Shaneson realization theorem [CS71, Thm. 1.5]3, for each i and j, the pullback

under (fi)∗ of the stabilized transvection

σpi,0,vj
⊕ 1H2(S2×S2;A) = σpi⊕0,0,vj⊕0

is an isometry induced by a self-diffeomorphism of

(X ′#(S2 × S2))#(S2 × S2).

Hence, by conjugation with the homeomorphism fi, the above isometry is induced

by a self-homeomorphism of

X2 = X1#(S2 × S2).

Thus the stabilized transvection

(σp,a,v ⊕ 1H (P−))⊕ 1H2(S2×S2;A)

is induced by the stabilized composite self-homeomorphism of

X3 = X2#(S2 × S2).

¤
3More precisely, their theorem realizes any transvection of the form σp+,a,v by a diffeomorphism

of the 1-stabilization.
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8.1.3. Proof of main theorem. Now we modify the induction of [HK93,

Proof B]; our result will be one S2 × S2 connected-summand less efficient than

Hambleton-Kreck [HK93] in the case that π is finite. The main algebraic technique

is a theorem of Bass [Bas73, Thm. IV.3.4] on the transitivity of a certain subgroup

of isometries on the set of hyperbolic planes. We refer the reader to [Bas73, §IV.3]

for the terminology used in our proof. The main topological technique is a certain

clutching construction of an s-cobordism.

Proof of Theorem 8.1.1. We may assume r ≥ d + 1. Let

f : X#r(S2 × S2) −→ Y #r(S2 × S2)

be a homeomorphism. We show that

X := X#(r − 1)(S2 × S2)

is homeomorphic to

Y := Y #(r − 1)(S2 × S2),

thus the result follows by backwards induction on r.

Consider Definition 8.1.13 and [Bas73, Hypotheses IV.3.1]. By hypothesis and

Lemma 8.1.14, the minimal form parameter

Λ := { a− a | a ∈ A }

makes (A, Λ) a quasi-finite unitary (R, +1)-algebra. Note, since

X = X−1#((S ′)2 × S2)

by hypothesis, that the rank r + 1 free A-module summand

P := H2

(
(S ′)2 × pt t r(S2 × pt); A

)

of

Ker w2(X#(S2 × S2))

satisfies [Bas73, Case IV.3.2.a]. Then, by [Bas73, Theorem IV.3.4], the subgroup

G of the group U(H (P )) of unitary automorphisms defined by

G := 〈 H (E(P )), EU(H (P )) 〉
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acts transitively on the set of hyperbolic pairs in H (P ). So, by [Bas73, Corollary

IV.3.5] applied to the quadratic module

V := Ker w2(X−1),

the subgroup G1 of U(V ⊥ H (P )) defined by

G1 :=
〈

1V ⊥ G, EU(H (P ), P ; V ), EU(H (P ), P ; V )
〉

acts transitively on the set of hyperbolic pairs in V ⊥ H (P ). Let

(p0, q0) and (p′0, q
′
0)

be the standard basis of the summand H2(S
2 × S2; A) of

H2(X#(S2 × S2); A) and H2(Y #(S2 × S2); A).

Therefore there exists an isometry ϕ ∈ G1 of

V ⊥ H (P ) = Ker w2(X#(S2 × S2))

such that

ϕ(p0, q0) = (f∗)−1(p′0, q
′
0).

Lemma 8.1.10. The isometry

ϕ⊕ 1H2(3(S2×S2);A)

is induced by a self-homeomorphism g of

X#4(S2 × S2).

Then the homeomorphism

h := (f#13(S2×S2)) ◦ g : X#4(S2 × S2) −→ Y #4(S2 × S2)

satisfies the equation

h∗(pi, qi) = (p′i, q
′
i) for all 0 ≤ i ≤ 3.

Here the hyperbolic pairs

{ (pi, qi) }3
i=1 and { (p′i, q

′
i) }3

i=1

in the last three S2 × S2 summands are defined similarly to (p0, q0) and (p′0, q
′
0).
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Lemma 8.1.11. The following manifold triad (W ; X, Y ) is a compact TOP s-

cobordism rel ∂X:

W 5 := X × [0, 1] \ 4(S2 ×D3)
⋃

h

Y × [0, 1] \ 4(S2 ×D3).

Therefore, since π1(X) ∼= π1(X) is a good group, by the TOP s-cobordism

theorem [FQ90, Thm. 7.1A], we obtain that X is homeomorphic to Y . This proves

the theorem by induction on r. ¤

Remark 8.1.12. The reason for restriction to the A-submodule

K = Ker w2(X#(S2 × S2))

is two-fold. Geometrically [CS71, p. 504], a unique quadratic refinement of the

intersection form exists on K, hence K is maximal. Also, the inverse image of

(p′0, q
′
0) under the isometry f∗ is guaranteed to be a hyperbolic pair in K, hence K

is simultaneously minimal.

8.1.4. Remaining lemmas and proofs.

Definition 8.1.13 ([Bas73, IV.1.3]). An R0-algebra A is quasi-finite if, for

each maximal ideal m ∈ maxspec(R0), the following containment holds:

mAm ⊆ rad Am

and that the following ring is left artinian:

A[m] := Am/rad Am.

Here

Am := (R0)m ⊗R0 A

is the localization of A at m, and rad Am is its Jacobson radical. The pair (A, Λ) is a

quasi-finite unitary (R, λ)-algebra if (A, λ, Λ) is a unitary ring, A is an R-algebra

with involution, and A is a quasi-finite R0-algebra. Here R0 is the commutative

subring of R generated by norms:

R0 =

{ ∑
i

riri

∣∣∣∣ ri ∈ R

}
.
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Lemma 8.1.14. Suppose A is an algebra over a ring R0 such that A is a finitely

generated left R0-module. Then A is a quasi-finite R0-algebra.

Proof. Let m ∈ maxspec(R0). By [Bas68, Corollary III.2.5] to Nakayama’s

lemma, we have

Am ·m = Am · rad (R0)m ⊆ rad Am.

Then

A[m] = (Am/mAm)/ ((rad Am)/mAm)

and is a finitely generated module over the field

(R0)m/m(R0)m,

by hypothesis. Therefore A[m] is left artinian, hence A is quasi-finite. ¤

The existence of the realization g is proven algebraically–we use the terminology

of Hyman Bass [Bas73, §II.3].

Proof of Lemma 8.1.10. Consider Lemma 8.1.6 applied to

X#(S2 × S2) V0 = H (P ) V1 = V.

It suffices to show that the group G1 is generated by a subset of the transvections

σp,a,v with p ∈ H (P ) and v ∈ V ⊕H (P ).

By [Bas73, Cases II.3.10.1–2], the group

EU(H (P ))

is generated by all transvections σu,a,v with u, v ∈ P or u, v ∈ P . By [Bas73, Case

II.3.10.3], the group

H (E(P ))

is generated by a subset of the transvections σu,a,v with u ∈ P, v ∈ P or u ∈ P, v ∈ P .

By [HK93, Definition 1.4], the group

EU(H (P ), P ; V )

is generated by all transvections σu,a,v with u ∈ P, v ∈ V , and the group

EU(H (P ), P ; V )
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is generated by all transvections σu,a,v with u ∈ P, v ∈ V . In any case, p ∈ H (P )

and v ∈ V ⊕H (P ). ¤

The assertion is essentially that (W ; X, Y ) is an h-cobordism rel ∂X with zero

Whitehead torsion.

Proof of Lemma 8.1.11. Observe the following diagram is a pushout, by the

Seifert-VanKampen theorem:

π1

(
X × 1 # 4(S2 × S2)

) h∗
∼=

//

1
²²

π1

(
Y × [0, 1] \ 4(S2 ×D3)

)

²²
π1

(
X × [0, 1] \ 4(S2 ×D3)

)
// π1(W ).

So the maps induced by the inclusion X t Y → W are isomorphisms:

i∗ : π1(X × 0) −→ π1(W )

j∗ : π1(Y × 0) −→ π1(W ).

Denote π as the common fundamental group using these identifications.

Observe that the nontrivial boundary map ∂3 of the cellular chain complex

C∗(j;Z[π]) : 0 −→
⊕

0≤k<4

Z[π] · (S2 ×D3)
h#◦∂−−−−−→

⊕

0≤l<4

Z[π] · (D2 × S2) −→ 0

is obtained as follows. First, attach thickened 2-cells to kill 4 copies of the trivial

circle in Y . Then, onto the resultant manifold

Y # 4(S2 × S2),

attach thickened 3-cells to kill certain belt 2-spheres, which are the images under h of

the normal 2-spheres to the 4 copies of the trivial circle in X. Hence, as morphisms

of based left Z[π]-modules, the boundary map

∂3 = h# ◦ ∂

is canonically identified with the morphism

h∗ = 1 : H2(4(S2 × S2);Z[π]) −→ H2(4(S2 × S2);Z[π])
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on homology induced by the attaching map h. This last equality holds by the

construction of h, since

h∗(pi, qi) = (p′i, q
′
i) for all 0 ≤ i < 4.

So the inclusion j : Y → W has torsion

τ(C∗(j;Z[π])) = [h#]

= [h∗]

= [1]

= 0 ∈ Wh(π).

A similar argument using h−1 shows that the inclusion i : X → W has zero torsion

in Wh(π). Therefore (W ; X, Y ) is a compact TOP s-cobordism rel ∂X. ¤

The last proof uses the basic language of algebraic geometry: spec and maxspec

of commutative rings.

Proof of Proposition 8.1.2. Recall from Proposition 5.1.2 that D∞ is a

good group. Define rings with involution

A := Z[Dω
∞]

R := Z[t + t−1]

R0 := Z[u].

Here, the following elements are transcendental over Z:

t := ab ∈ D∞

u := ω(t)(t + t−1)2 ∈ R0.

Observe that R is the center of A with norm subring R0. Then, by a theorem of

Serre [Bas68, Thm. III.3.1], we obtain

dim(specZ[u]) = dim(specZ) + 1.
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Note dim(specZ) = 1, since Z is a euclidean domain and not a field. It remains to

show that the noetherian topological space P and its subspace M defined by

P := spec(Z[u])

M := maxspec(Z[u])

have equal dimension.

More generally, if R0 is a Jacobson ring, such as the above polynomial ring Z[u],

then

ClosedSets(P) −→ ClosedSets(M); C 7−→ C ∩M

is a lattice isomorphism, whose inverse is given by

D 7−→ closureP(D).

This follows from [Gro66, §IV.10: Prop. 1.2.c’; Déf. 1.3, 3.1, 4.1; Cor. 4.6]. Hence

dim(M) = dim(P) as desired. ¤

8.2. TOP manifolds in the homotopy type of RP4#RP4

Given a tangential homotopy equivalence to a certain type of topological 4-

manifold, the main goal of this section is to uniformly quantify the amount of topo-

logical stabilization sufficient for smoothing and for splitting along a two-sided 3-

sphere. In particular, we sharpen a result of Jahren-Kwasik [JK06, Thm. 1(f)] on

the connected sum of real projective 4-spaces (8.2.5).

Let X be a compact connected DIFF 4-manifold, and write

(π, ω) := (π1(X), w1(X)).

Suppose π is good [FQ90]. Let ϑ ∈ Ls
5(Z[πω]); represent it by a simple unitary

automorphism of the orthogonal sum of r copies of the hyperbolic plane for some

r ≥ 0. Recall [FQ90, Ch. 11] that there exists a unique homeomorphism class

(Xϑ, hϑ) ∈ Ss
TOP(X, ∂X)

as follows. It consists of a compact TOP 4-manifold Xϑ and a simple homotopy

equivalence hϑ : Xϑ → X that restricts to a homeomorphism h : ∂Xϑ → ∂X on
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the boundary, such that there exists a normal bordism rel ∂X from hϑ to 1X with

surgery obstruction ϑ. Such a homotopy equivalence is called tangential.

Theorem 8.2.1. The following r-stabilization admits a DIFF structure:

Xϑ#r(S2 × S2).

Furthermore, there exists a TOP normal bordism between hϑ and 1X with surgery

obstruction ϑ ∈ Ls
5(Z[πω]), such that it consists of exactly 2r many 2-handles and

2r many 3-handles. In particular Xϑ is 2r-stably homeomorphic to X.

Proof. The existence and uniqueness of (Xϑ, hϑ) follow from [FQ90, Theorems

11.3A, 11.1A, 7.1A]. But by [CS71, Theorem 3.1], there exists a DIFF s-bordism

class of

(Xα, hα)

uniquely determined as follows. Given a rank r representative α of the isometry

class ϑ, this pair (Xα, hα) consists of a compact DIFF 4-manifold Xα and a simple

homotopy equivalence hα that restricts to a diffeomorphism on the boundary:

hα : (Xα, ∂Xα) −→ (Xr, ∂X)

Xr := X#r(S2 × S2).

It is obtained from a DIFF normal bordism rel ∂X

(Wα, Hα)

from hα to 1Xr with of surgery obstruction ϑ, constructed with exactly r many 2-

handles and r many 3-handles, and clutched along a diffeomorphism which induces

the simple unitary automorphism α on the surgery kernel

K2(Wα) = H

(⊕
r

Z[π]

)
.

This is rather the consequence, and not the construction4 itself, of Wall realization

[Wal99, Thm. 6.5] in high odd dimensions.

4In the DIFF 4-dimensional case, embeddings are chosen, via a self-diffeomorphism ϕ inducing

α, within certain regular homotopy class of framed immersions of 2-spheres. Cappell and Shaneson

[CS71, Thm. 1.5] cleverly construct ϕ using a circle isotopy theorem of Whitney.
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By uniqueness in the simple TOP structure set, the following simple homotopy

equivalences are s-bordant:

hϑ#1r(S2×S2) and hα.

Hence they differ by pre-composition with a homeomorphism, by the s-cobordism

theorem [FQ90, Thm. 7.1A]. In particular, the domain

Xϑ#r(S2 × S2) is homeomorphic to Xα,

inheriting its DIFF structure. Therefore, post-composition of Hα with the collapse

map Xr → X yields the desired normal bordism between the simple homotopy

equivalences hϑ and 1X , obtained by attaching r + r many 2- and 3-handles. ¤

Next, we recall Hambleton-Kreck-Teichner classification of the homemomor-

phism types and simple homotopy types of closed 4-manifolds with fundamental

group C−2 . Then, we shall give a partial classification of the simple homotopy types

and stable homeomorphism types of their connected sums, which have fundamental

group D−,−
∞ = C−2 ∗C−2 . In the sequel, the ∗ star operation [FQ90, §10.4] flips the

Kirby-Siebenmann invariant of certain topological 4-manifolds.

Theorem 8.2.2 ([HKT94, Thm. 3]). Every closed non-orientable topological 4-

manifold with fundamental group order two is homeomorphic to exactly one manifold

in the following list of w2-types.

(I) The connected sum of ∗CP2 with RP4 or its star. The connected sum of

k ≥ 1 copies of CP2 with RP4 or RP2 × S2 or their stars.

(II) The connected sum of k ≥ 0 copies of S2 × S2 with RP2 × S2 or its star.

(III) The connected sum of k ≥ 0 copies of S2 × S2 with S(γ1 ⊕ γ1 ⊕ ε1) or

#S1rRP4 or their stars, for unique 1 ≤ r ≤ 4.

We explain the terms in the above theorem. Firstly,

R −→ γ1 −→ RP2

denotes the canonical line bundle, and

ε1 := R× RP2
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denotes the trivial line bundle. Secondly,

S2 −→ S(γ1 ⊕ γ1 ⊕ ε1) −→ RP2

is the sphere bundle of the Whitney sum. Finally, the circle-connected sum

M#S1N := M \ E
⋃

∂E

N \ E

is defined by codimension zero embeddings of E in M and N that are not null-

homotopic, where E is the nontrivial bundle:

D3 −→ E −→ S1.

Corollary 8.2.3 ([HKT94, Cor. 1]). Let M and M ′ be closed non-orientable

topological 4-manifolds with fundamental group of order two. Then M and M ′ are

(simple) homotopy equivalent if and only if

(1) M and M ′ have the same w2-type,

(2) M and M ′ have the same Euler characteristic, and

(3) M and M ′ have the same Stiefel-Whitney number: w4
1[M ] = w4

1[M
′] mod 2;

(4) furthermore in w2-type III, that M and M ′ have ± the same Brown-Arf

invariant mod 8.

The following theorem is the main focus of this section. The pieces M and M ′ are

classified by Hambleton-Kreck-Teichner [HKT94], and the UNil-group is computed

by Connolly-Davis [CD04]. Since Z is a regular coherent ring, by Waldhausen’s

vanishing theorem (1.3.2), we have Ñil0(Z;Z−,Z−) = 0. Hence UNils5 = UNilh5 by

Definition 1.1.8.

Theorem 8.2.4. Let M and M ′ be closed non-orientable topological 4-manifolds

with fundamental group of order two. Write X = M#M ′, and denote S as the

3-sphere defining the connected sum. Let ϑ ∈ UNilh5(Z;Z−,Z−).

(1) There exists a unique homeomorphism class (Xϑ, hϑ), consisting of a closed

TOP 4-manifold Xϑ and a tangential homotopy equivalence hϑ : Xϑ → X,

such that it has splitting obstruction

splitL(hϑ; S) = ϑ.
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The function which assigns ϑ to such a (Xϑ, hϑ) is a bijection.

(2) Furthermore,

Xϑ#3(S2 × S2) is homeomorphic to X#3(S2 × S2).

It admits a DIFF structure if and only if X does. There exists a TOP

normal bordism between hϑ and 1X , with surgery obstruction ϑ ∈ Lh
5(D

−,−
∞ ),

such that it is composed of exactly six 2-handles and six 3-handles.

Proof. Recall that the forgetful map

Ls
5(D

−,−
∞ ) −→ Lh

5(D
−,−
∞ )

is an isomorphism by Proposition 5.1.2. Then the existence and uniqueness of

(Xϑ, hϑ) and its handle description follow from Theorem 8.2.1, using r = d + 1 = 3

from Proposition 8.1.2 and Proof 8.1.1. By definition (see Remarks 1.2.4 and 1.3.7),

note that the following composite function is the identity on UNilh5(Z;Z−,Z−):

ϑ 7−→ (Xϑ, hϑ) 7−→ splitL(hϑ; S).

In order to show that the other composite is the identity, note that two tangential

homotopy equivalences (Xϑ, hϑ) and (X ′
ϑ, h

′
ϑ) with the same splitting obstruction

ϑ must be homeomorphic, by freeness2 of the UNilh5 action on the structure set

Sh
TOP(X). Finally, since the 4-manifolds Xϑ and X are 6-stably homeomorphic via

the TOP normal bordism between hϑ and 1X , we conclude that they are in fact

3-stably homeomorphic by Corollary 8.1.3. ¤

Corollary 8.2.5. The above theorem is true for X = RP4#RP4, where the

4-manifold RP4 has w2-type III. ¤

Remark 8.2.6. We comment on a specific aspect of the topology of X. Every

homotopy automorphism of RP4#RP4 is homotopic to a homeomorphism [JK06,

Lem. 1]. Then any automorphism of the group D∞ can be realized [JK06, Claim].

The homeomorphism classes of closed topological 4-manifolds X ′ in the (not neces-

sarily tangential) homotopy type of X has been computed in [BDK, Theorem 2].
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The classification involves the study [BDK, Thm. 1] of the effect of transposition

of the bimodules Z− and Z− in the countably infinite group UNilh5(Z;Z−,Z−). As

promised in the introduction, Corollary 8.2.5 provides a uniform upper bound on the

number of S2 × S2 connected-summands sufficient for [JK06, Theorem 1(f)], and

on the number of 2- and 3-handles sufficient for [JK06, Proof 1(f)].
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