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Our main result is a generalization of Cappell’s 5-dimensional splitting theorem. As
an application, we analyze, up to internal s-cobordism, the smoothable splitting and
fibering problems for certain 5-manifolds mapping to the circle. For example, these maps
may have homotopy fibers which are in the class of finite connected sums of certain
geometric 4-manifolds. Most of these homotopy fibers have non-vanishing second mod 2
homology and have fundamental groups of exponential growth, which are not known to be
tractable by Freedman–Quinn topological surgery. Indeed, our key technique is topological
cobordism, which may not be the trace of surgeries.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The problem of whether or not a continuous mapping f : M → S1 to the circle from a closed manifold M of dimension
> 5 is homotopic to a fiber bundle projection was solved originally in the thesis of F. Thomas Farrell (cf. [10]). The sole
obstruction lies in the Whitehead group of the fundamental group π1M and has been reformulated in several ways [34,9,19].
Precious little is known about the 5-dimensional fibering problem. The purpose of this paper is to provide more information
using recent advances in rigidity. Our approach here blends together the systematic viewpoint of high-dimensional surgery
theory and the more ad-hoc vanishing results known for certain geometric 4-manifolds.

First, we extend some surgery theory. The central theorem of this paper is a generalization of the Cappell–Weinberger
theorem [3,39] for splitting compact 5-manifolds along certain incompressible, two-sided 4-submanifolds (Theorem 4.1).
Indeed, the development of additional tools for our main splitting theorem motivated the author’s initial investigation of
4-manifolds [21].

Then, we attack the fibering problem. A first application is a version of the Farrell fibering theorem for smooth s-
block bundles (Definition 5.1, Theorem 5.8) over the circle S1 with homotopy fiber RP

4 (1.1); compare [8,13,18]. The more
central geometric applications are to topological s-block bundles (Theorem 5.6). Namely, we allow the fibers to be compact,
orientable 4-manifolds whose interiors admit a complete, finite volume metrics of euclidean, real hyperbolic, or complex
hyperbolic type (1.2). Moreover, we allow the fiber to be a finite connected sum of orientable surface bundles over surfaces
of positive genus, and of H-bundles over the circle S1 such that the compact irreducible 3-manifold H either is S3 or D3,
or is orientable with non-zero first Betti number (hence Haken), or has complete, finite volume hyperbolic interior (1.4).
The hypotheses require smoothness of the total space and the conclusions assert smoothability of the fiber.

1.1. Examples of fibers

Our examples are chosen so that Farrell’s fibering obstruction in K -theory and Cappell’s splitting obstruction in L-theory
vanish.
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First family of examples
These fibers are certain non-orientable, smooth 4-manifolds with fundamental group cyclic of order two [18]. Assume:

Hypothesis 1.1. Suppose Q is a non-orientable DIFF 4-manifold of the form

Q = Q 0#Q 1

where:

(1) Q 0 = #r(S2 × S2) for some r � 0, and
(2) Q 1 = S2 × RP

2 or Q 1 = S2
� RP

2 or Q 1 = #S1n(RP
4) for some 1 � n � 4.

Second family of examples
These irreducible, possibly non-orientable fibers have torsion-free fundamental groups of exponential growth and have

non-vanishing second homotopy group. Assume:

Hypothesis 1.2. Suppose S is a compact, connected DIFF 4-manifold such that:

(1) S is the total space of a DIFF fiber bundle S2 → S → Σ , for some compact, connected, possibly non-orientable 2-
manifold Σ of positive genus, or

(2) S is the total space of a DIFF fiber bundle H → S → S1, for some closed, connected, hyperbolic 3-manifold H , or
(3) the interior S − ∂ S admits a complete, finite volume metric of euclidean, real hyperbolic, or complex hyperbolic type.

Moreover, assume H1(S;Z) is 2-torsionfree if S is non-orientable. Furthermore, in the fiber bundle S �h S1 (resp. S �α S1)
considered for types (2) and (3) in this section, assume h : S → S (resp. α) is homotopic rel ∂ S to an isometry of S − ∂ S .1

Remark 1.3. According to [17, Lemma 5.9], the isomorphism classes of fiber bundles S2 → S → Σ in type (1) are in bijective
correspondence with the product H1(Σ;Z2) × H2(Σ;Z2). The orientable S2-bundles over Σ are classified by the second
factor. The isomorphism classes of fiber bundles H → S → S1 in type (2) are in bijective correspondence with π0(Isom H).

Third family of examples
These reducible, orientable fibers have torsion-free fundamental groups of exponential growth and have vanishing second

homotopy groups. A simple example of such a fiber is F = #n(S3 × S1), whose fundamental group π1(F ) is the free group
of rank n. Assume:

Hypothesis 1.4. Suppose F is an orientable DIFF 4-manifold of the form

F = F1# · · ·#Fn

for some n > 0, under the following conditions on the compact, connected, orientable 4-manifolds Fi . Assume:

(1) Fi is the total space of a DIFF fiber bundle Hi → Fi → S1, for some compact, connected, orientable 3-manifold Hi such
that:
(a) Hi is S3 or D3, or
(b) Hi is irreducible with non-zero first Betti number, or

(2) Fi is the total space of a DIFF fiber bundle Σ
f

i → Fi → Σb
i , for some compact, connected, orientable 2-manifolds Σ

f
i

and Σb
i of positive genus.

1.2. Main results

The first splitting theorem is a specialization of the general splitting theorem (Theorem 4.1) to the mapping torus X �h S1

of a homotopy self-equivalence h : X → X for certain classes of smooth 4-manifolds X .

Theorem (5.4). Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let h : X → X be a homotopy equivalence which
restricts to a diffeomorphism ∂h : ∂ X → ∂ X. Suppose M is a compact DIFF 5-manifold and g : M → X �h S1 is a homotopy equivalence
which restricts to a diffeomorphism ∂ g : ∂M → ∂ X �∂h S1 .

Then g is homotopic to a map g′ which restricts to a simple homotopy equivalence g′ : X ′ → X such that the TOP inverse image
X ′ := (g′)−1(X) is homeomorphic to X and the exterior M ′ of X ′ in M is a smoothable TOP self s-cobordism of X.

1 This hypothesis is required since Mostow rigidity fails for product geometries: the E
4-manifold T 2 × T 2 has monodromies made from non-conformal

elements of π0 Homeo(T 2) = PSL2(Z).
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In other words, cutting M along the bicollared, smoothable TOP 4-submanifold X ′ := (g′)−1(X) ≈ X yields a smoothable
TOP s-cobordism (M ′; X, X) and a simple homotopy equivalence (g′∞; g′

0, g′
1) : (M ′; X, X) → X × (Δ1;0,1) of manifold triads

such that g′
1 = α ◦ g′

0. Be aware that the existence of a smooth structure on X ′ ≈ X does not imply that X ′ is a DIFF
submanifold of M .

The second splitting theorem connects homotopy structures on mapping tori to smoothable s-cobordisms, homotopy
self-equivalences, and the smoothing invariant.

Theorem (5.5). Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let α : X → X be a diffeomorphism. Then there is an
exact sequence of based sets:

πα
1

(̃
S

s
TOP+(X), G̃s(X)

) ∪−→ S h
TOP

(
X �α S1) ks−→ F2 ⊕ H1(X;F2)α.

Our fibering theorem is proven using a key strategy of Tom Farrell [9]. If the smooth 4-manifold X is closed and simply-
connected, the analogous theorem was proven by J. Shaneson [33, Thm. 5.1]. We do not assume ∂ X is connected.

Theorem (5.6). Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let M be a DIFF 5-manifold, and let f : M → S1

be a continuous map. Suppose ∂ X → ∂M
∂ f−→ S1 is a DIFF fiber bundle and the homotopy equivalence ∂ X → hofiber(∂ f ) extends to

a homotopy equivalence X → hofiber( f ). Then f : M → S1 is homotopic rel ∂M to the projection of a smoothable TOP s-block bundle
with fiber X.

Remark. Let X be an aspherical, compact, orientable DIFF 4-manifold with fundamental group π . Suppose the non-
connective L-theory assembly map Hn(π ;L.h) → Lh

n(Z[π ]) is an isomorphism for n = 4,5. Then the general splitting and
fibering theorems (4.1, 5.6) hold for X , with the inclusion of the standard high-dimensional algebraic K - and L-theory
obstructions.

1.3. Techniques

Our methods employ geometric topology: topological transversality in all dimensions (Freedman and Quinn [12]) and
the prototype of a nilpotent normal cobordism construction for smooth 5-manifolds (Cappell [7,3]). Our hypotheses are
algebraic-topological in nature and come from the surgery characteristic class formulas of Sullivan–Wall [38] and from the
assembly map components of Taylor–Williams [35]. For the main application, the difficulty is showing that vanishing of
algebraic K - and L-theory obstructions is sufficient for a solution to the topological fibering problem as an s-block bundle
over the circle.

The reader should be aware that the topological transversality used in Section 2 produces 5-dimensional TOP normal
bordisms W → X × Δ1 which may not be smoothable, although ∂W = ∂−W ∪ ∂+W is smoothable. In particular, W may
not admit a TOP handlebody structure relative to ∂−W . Hence W may not be the trace of surgeries on topologically em-
bedded 2-spheres in X . Therefore, W may not be produced by Freedman–Quinn surgery theory, which is developed only
for fundamental groups π1(X) of class S A, containing subexponential growth [22].

2. Five-dimensional assembly on 4-manifolds

Let (X, ∂ X) be a based, compact, connected, TOP 4-manifold with fundamental group π = π1(X) and orientation charac-
ter ω = w1(X) :π → Z

× . Recall, for any α ∈ π and β ∈ π2(X), that there is a Whitehead product [α,β] ∈ π2(X) which
vanishes if and only if the loop α acts trivially on β . The π -coinvariants are the abelian group quotient π2(X)π :=
π2(X)/〈[α,β] | α ∈ π, β ∈ π2(X)〉.

Hypothesis 2.1. Suppose that the following homomorphism is surjective:

( I1 κ3 ) : H1
(
π ;Z

ω
) ⊕ H3(π ;Z2) −→ Lh

5

(
Z[π ]ω)

and that the following induced homomorphism is injective:

Hurewicz :
(
π2(X) ⊗ Z2

)
π

−→ H2(X;Z2).

Theorem 2.2. Assume Hypothesis 2.1. Then the following surgery obstruction map is surjective:

σ∗ : NTOP
(

X × Δ1) −→ Lh
5

(
Z[π ]ω)

. (2.2.1)

Following Sylvain Cappell’s work on the Novikov conjecture, Jonathan Hillman obtained the same conclusion under
different, group-theoretic hypotheses for a square-root closed graph of certain class of groups [17, Lem. 6.9].
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Proof. There is a commutative diagram

NTOP(X × Δ1)
σ∗

∩[X]L. ∼=

Lh
5(Z[π ]ω)

H5(X;G/TOPω)
u∗ H5(π ;G/TOPω).

Aπ 〈1〉

Since Aπ 〈1〉 = I1 + κ3 is surjective and u1 : H1(X;Z
ω) → H1(π ;Z

ω) is an isomorphism, it suffices to show that
u3 : H3(X;Z2) → H3(π ;Z2) is surjective.

Consider the Leray–Serre spectral sequence, with π -twisted coefficients, of the fibration X̃ → X u−→ Bπ , where X̃ is the
universal cover of X . Then the map u3 is an edge homomorphism with image subgroup E∞

3,0. Note

E∞
3,0 = Ker

(
d3

3,0 : H3(Bπ ;Z2) −→ (
π2(X) ⊗ Z2

)
π

)
.

There is an exact sequence involving the associated graded groups E∞
0,2 and E∞

2,0 and inducing the classical Hopf sequence:

0 → Cok
(
d3

3,0

) Hurewicz∗−−−−−−→ H2(X;Z2)
u∗−−→ H2(Bπ ;Z2) → 0.

It follows from the second part of the hypothesis that the transgression ∂ = d3
3,0 is zero. Therefore Im(u3) = E∞

3,0 =
H3(π ;Z2), hence σ∗ is surjective. �

Some families of reducible examples X of the theorem are obtained as finite connected sums of certain compact, aspher-
ical 4-manifolds Xi which are constructed from non-positively curved manifolds. Recall that the interior of any compact
surface Σ of positive genus has the structure of a complete, finite volume, euclidean or hyperbolic 2-manifold; hence Σ is
aspherical. The following corollary gives a rich source of examples, including X = #n(S3 × S1), whose fundamental group is
free.

Corollary 2.3. Suppose X is a TOP 4-manifold of the form

X = X1# · · ·#Xn

for some n > 0 and some compact, connected 4-manifolds Xi with (torsion-free) fundamental groups Λi such that:

(1) the interior Xi − ∂ Xi admits a complete, finite volume metric of real or complex hyperbolic type, or
(2) Xi is the total space of a fiber bundle Σ

f
i → Xi → Σb

i , for some compact, connected 2-manifolds Σ
f

i and Σb
i of positive genus,2

or
(3) Xi is the total space of a fiber bundle Hi → Xi → S1 , for some compact, connected, irreducible 3-manifold Hi such that:

(a) Hi is S3 or D3 ,
(b) Hi is orientable with non-zero first Betti number (i.e. H1(Hi;Z) �= 0, e.g. the boundary ∂ Hi is non-empty), or
(c) the interior Hi − ∂ Hi admits a complete, finite volume metric of hyperbolic type.

Then the topological 5-dimensional surgery obstruction map (2.2.1) is surjective. Moreover, Xi only needs to have type (1), (2), or (3)
up to homotopy equivalences which respect orientation characters.

Proof. Let Λi := π1(Xi) be the fundamental group of Xi with orientation character ωi :Λi → Z
× . Consider the connective

assembly map

AΛi 〈1〉 = ( I1 κ3 ) : H5
(

BΛi;G/TOPωi
) −→ Lh

5

(
Z[Λi]ωi

)
.

In order to verify Hypothesis 2.1 and apply Theorem 2.2, it suffices to show that:

(i) π2(Xi) = 0,
(ii) Hd(BΛi;Z) = 0 for all d > 4, and

(iii) the non-connective assembly map is an isomorphism:

AΛi : H5
(

BΛi;L.ωi
) −→ Lh

5

(
Z[Λi]ωi

)
.

Then AΛi 〈1〉 is an isomorphism. So, since the trivial group 1 is square-root closed in the torsion-free groups Λi , the UNil-
groups associated to the free product π = �n

i=1Λi vanish, by [2, Corollary 4], which was proven in [3, Lemmas II.7, 8, 9].

2 Positive genus: implies torsion-free; each surface Σ
f

i and Σb
i is a finite connected sum of at least either one torus T 2 or two real projective planes RP

2,

with arbitrary punctures. The first non-orientable example is the Klein bottle Kl = RP
2#RP

2.
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Therefore, by the Mayer–Vietoris sequence in L-theory [2, Thm. 5(ii)], Proposition 5.9 for h-decorations, the five-lemma, and
induction on n, we obtain that Aπ 〈1〉 is an isomorphism. Moreover, by the Mayer–Vietoris sequence in singular homology
and the Hurewicz theorem applied to the universal cover X̃ , we obtain that π2(X) = 0.

There are three types of connected summands Xi .
Type 1. Since Xi − ∂ Xi is covered by H

4 or CH
2, we obtain Xi is aspherical. That is, the compact 4-manifold Xi is model

for BΛi . Then (i) and (ii) are satisfied. Since X − ∂ Xi is complete, homogeneous, and has non-positive sectional curvatures,
by [11, Proposition 0.10], condition (iii) is satisfied.

Type 2. Since the surfaces Σ
f

i and Σb
i are aspherical, by the homotopy fibration sequence, we obtain that the compact

4-manifold Xi is aspherical. Then (i) and (ii) are satisfied. By a result of J. Hillman [16, Lemma 6] for closed, aspherical
surface bundles over surfaces, condition (iii) is satisfied. Indeed, the Mayer–Vietoris argument extends to compact, aspherical
surfaces with boundary: each circle C j in the connected-decomposition of the aspherical surface Σb

i = F1# · · ·#Fr generates
an indivisible element in the free fundamental group of the many-punctured torus or Klein bottle Fk , hence each inclusion
π1(C j) → π1(Fk) of fundamental groups is square-root closed (see [5, Thm. 2.4] for detail).

Type 3. There are three types of fibers Hi .
Type 3a. Conditions (i)–(iii) are immediately satisfied.
Type 3b. Since Hi is a compact, connected, irreducible, orientable 3-manifold and π1(Hi) is infinite, using the Sphere

Theorem of Papakyriakopoulos and the Hurewicz theorem, it can be shown that Hi is aspherical. Then Xi is aspherical, so
conditions (i) and (ii) are satisfied. Since Hi is irreducible and Hi �= D3, no connected component of ∂ Hi is a 2-sphere. If
∂ Hi is non-empty, then it can be shown that Hi is Haken [15, Lem. 6.8]. So, by theorems of S. Roushon, the non-connective
assembly map Aπ1(Hi) is an isomorphism in dimensions 4 and 5: if ∂ H is non-empty, this follows from [32, Theorem 1.1(1)],
and if ∂ H is empty, this follows from [31, Theorem 1.2]. Therefore, by the Ranicki–Shaneson sequence [27, Thm. 5.2], Propo-
sition 5.9 for h-decorations, and the five-lemma, we obtain that condition (iii) is satisfied.

Type 3c. Since H
3 is the universal cover of Hi − ∂ Hi , the interior Hi − ∂ Hi is aspherical. But, since ∂ Hi has a collar

implies that Hi − ∂ Hi ↪→ Hi is a homotopy equivalence, we obtain that Hi is also aspherical. Then Xi is aspherical, so
conditions (i) and (ii) are satisfied. Since H

3 isometrically covers Hi − ∂ Hi , by a result of Farrell and Jones [11, Prop. 0.10],
the non-connective assembly map Aπ1(Hi) is an isomorphism in dimensions 4 and 5. Therefore, by the Ranicki–Shaneson
sequence [27, Thm. 5.2], Proposition 5.9 for h-decorations, and the five-lemma, we obtain that condition (iii) is satisfied. �

Here is a family of non-aspherical examples X of the theorem.

Corollary 2.4. Suppose X is a compact TOP 4-manifold which is homotopy equivalent to the total space of a fiber bundle S2 → E → Σ ,
for some compact, connected 2-manifold Σ of positive genus. Then the topological 5-dimensional surgery obstruction map (2.2.1) is
surjective.

Proof. By [17, Theorem 6.16], X is s-cobordant to E . Hence there is an induced (simple) homotopy equivalence X → E
which respects orientation characters. The same methods of Corollary 2.3(2) show that ( I1 κ3 ) is surjective. Note that
π1(E) = π1(Σ) may not act trivially on π2(E) = π2(S2) = Z but does acts trivially on π2(E) ⊗ Z2 = Z2. An elementary
argument with the Leray–Serre spectral sequence shows that H2(E;Z2) = H2(S2;Z2) ⊕ H2(Σ;Z2). Therefore Hurewicz is
injective, and we are done by Theorem 2.2. �

The difference between DIFF and TOP for σ∗ is displayed in [21, Prop. 2.1]. Later, we shall refer to a hypothesis introduced
by Cappell [3, Thm. 5, Rmk.].

Hypothesis 2.5. Suppose that the following map is surjective:

σ∗ : NDIFF
(

X × Δ1) −→ Lh
5

(
Z[π ]ω)

.

Remark 2.6. Suppose X is a DIFF 4-manifold and πω = (C2)
− . By [38, Theorem 13A.1], the following surgery obstruction

map is automatically surjective:

σ∗ : NDIFF
(

X × Δ1) −→ Lh
5

(
Z[C2]−

) = 0.

Topological surjectivity fails for a connected sum X#X ′ of such manifolds: the Mayer–Vietoris sequence [2] shows that the
cokernel is UNilh5(Z;Z

−,Z
−) ∼= UNilh3(Z;Z,Z), and this abelian group was shown to be infinitely generated [6].

3. Exactness at 4-dimensional normal invariants

For the convenience of the reader, we first recall the relevant hypotheses from the precursor [21, §3]. Let (X, ∂ X) be a
based, compact, connected TOP 4-manifold with fundamental group π and orientation character ω :π → Z

× . Let u : X → Bπ
be a based, continuous map that induces an isomorphism on fundamental groups. Denote the induced homomorphism

u2 : H2(X;Z2) −→ H2(Bπ ;Z2).



Q. Khan / Topology and its Applications 156 (2008) 284–299 289
Recall that X satisfies Poincaré duality with a unique mod 2 orientation class [X] ∈ H4(X, ∂ X;Z2). The second Wu class
v2(X) ∈ H2(X;Z2) is a homomorphism

v2(X) : H2(X;Z2) −→ Z2

uniquely determined, for all cohomology classes a ∈ H2(X, ∂ X;Z2), by the formula
〈
v2(X),a ∩ [X]〉 = 〈

a ∪ a, [X]〉.
Consider three cases for the orientation character ω below. The homomorphism

κ2 : H2(Bπ ;Z2) −→ Lh
4

(
Z[π ]ω)

is the 2-dimensional component of the L-theory assembly map.

Hypothesis 3.1. Let X be orientable. Suppose that κ2 is injective on the subgroup u2(Ker v2(X)).

Hypothesis 3.2. Let X be non-orientable such that π contains an orientation-reversing element of finite order, and if
CAT = DIFF, then suppose that orientation-reversing element has order two. Suppose that κ2 is injective on all H2(Bπ ;Z2),
and suppose that Ker(u2) ⊆ Ker(v2).

Hypothesis 3.3. Let X be non-orientable such that there exists an epimorphism πω → Z
− . Suppose that κ2 is injective on

the subgroup u2(Ker v2(X)).

Next, we recall the relevant results from [21, §4] used frequently in the later proofs in this paper. The subcategory TOP0 ⊂
TOP consists of those maps f : M → X with Kirby–Siebenmann stable smoothing invariant ks( f ) := ks(M) − ks(X) = 0 ∈ Z2.
All structure sets and normal invariants below are relative to a diffeomorphism on ∂ X .

Theorem 3.4. Let (X, ∂ X) be a based, compact, connected, CAT 4-manifold with fundamental group π = π1(X) and orientation
character ω = w1(X) :π → Z

× .

(1) Suppose Hypothesis 3.1 or 3.2. Then the surgery sequence of based sets is exact at the smooth normal invariants:

S s
DIFF(X)

η−→ NDIFF(X)
σ∗−→ Lh

4

(
Z[π ]ω)

. (3.4.1)

(2) Suppose Hypothesis 3.1 or 3.2 or 3.3. Then the surgery sequence of based sets is exact at the stably smoothable normal invariants:

S s
TOP0(X)

η−→ NTOP0(X)
σ∗−→ Lh

4

(
Z[π ]ω)

. (3.4.2)

Corollary 3.5. Let π be a free product of groups of the form

π = �n
i=1Λi

for some n > 0, where each Λi is a torsion-free lattice in either Isom(Emi ) or Isom(Hmi ) or Isom(CH
mi ) for some mi > 0. Suppose

the orientation character ω is trivial. Then the surgery sequences (3.4.1) and (3.4.2) are exact.

Corollary 3.6. Suppose X is a DIFF 4-manifold of the form

X = X1# · · ·#Xn#r
(

S2 × S2)

for some n > 0 and r � 0, and each summand Xi is either S2 × RP
2 or S2

� RP
2 or #S1n(RP

4) for some 1 � n � 4. Then the surgery
sequences (3.4.1) and (3.4.2) are exact.

Corollary 3.7. Suppose X is a TOP 4-manifold of the form

X = X1# · · ·#Xn#r
(

S2 × S2)

for some n > 0 and r � 0, and each summand Xi is the total space of a fiber bundle

Hi −→ Xi −→ S1.

Here, we suppose Hi is a compact, connected 3-manifold such that:

(1) Hi is S3 or D3 , or
(2) Hi is irreducible with non-zero first Betti number.

Moreover, if Hi is non-orientable, we assume that the quotient group H1(Hi;Z)(αi)∗ of coinvariants is 2-torsionfree, where
αi : Hi → Hi is the monodromy homeomorphism. Then the surgery sequence (3.4.2) is exact.



290 Q. Khan / Topology and its Applications 156 (2008) 284–299
Corollary 3.8. Suppose X is a TOP 4-manifold of the form

X = X1# · · ·#Xn#r
(

S2 × S2)

for some n > 0 and r � 0, and each summand Xi is the total space of a fiber bundle

Σ
f

i −→ Xi −→ Σb
i .

Here, we suppose the fiber and base are compact, connected 2-manifolds, Σ
f

i �= RP
2 , and Σb

i has positive genus. Moreover, if Xi

is non-orientable, we assume that the fiber Σ
f

i is orientable and that the monodromy action of π1(Σ
b
i ) of the base preserves any

orientation on the fiber. Then the surgery sequence (3.4.2) is exact.

4. Splitting of 5-manifolds

We generalize Cappell’s 5-dimensional splitting theorem [3, Thm. 5, Remark], using the homological hypotheses devel-
oped in Sections 2–3. Our proof incorporates the possible non-vanishing of UNil6. The DIFF and TOP cases are distinguished,
and the results of this section are applied to the fibering problem in Section 5. The stable surgery version of the splitting
theorem can be found in [7]. However, the stable splitting of 5-manifolds is not pursued here, since connecting sum a single
fiber with S2 × S2 destroys the fibering property over S1.

Let (Y , ∂Y ) be a based, compact, connected CAT 5-manifold. Let (Y0, ∂Y0) is a based, compact, connected CAT 4-manifold.
Suppose Y0 is an incompressible, two-sided submanifold of Y . That is, the induced homomorphism π1(Y0) → π1(Y ) is
injective, and there is a separating decomposition

Y = Y− ∪Y0 Y+ with ∂Y = ∂Y− ∪∂Y0 ∂Y+
or, respectively, a non-separating decomposition

Y = ∪Y0 Y∞ with ∂Y = ∪∂Y0∂Y∞.

The Seifert–van Kampen theorem identifies

π1(Y ) = Π = Π− ∗Π0 Π+
as the corresponding injective, amalgamated free product of fundamental groups, or, respectively,

π1(Y ) = Π = ∗Π0Π∞
as the corresponding injective, HNN-extension3 of fundamental groups.

A homotopy equivalence g to Y is CAT splittable along Y0 if g is homotopic, relative to a CAT isomorphism ∂ g , to
a union g− ∪g0 g+ (resp. ∪g0 g∞) of homotopy equivalences from compact CAT manifolds to Y− , Y0, Y+ (resp. Y0, Y∞) [1].
Under certain conditions, we show that the vanishing of high-dimensional obstructions in Nil0 and UNils

6 are sufficient for
splitting. These two obstructions were formulated by Friedhelm Waldhausen (1960s) and Sylvain Cappell (1970s).

Theorem 4.1. Let (Y , ∂Y ) be a finite, simple Poincaré pair of formal dimension 5 [38, §2]. Suppose ∂Y and Y0 are compact DIFF
4-manifolds such that (Y0, ∂Y0) is a connected, incompressible, two-sided Poincaré subpair of (Y , ∂Y ) with tubular neighborhood
Y0 × [−1,1]. If CAT = DIFF, assume Y0 satisfies Hypothesis 3.1 or 3.2 and satisfies Hypothesis 2.5. If CAT = TOP, assume Y0 satisfies
Hypothesis 3.1 or 3.2 or 3.3 and satisfies Hypothesis 2.1.

Suppose g : (W , ∂W ) → (Y , ∂Y ) is a homotopy equivalence for some compact DIFF 5-manifold W such that the restriction
∂ g : ∂W → ∂Y is a diffeomorphism. Then g is CAT splittable along Y0 if and only if

(1) the cellular splitting obstruction, given by the image of the Whitehead torsion τ (g) ∈ Wh1(Π), vanishes:

splitK (g; Y0) ∈ Wh0(Π0) ⊕ Ñil0
(
Z[Π0];Z[Π− − Π0],Z[Π+ − Π0]

)

or, respectively,

splitK (g; Y0) ∈ Wh0(Π0) ⊕ Ñil0
(
Z[Π0];Z

[
Π∞ − Π−

0

]
,Z

[
Π∞ − Π+

0

]
,−Z[Π∞]+,+Z[Π∞]−

)

and subsequently
(2) the manifold splitting obstruction, given by the algebraic position of discs in the fundamental subdomains of the Π0-cover, van-

ishes:

splitL(g; Y0) ∈ UNils
6

(
Z[Π0]ω0 ;Z[Π− − Π0]ω− ,Z[Π+ − Π0]ω+)

or, respectively,

splitL(g; Y0) ∈ UNils
6

(
Z[Π0]ω0 ;Z

[
Π∞ − Π−

0

]ω∞
,Z

[
Π∞ − Π+

0

]ω∞)
.

3 In the non-separating case, we write Π−
0 , Π+

0 as the two monomorphic images of Π0 in Π∞ .
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Furthermore, if g is CAT splittable along Y0 , then g is homotopic rel ∂W to a split homotopy equivalence g′ : W → Y such that the
CAT inverse image (g′)−1(Y0) is CAT isomorphic to Y0 .

Our theorem mildly generalizes [3, Theorem 5, Remark], which included: if Π0 is a finite group of odd order, then
H2(Π0;Z2) = 0 and Lh

5(Z[Π0]) = 0.

Corollary 4.2 (Cappell). Suppose g : W → Y is a homotopy equivalence of closed DIFF 5-manifolds. Assume:

(1) Y0 is orientable,
(2) H2(Π0;Z2) = 0,
(3) Π0 is square-root closed4 in Π , and
(4) the following surgery obstruction map is surjective (cf. Hypothesis 2.5):

σ∗ : NDIFF
(

X × Δ1) −→ Lh
5

(
Z[Π0]

)
.

Then g is DIFF splittable along Y0 if and only if the above image splitK (g; Y0) of the Whitehead torsion τ (g) ∈ Wh1(Π) vanishes.

Define a decoration subgroup B ⊆ Wh1(Π) as the image of Wh1(Π−) ⊕ Wh1(Π+), respectively Wh1(Π∞), under the
homomorphism induced by inclusion. Recall that the structure set S B

CAT(Y ) is defined as the set of equivalence classes
of homotopy equivalences g : (W , ∂W ) → (Y , ∂Y ) such that W is a compact CAT manifold and ∂ g : ∂W → ∂Y is a CAT
isomorphism and g has Whitehead torsion τ (g) ∈ B , under the equivalence relation g ∼ g′ if there exists a CAT isomorphism
h : W → W ′ such that g′ ◦h is homotopic to g . The split structure set S split

CAT (Y ; Y0) is defined as the subset of S B
CAT(Y ) whose

elements are represented by homotopy equivalences CAT splittable along Y0. The abelian group UNils
6 depends only on the

fundamental groups Π− , Π0, Π+ (resp. Π0, Π∞) with orientation character ω. UNils
6 is algebraically defined and has zero

decoration in Ñil0 [2].

Definition 4.3. Let (Y , ∂Y ) be a compact DIFF manifold. Define the smoothable structure set STOP+(Y ) as the image of
SDIFF(Y ) under the forgetful map to STOP(Y ). That is, STOP+(Y ) is the subset of STOP(Y ) consisting of the elements rep-
resentable by homotopy equivalences g : (W , ∂W ) → (Y , ∂Y ) such that W admits a DIFF structure extending the DIFF
structure on ∂W induced by ∂ g .

A more succinct statement illuminates the method of proof in higher dimensions: Sylvain Cappell’s “nilpotent normal
cobordism construction” [1,3].

Theorem 4.4. Let (Y , ∂Y ) be a finite, simple Poincaré pair of formal dimension 5 [38, §2]. Suppose ∂Y and Y0 are compact DIFF
4-manifolds such that (Y0, ∂Y0) is a connected, incompressible, two-sided Poincaré subpair of (Y , ∂Y ) with tubular neighborhood
Y0 × [−1,1].

(1) Assume Y0 satisfies Hypothesis 3.1 or 3.2 and satisfies Hypothesis 2.5. Then there is a bijection

nnccs : S B
DIFF(Y ) −→ S split

DIFF (Y ; Y0) × UNils
6

such that composition with projection onto the first factor is a subset retraction, and composition with projection onto the second
factor is the manifold splitting obstruction splitL . Furthermore, g and nnccs(g) have equal image in NDIFF(Y ).

(2) Assume Y0 satisfies Hypothesis 3.1 or 3.2 or 3.3 and satisfies Hypothesis 2.1. Then there is an injection

nnccs+ : S B
TOP+(Y ) −→ S split

TOP (Y ; Y0) × UNils
6

such that composition with projection onto the first factor restricts to a subset inclusion S split
TOP+(Y ; Y0) ⊆ S split

TOP (Y ; Y0), and com-
position with projection onto the second factor is the manifold splitting obstruction splitL . Furthermore, g and nnccs(g) have
equal image in NTOP(Y ).

4.1. Proof by cobordism

We simply extend Cappell’s modification [3, Chapter V] of the Cappell–Shaneson proof [7, Theorems 4.1, 5.1] of 5-dimen-
sional splitting as to include the non-vanishing of UNils

6. Our homological conditions eschew the performance of surgery on
the 4-manifold Y0. Examples are given in Section 5.

4 Square-root closed: if g ∈ Π , then g2 ∈ Π0 implies g ∈ Π0.
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Remark 4.5. Friedhelm Waldhausen had shown that Ñil0 is a summand of Wh1(Π) and that there is an exact sequence of
abelian groups [37]:

Wh1(Π0)
i−−i+−−−−→ Wh1(Π−) ⊕ Wh1(Π+)

j−+ j+−−−−−→ Wh1(Π)/Ñil0

∂−→ Wh0(Π0)
i−−i+−−−−→ Wh0(Π−) ⊕ Wh0(Π+)

j−+ j+−−−−−→ Wh0(Π)

or, respectively,

Wh1(Π0)
i−−i+−−−−→ Wh1(Π∞)

j∞−−→ Wh1(Π)/Ñil0
∂−→ Wh0(Π0)

i−−i+−−−−→ Wh0(Π∞)
j∞−−→ Wh0(Π).

Waldhausen showed that the cellular splitting obstruction is algebraically defined as the image splitK (g; Y0) ∈ Wh0(Π0) ⊕
Ñil0 of the Whitehead torsion τ (g) ∈ Wh1(Π). It vanishes if and only if g is CW splittable along Y0 [36, erratum].

Remark 4.6. Sylvain Cappell had shown that UNils
6 is a summand of LB

6 (Π) and that there is an exact sequence of abelian
groups [2]:

Lh
6(Π0)

i−−i+−−−−→ Lh
6(Π−) ⊕ Lh

6(Π+)
j−+ j+−−−−−→ LB

6 (Π)/UNils
6

∂−→ Lh
5(Π0)

i−−i+−−−−→ Lh
5(Π−) ⊕ Lh

5(Π+)
j−+ j+−−−−−→ LB

5 (Π)

or, respectively,

Lh
6(Π0)

i−−i+−−−−→ Lh
6(Π∞)

j∞−−→ LB
6 (Π)/UNils

6
∂−→ Lh

5(Π0)
i−−i+−−−−→ Lh

5(Π∞)
j∞−−→ LB

5 (Π).

If the cellular splitting obstruction vanishes, then Cappell showed that the manifold splitting obstruction is algebraically
defined as splitL(g; Y0) ∈ UNils

6. It vanishes if g is CAT splittable along Y0 [1]. We shall investigate the converse.

Proof of Theorem 4.1. (Necessity) Suppose g is CAT splittable along Y0. Then splitK (g; Y0) = 0 and splitL(g; Y0) = 0 vanish
by Remarks 4.5 and 4.6.

(Sufficiency) Suppose splitK (g; Y0) = 0 and splitL(g; Y0) = 0. Then g is CW splittable along Y0 and g ∈ S B
DIFF(Y )

(resp. g ∈ S B
TOP+(Y )) by Remark 4.5. Since Y0 satisfies the hypotheses in Sections 2–3 for exactness of the CAT surgery

sequence, by Theorem 4.4, it follows that nnccs(g) = (g,0). In other words, g is CAT splittable along Y0.
Furthermore, the normal bordisms over Y0 in the proof of Theorem 4.4 depend only on the homotopy self-equivalences

and normal self-bordisms of [21, Proposition 3.5] and Section 2. Therefore g : W → Y is CAT normally bordant to a split
homotopy equivalence g′ = g4 such that the CAT restriction g′ : (g′)−1(Y0) → Y0 is a homotopy self-equivalence. �
Proof of Theorem 4.4. (Definition, I) Let g : (W , ∂W ) → (Y , ∂Y ) be a homotopy equivalence with Whitehead torsion
τ (g) ∈ B and ∂ g a CAT isomorphism, representing an element of S B

CAT(Y ). Our principal goal is to define a CAT normal
bordism G ′ over Y × Δ1 from g to a homotopy equivalence g′ : (W ′, ∂W ′) → (Y , ∂Y ) such that h is CAT split along Y0 and
that G ′ has surgery obstruction

σ∗(G ′) ∈ UNils
6 ⊆ LB

6 (Π).

Define

nnccs(g) := (
g′, σ∗(G ′)

) ∈ S split
CAT (Y ; Y0) × UNils

6.

(Well-definition; Projection properties) Note that σ∗(G ′) depends only on the normal bordism class of G ′ relative to
∂G ′ = g � g′ , and that σ∗(G ′) lies in LB

6 since τ (g), τ (g′) ∈ B . Let Z := CP
4#2(S3 × S5) be the closed CAT 8-manifold with

Euler characteristic χ(Z) = 1 and signature σ ∗(Z) = 1 used by Weinberger for decorated periodicity [39]. Cappell has shown

σ∗(G ′ × 1Z ) = splitL(g × 1Z ; Y0 × Z)

for 13-dimensional homotopy equivalences [3]. Note σ∗(G ′) = σ∗(G ′ × 1Z ), by Kwun–Szczarba’s torsion product formula
and Ranicki’s surgery product formula [28, Prop. 8.1(ii)]. Also note splitL(g × 1Z ; Y0 × Z) = splitL(g; Y0), since these split-
ting obstructions in UNils

6 coincide [29, Prop. 7.6.2A] with the codimension-one quadratic signatures [29, Prop. 7.2.2] of g
and g × 1Z in the codimension-one Poincaré embedding groups LS4 and LS12, and since ×1Z : LS4 → LS12 is an isomor-
phism [38, Cor. 11.6.1]. So σ∗(G ′) = splitL(g; Y0). Suppose G ′′ is another such CAT normal bordism from g to some split g′′ .
Then σ∗(G ′′) = splitL(g; Y0). So G ′ ∪g −G ′′ is a normal bordism from g′ to g′′ with surgery obstruction 0 ∈ LB

6 . By the
6-dimensional CAT s-cobordism theorem, it follows that g′ and g′′ are CAT isomorphic. Therefore nnccs(g) = (g′, σ∗(G ′)) is
well defined and satisfies the asserted projection properties.

(Bijectivity) Consider Wall’s action [38, Thm. 5.8] of the abelian group LB
6 on the 5-dimensional structure set S B

CAT(Y ). It
follows from the properties defining nnccs that the restriction of Wall’s action is the inverse function of nnccs:

act : S split
(Y ; Y0) × UNils

6 −→ S B
CAT(Y ).
CAT
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(Definition, II) First, we normally5 cobord g to a degree one normal map g1 so that the restriction to (g1)−1(Y0) is a homotopy
equivalence. By general position, we may assume that g : W → Y is DIFF transversal to Y0. Consider the degree one normal
map

g0 := g|W0 : W0 −→ Y0

where the DIFF 4-manifold W0 := g−1(Y0) is the transverse inverse image of Y0. Denote Ŷ = Ŷ− ∪Y0 Ŷ+ as the based
cover of Y corresponding to the subgroup Π0. The Z[Π0]-submodule P := K6(Ŵ− × Z) is a finitely generated, projective
Lagrangian of the Z[Π0]-equivariant intersection form on the surgery kernel

K6(W0 × Z) = Ker
(

g × 1Z : H6(W0 × Z) −→ H6(Y0 × Z)
)
,

where we can homotope g × 1Z : W × Z → Y × Z so that g|g−1(Y0×Z) is 6-connected, degree one, normal map between 12-
dimensional manifolds [3, Lemma II.1]. Furthermore, the projective class [P ] ∈ Wh0(Π0) satisfies [P∗] = −[P ] [3, Lemma II.2]
and is the homomorphic image of the Whitehead torsion τ (g) = τ (g × 1Z ) ∈ Wh1(Π) under Waldhausen’s connecting
map ∂ (see Remark 4.5). But τ (g) ∈ B implies that [P ] = ∂(τ (g)) = 0. Therefore the stably free surgery obstruction vanishes
by decorated periodicity:

σ∗(g0) = σ∗(g0 × 1Z ) = 0 ∈ Lh
4(Π0).

Then, by Theorem 3.4, there exists a CAT normal bordism G1
0 from g0 to a homotopy equivalence g1

0 : W 1
0 → Y0. So the

union

G1 := (
g × [0,1]) ∪g0×1×[−1,1]

(
G1

0 × [−1,1])

is a CAT normal bordism from the homotopy equivalence g : W → Y to a degree one normal map g1 : W 1 → Y with
transversal restriction g1

0 = (g1)|(g1)−1(Y0) a homotopy equivalence.

Second, we normally cobord g1 relative (g1)−1(Y − Y0) to a degree one normal map g2 so that the restriction to (g2)−1(Y − Y0)

has vanishing surgery obstruction. Since g1± = (g1)|(g1)−1(Y−�Y+) (resp. g1∞ = (g1)|(g1)−1(Y∞)) restricts to a homotopy equiva-

lence g1
0 × {−1,1} on the boundary, and since G1 is a normal bordism of source and target from g1± (resp. g1∞) to the

B-torsion homotopy equivalence g over the reference space K (Π,1), the image of surgery obstruction vanishes [38, §9]:

( j− + j+)
(
σ∗

(
g1±

)) = 0 ∈ LB
5 (Π)

or, respectively,

( j∞)
(
σ∗

(
g1∞

)) = 0 ∈ LB
5 (Π).

Therefore, by Cappell’s L-theory Mayer–Vietoris exact sequence (Remark 4.6), there exists a ∈ Lh
5(Π0) such that

(i− − i+)(a) = −σ∗
(

g1±
) ∈ Lh

5(Π−) ⊕ Lh
5(Π+)

or, respectively,

(i− − i+)(a) = −σ∗
(

g1∞
) ∈ Lh

5(Π∞).

Then, by Theorem 2.2 if CAT = TOP, or by Hypothesis 2.5 if CAT = DIFF, there exists a CAT normal bordism G2
0 from the

homotopy equivalence g1
0 to itself realizing this surgery obstruction: σ∗(G2

0) = a ∈ Lh
5(Π0). So the union

G2 := (
g1 × [0,1]) ∪g1

0×1×[−1,1]
(
G2

0 × [−1,1])

is a CAT normal bordism from the degree one normal map g1 : W 1 → Y to another degree one normal map g2 : W 2 → Y
such that the transversal restriction g2

0 = g1
0 : W 1

0 → Y0 is a homotopy equivalence and the transversal restriction
g2± : W 2± → Y± (resp. g2∞ : W 2∞ → Y∞) has vanishing surgery obstruction.

Third, we normally cobord g2 relative (g2)−1(Y0) to a degree one normal map g3 so that the restriction to (g3)−1(Y − Y0) is also
a homotopy equivalence. Since σ∗(g2±) = 0 ∈ Lh

5(Π±) (resp. σ∗(g2∞) = 0 ∈ Lh
5(Π∞)), by exactness of the 5-dimensional surgery

exact sequence at the CAT normal invariants [38, Thm. 10.3], there exists a CAT normal bordism G3± (resp. G3∞) relative
g2 × {−1,1} from the degree one, CAT normal map g2± (resp. g2∞) to a homotopy equivalence g3± (resp. g3∞). So the union

G3 := (
g2 × [0,1] × [−1,1]) ∪g2

0×[0,1]×{−1,1} G3±

or, respectively,

G3 := (
g2 × [0,1] × [−1,1]) ∪g2

0×[0,1]×{−1,1} G3∞

5 The stable normal CAT microbundle on Y and on Y0 is (g)∗(νW ) and (g)∗(νW ) | Y0, lifting the Spivak normal spherical fibration on Y , where g : Y → W
is a homotopy inverse of g : W → Y .
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is a CAT normal bordism from the degree one normal map g2 : W 2 → Y to homotopy equivalence g3 = g3− ∪g3
0

g3+ : W 3 → Y

(resp. g3 = ∪g3
0

g3∞ : W 3 → Y ) which is CAT split along Y0.

Finally, we normally cobord the split homotopy equivalence g3 to another split homotopy equivalence g4 = g′ so that the normal
bordism G ′ = G1 ∪ G2 ∪ G3 ∪ G4 from g to g′ has surgery obstruction in the subgroup UNils

6 of the abelian group LB
6 . Consider the

surgery obstruction of the CAT normal bordism from g to g3:

b := −σ∗
(
G1 ∪ G2 ∪ G3) ∈ LB

6 (Π).

Let c := ∂(b) ∈ Lh
5(Π0) be the image in Cappell’s L-theory Mayer–Vietoris exact sequence (Remark 4.6). By Theorem 2.2 if

CAT = TOP, or by Hypothesis 2.5 if CAT = DIFF, there exists a CAT normal bordism G3.5
0 from the homotopy equivalence g3

0
to itself realizing this surgery obstruction: σ∗(G3.5

0 ) = c ∈ Lh
5(Π0). Then

0 = (i− − i+)(c) = σ∗
(

g3± ∪ G3.5
0 × {−1,1}) ∈ Lh

5(Π−) ⊕ Lh
5(Π+)

or, respectively,

0 = (i− − i+)(c) = σ∗
(

g3∞ ∪ G3.5
0 × {−1,1}) ∈ Lh

5(Π∞).

Therefore, by exactness of the 5-dimensional surgery exact sequence at the CAT normal invariants [38, Thm. 10.3], there
exists a CAT normal bordism G3.5± (resp. G3.5∞ ) relative g3

0 × {−1,1} from the degree one normal map g3± ∪ G3.5
0 × {−1,1}

(resp. g3∞ ∪ G3.5
0 × {−1,1}) to a homotopy equivalence g3.5± : W 3.5± → Y± (resp. g3.5∞ : W 3.5∞ → Y∞). So the union

G3.5 := (
G3.5

0 × [−1,1]) ∪G3.5
0 ×{−1,1} G3.5±

or, respectively,

G3.5 := (
G3.5

0 × [−1,1]) ∪G3.5
0 ×{−1,1} G3.5∞

is a CAT normal bordism from the split homotopy equivalence g3 : W 3 → Y to another split homotopy equivalence
g3.5 : W 3.5 → Y such that

σ∗
(
G1 ∪ G2 ∪ G3 ∪ G3.5) = j(d) ⊕ e ∈ LB

6 (Π)

for some d ∈ Lh
6(Π−) ⊕ Lh

6(Π+) (resp. d ∈ Lh
6(Π∞)) and e ∈ UNils

6.
By Wall realization on 5-dimensional CAT structure sets [38, Thm. 10.5], there exists a CAT normal bordism G4±

(resp. G4∞) relative g3.5
0 × {−1,1} from the homotopy equivalence g3.5± (resp. g3.5∞ ) to another homotopy equivalence g4±

(resp. g4∞) such that σ∗(G4±) = −d (resp. σ∗(G4∞) = −d). So the union

G4 := G3.5 ∪g3.5×0

(
g3.5

0 × [0,1] × [−1,1] ∪ G4±
)

or, respectively,

G4 := G3.5 ∪g3.5×0

(
g3.5

0 × [0,1] × [−1,1] ∪ G4∞
)

is a CAT normal bordism from the split homotopy equivalence g3.5 : W 3.5 → Y to another split homotopy equivalence
g4 : W 4 → Y such that

σ∗
(
G1 ∪ G2 ∪ G3 ∪ G4) = e ∈ UNils

6.

Thus the definition of nnccs is complete. �
5. Fibering and splitting over the circle

We approach the problem of fibering a 5-manifold W over the circle S1 from Farrell’s point of view [9], which involves
a finite domination of the infinite cyclic cover W , the covering translation t : W → W , and a certain mapping torus.

Gluing the ends of a self h-cobordism (Y ; X, X) by a self homeomorphism α : X → X yields an h-block bundle ∪αY
over S1 [4, p. 306]. This is classically known as a pseudo-fibering over S1 [10, Defn. 3.1] [34, Defn. 4.2]. Consider the zero-
torsion version of h-block bundles over S1.

Definition 5.1. We call E the total space of a CAT s-block bundle over S1 with homotopy fiber X if E is the compact
CAT manifold obtained by gluing the ends of a self CAT s-cobordism (Y ; X, X) rel ∂ X by a CAT automorphism α : X → X .
We write E = ∪αY := Y /(x,0) ∼ (α(x),1), and a special case is the mapping torus X �α S1 := ∪α X × Δ1. The induced
continuous map E → S1 is called a CAT s-block bundle projection, which is unique up to homotopy.

Fiber bundles are special cases of s-block bundles, and the converse is true if the s-cobordism theorem holds for the
fiber in the given manifold category.
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Definition 5.2. (Quinn, compare [26, §2.3].) Let X be a compact CAT manifold. The block homotopy automorphism space
G̃s(X) is the geometric realization of the Kan Δ-set whose k-simplices are simple homotopy self-equivalences e : X × Δk →
X × Δk of (k + 2)-ads which restrict to the identity over ∂ X . Note that hAuts(X) = π0G̃s(X). The basepoint is the identity
1X : X → X .

Similarly, the block structure space S̃
s
CAT(X) is the geometric realization of the Kan Δ-set whose k-simplices are simple

homotopy equivalences Y → X × Δk of CAT manifold (k + 2)-ads in R
∞ which restrict to CAT isomorphisms over ∂ X . Note

the CAT s-bordism structure set is S s
CAT(X) = π0S̃

s
CAT(X). We define the decoration CAT = TOP+ for block structures to mean

that the TOP manifolds Y are smoothable, that is, without a preference of DIFF structure.
Naturally, there is a simplicial inclusion G̃s(X) ↪→ S̃

s
CAT(X).

An assembly-type function over S1 is described as follows.

Definition 5.3. Define an α-twisted simplicial loop in (̃Ss
CAT(X), G̃s(X)) as a simple homotopy equivalence (h;h0,h1) :

(Y ; X, X) → X × (Δ1;0,1) of CAT manifold triads such that the simple homotopy self-equivalences hi : X → X satisfy h1 =
α ◦ h0 and that h restricts to a CAT isomorphism over ∂ X . We define the α-twisted fundamental set πα

1 (̃Ss
CAT(X), G̃s(X))

as the set of homotopy classes of these α-twisted loops. Note, if α is the identity automorphism, then this set is the first
homotopy set of the pair. Define the union function

∪ :πα
1

(̃
S

s
CAT(X), G̃s(X)

) −→ S s
CAT

(
X �α S1)

as follows. Let (h;h0,h1) : (Y ; X, X) → X × (Δ1;0,1) be an α-twisted simplicial loop. Then there is an induced simple
homotopy equivalence, well-defined on homotopy classes of loops:

∪(h;h0,h1) :∪1X Y −→ X �α S1; [y] �−→ [
h(y)

]
.

5.1. Statement of results

Our theorems below are crafted as to eliminate any algebraic K - or L-theory obstructions to splitting and fibering over
the circle.

The first splitting theorem (5.4) is a special case of the general splitting theorem (4.1). Here, for any homotopy self-
equivalence h : (X, ∂ X) → (X, ∂ X), the mapping torus Y = X �h S1 is a Poincaré pair with X a two-sided Poincaré subpair
[30, Prop. 24.4]. This level of abstraction is required to prove the fibering theorem (5.6).

Theorem 5.4. Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let h : X → X be a homotopy equivalence which restricts
to a diffeomorphism ∂h : ∂ X → ∂ X. Suppose M is a compact DIFF 5-manifold and g : M → X �h S1 is a homotopy equivalence which
restricts to a diffeomorphism ∂ g : ∂M → ∂ X �∂h S1 .

Then g is homotopic to a map g′ which restricts to a simple homotopy equivalence g′ : X ′ → X such that the TOP inverse image
X ′ := (g′)−1(X) is homeomorphic to X and the exterior M ′ of X ′ in M is a smoothable TOP self s-cobordism of X.

The second splitting theorem (5.5) connects homotopy TOP structures on mapping tori to smoothable s-cobordisms,
homotopy self-equivalences, and the stable smoothing invariant of Kirby and Siebenmann [23].

Theorem 5.5. Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let α : X → X be a diffeomorphism. Then there is an
exact sequence of based sets:

πα
1

(̃
S

s
TOP+(X), G̃s(X)

) ∪−→ S h
TOP

(
X �α S1) ks−→ F2 ⊕ H1(X;F2)α.

Our fibering theorem (5.6) is proven using a key strategy of Tom Farrell [9], except we do not require 4-dimensional
Siebenmann ends on the infinite cyclic cover M to exist. A connected manifold band (M, f ) consists of a connected man-
ifold M and a continuous map f : M → S1 such that the infinite cyclic cover M := f ∗(R) is connected (i.e. f∗ :π1(M) →
π1(S1) surjective) and is dominated by a finite CW complex [19, Defn. 15.3]. Observe that the manifold M is a strong defor-
mation retract of the homotopy fiber hofiber( f ). If f : M → S1 is homotopic to a fiber bundle projection, say with fiber X ′ ,
then hofiber( f ) is homotopy equivalent to X ′ .

Theorem 5.6. Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let (M, f ) be a connected DIFF 5-manifold band such

that ∂ X → ∂M
∂ f−→ S1 is a DIFF fiber bundle and the homotopy equivalence ∂ X → hofiber(∂ f ) extends to a homotopy equivalence

X → hofiber( f ). Then f : M → S1 is homotopic rel∂M to the projection of a smoothable TOP s-block bundle with fiber X.

Remark 5.7. Topological splitting and fibering of 5-manifolds W over the circle S1 with fibers like T 4 or Kl × S2 can
be established by Weinberger’s splitting theorem [39], since the fundamental groups Z

4 and Z � Z have subexponential
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growth. A fortiori, simply-connected topological 4-manifolds X are allowable fibers in Weinberger’s fibering theorem. These
4-manifolds X are classified, by Milnor in the PL case and Freedman and Quinn in the TOP case [12], up to homotopy equiv-
alence by their intersection form. Unfortunately, the smooth splitting and fibering problems for such W remain unsolved,
even as DIFF s-block bundle maps.

Now let us state the smooth result promised in the Introduction.

Theorem 5.8. Consider the closed, non-orientable, smooth 4-manifolds Q (1.1). Let (M, f ) be a connected DIFF 5-manifold band such
that Q is homotopy equivalent to hofiber( f ). Then f : M → S1 is homotopic to the projection of a DIFF s-block bundle with fiber Q .

5.2. Vanishing of lower Whitehead groups

We start by showing that every homotopy equivalence under consideration has zero Whitehead torsion. Comparable
results are found by J. Hillman [17, §6.1] and intensely use [37, §19].

Proposition 5.9. Let X be any of the 4-manifolds Q , S, F defined in (1.1, 1.2, 1.4). Let h : X → X be a homotopy self-equivalence which
restricts to a diffeomorphism ∂h : ∂ X → ∂ X. Suppose Y = X �h S1 is the total space of a mapping torus fibration X → Y → S1 with
monodromy h. Then the Whitehead groups vanish for all ∗ � 1:

Wh∗(π1 X) = Wh∗(π1Y ) = 0.

Note if h is a diffeomorphism, then Y is the total space of a DIFF fiber bundle.

Proof. Each case of fiber shall be handled separately.
Case of fiber Q (1.1). Let Q be any of the non-orientable 4-manifolds listed. There are no non-identity automorphisms

of the cyclic group π1(Q ) = C2 of order two, so π1(Y ) = C2 × C∞ . S. Kwasik has shown that Wh1(π1 Q ) = Wh1(π1Y ) = 0,
using the Rim square for the ring Z[C∞][C2], the Bass–Heller–Swan decomposition, and assorted facts [24, pp. 422–423].

Case of fiber S (1.2). There are three types of S .
Type 1. Suppose S is the total space of a fiber bundle S2 → S → Σ such that Σ is a compact, connected, possibly non-

orientable 2-manifold of positive genus. Then, by [37, Theorem 19.5(5)], the fundamental group π1(S) = π1(Σ) is a member
of Waldhausen’s class Cl of torsion-free groups. So, by [37, Proposition 19.3], the HNN-extension π1(Y ) = π1(S) � C∞ is
a member of Cl. Therefore, by [37, Theorem 19.4], we obtain that Wh∗(π1 S) = Wh∗(π1Y ) = 0.

Type 2. Suppose S is the total space of a fiber bundle H → S → S1 such that H is a closed, connected, hyperbolic
3-manifold. By Mostow rigidity, we may select the monodromy diffeomorphism H → H to be an isometry [25] up to
smooth isotopy [14]. Since H → S → S1 has isometric monodromy implies that S is isometrically covered by H

3 × E
1, the

curvature matrix is constant, hence S is A-regular. By hypothesis, h is homotopic rel ∂ S to an isometry of S − ∂ S . Then
Y − ∂Y is isometrically covered by H

3 × E
2, hence Y − ∂Y is A-regular. Therefore, by [11, Lemma 0.12], we obtain that

Wh∗(π1 S) = Wh∗(π1Y ) = 0 for all ∗ � 1.
Type 3. Suppose the interior S − ∂ S admits a complete, finite volume metric of euclidean type (resp. real hyperbolic or

complex hyperbolic). Since S − ∂ S is isometrically covered by E
4 (resp. H

4 or CH
2), the curvature matrix is constant, hence

S − ∂ S is A-regular. By hypothesis, h is homotopic rel ∂ S to an isometry of S − ∂ S . Then Y − ∂Y is isometrically covered
by E

4 × E
1 (resp. H

4 × E
1 or CH

2 × E
1), the curvature matrix is constant, hence Y − ∂Y is A-regular. Therefore, by [11,

Lemma 0.12], we obtain that Wh∗(π1 S) = Wh∗(π1Y ) = 0 for all ∗ � 1.
Case of fiber F (1.4). There are two types of connected summands Fi .
Type 1. Suppose Fi is the total space of a fiber bundle Hi → Fi → S1 such that the compact, connected, irreducible,

orientable 3-manifold Hi either is S3 or D3 or has non-zero first Betti number. Then, by [37, Proposition 19.5(6,8)], we
obtain that π1(Hi) is a member of Cl. So, by [37, Proposition 19.3], the HNN-extension π1(Fi) = π1(Hi) � C∞ is a member
of Cl.

Type 2. Suppose Fi is the total space of a fiber bundle Σ
f

i → Fi → Σb
i such that the fiber and base are compact,

connected, orientable 2-manifolds of positive genus. Then, by a theorem of J. Hillman [16, Thm. 1], we obtain that π1(Fi)

is a member of Cl. Indeed, the direct algebraic proof of Cavicchioli, Hegenbarth and Spaggiari [5, Thm. 3.12] uses a Mayer–
Vietoris argument for a connected-sum decomposition of the base Σb

i , which extends to aspherical, compact, possibly
non-orientable surfaces with possibly non-empty boundary.

Conclusion. Now, since π1(Fi) is a member of Cl, by [37, Proposition 19.3], the fundamental group π1(F ) = �n
i=1π1(Fi)

of the connected sum F = F1# · · ·#Fn is a member of Cl. So the HNN-extension π1(Y ) = π1(F ) � C∞ is a member of Cl.
Therefore, by [37, Theorem 19.4], we obtain Wh∗(π1 F ) = Wh∗(π1Y ) = 0. �
5.3. Proof of main theorems over the circle

Proof of Theorem 5.4. By the general splitting theorem (Theorem 4.1), it suffices to show that the following conditions hold,
in order:
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(1) X satisfies Hypothesis 3.1 or 3.2 or 3.3 and Hypothesis 2.1,
(2) the obstructions splitK (g; X) and splitL(g; X) vanish, and
(3) the h-cobordism (M ′; X ′, X ′) and homotopy equivalence g′ : X ′ → X have zero Whitehead torsion.

Condition (1). Case of X = Q . By Corollary 3.6, Q satisfies Hypothesis 3.2. Since [38, Theorem 13A.1] implies Lh
5(Z[C2]−) =

0, Q fulfills Theorem 2.2.
Case of X = S. There are three types of S . If S is non-orientable, then, since the abelianization H1(S;Z) is 2-torsionfree,

there exists a lift ω̂ :π1(S) → Z of the orientation character ω :π1(S) → Z
× .

Type 1. By Corollary 2.4, S satisfies Hypothesis 2.1. If S is orientable, then, by Corollary 3.5, S satisfies Hypothesis 3.1.
Otherwise, if S is non-orientable, then, by Corollary 3.8, S satisfies Hypothesis 3.3.

Type 2. Since H is irreducible, by Corollary 2.3, S satisfies Hypothesis 2.1. Recall that S can be isometrically covered by
H

3 × E
1, by Mostow rigidity [25,14]. Then, by [11, Proposition 0.10] and the argument of Corollary 3.5, it follows that κ2 is

injective. If S is orientable, then S satisfies Hypothesis 3.1. Otherwise, if S is non-orientable, then, since the lift ω̂ exists,
S satisfies Hypothesis 3.3.

Type 3. By Corollary 2.3, S satisfies Hypothesis 2.1. If S is orientable, then, by Corollary 3.5, S satisfies Hypothesis 3.1.
Otherwise, suppose S is non-orientable. The argument in Corollary 3.5 for the injectivity of κ2 is the same as if S were
orientable. Then, since ω̂ exists, S satisfies Hypothesis 3.3.

Case of X = F . There are two types of connected summands Fi . By Corollary 2.3, Fi satisfies Hypothesis 2.1. Note that Fi
satisfies Hypothesis 3.1, by Corollary 3.7 for Type 1 and by Corollary 3.8 for Type 2.

Condition (2). Recall the notation Π0 := π1(X) and Π := π1(X �h S1) ∼= π1(M). The K -theory obstruction splitK (g; X)

lies in

Wh0(Π0) ⊕ Ñil0
(
Z[Π0];0,0,−Z[Π0]+,+Z[Π0]−

)
.

By [37, Theorem 2], the second factor is a summand of Wh1(Π). Both Wh0(Π0) and Wh1(Π) vanish by Proposition 5.9. The
L-theory obstruction splitL(g; X) lies in UNils

6(Z[Π0];0,0), which vanishes by definition [2, §1].
Condition (3). The torsions of the h-cobordism (M ′; X ′, X ′) and the homotopy equivalence g′ : X ′ → X lie in Wh1(Π0),

which vanishes by Proposition 5.9. �
Proof of Theorem 5.5. Let [g] ∈ S h

TOP(X �α S1). Then [g] is an h-bordism class of some homotopy equivalence g : M →
X �α S1 such that M is a compact TOP 5-manifold and the restriction ∂ g : ∂M → ∂ X �∂α S1 is a homeomorphism. Since
α : X → X is a diffeomorphism implies that the mapping torus X �α S1 is a DIFF 5-manifold, we have

ks[g] = g∗ks(M) ∈ F2 ⊕ H1(X;F2)α ∼= H4(X �α S1, ∂ X �∂α S1;F2
)
.

Here, the isomorphism is obtained from Poincaré duality and the Wang sequence. Note, by definition, that the basepoints
are respected by ∪ and ks, and that the composite ks ◦ ∪ vanishes.

Suppose ks[g] = 0. Since ∂ g induces a DIFF structure on ∂M and ks(M) = 0 and dim(M) > 4, by a consequence [23,
Thm. IV.10.1] of Milnor’s Lifting Criterion and the Product Structure Theorem, the DIFF structure on ∂M extends to a DIFF
structure on M . So, by Theorem 5.4, we obtain that g is homotopic to a TOP split homotopy equivalence g′ : M → X �α S1

such that the restriction g′ : (g′)−1(X) → X is a homotopy self-equivalence. Moreover, the restriction of g′ to the exte-
rior of X yields a smoothable TOP s-cobordism (M ′; X, X) and an α-twisted simplicial loop (g′∞; g′

0, g′
1) : (M ′; X, X) →

X × (Δ1;0,1) in (̃Ss
TOP+(X), G̃s(X)). Therefore [g] = [g′] = ∪[g′∞, g′

0, g′
1]. Thus exactness is proven at S h

TOP(X �α S1). �
Proof of Theorem 5.6. The hypothesis gives a homotopy equivalence d : (X, ∂ X) → (M, ∂M) of pairs with homotopy inverse
u : (M, ∂M) → (X, ∂ X) such that ∂u ◦ ∂d = 1∂ X . In particular, d is a domination of (M, ∂M) by (X, ∂ X). That is, there is
a homotopy H : [0,1] × M → M such that H0 = d ◦ u and H1 = 1M .

Recall M = f ∗(R). Let f : M → R be the sub-projection covering f : M → S1. Let t : M → M be the unique covering
transformation such that f t(x) = f (x) + 1. Then the following composite is a homotopy self-equivalence of pairs:

h := u ◦ t ◦ d : (X, ∂ X) −→ (X, ∂ X).

So, by cellular approximation of h and [30, Proposition 24.4], the mapping torus X �h S1 = X × [0,1]/(x,0) ∼ (h(x),1)

is a finite Poincaré pair of formal dimension 5, such that X ∼= X × [1/2] is a two-sided Poincaré subpair with tubular
neighborhood X × [−1,1] ∼= X × [1/3,2/3]. Furthermore, since ∂d : ∂ X → ∂M and ∂u : ∂M → ∂ X are the 0-section and
projection from ∂M = ∂ X × R, we obtain that the homotopy self-equivalence ∂h : ∂ X → ∂ X is in fact a self-diffeomorphism
on each connected component. In particular, ∂M = ∂ X �∂h S1.

Observe that the Borel construction fits into a fiber bundle R → M ×Z R → M and similarly for ∂M . Then the projection
g1 : M ×Z R = M �t S1 → M is a homotopy equivalence of manifold pairs. Note {Hs ◦ t ◦ d}s∈[0,1] is a homotopy from d ◦ h to
t ◦ d : X → M . Define a continuous map

g2 : X �h S1 −→ M �t S1; [x, s] �−→ [
H

(
s, td(x)

)
, s

]
.
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By cyclic permutation of the composition factors of h, and by the adjunction lemma (see [34]), the map g2 is a homotopy
equivalence of manifold pairs. Let gi be a homotopy inverse of gi for i = 1,2. Then we obtain a homotopy equivalence

g := g2 ◦ g1 : (M, ∂M) −→ (
X �h S1, ∂ X �∂h S1).

Furthermore, since ∂ X → ∂M → S1 is already a fiber bundle, the homotopy inverse ∂ g = ∂ g1 ◦∂ g2 is homotopic to the above
diffeomorphism ∂ X �∂h S1 → ∂M . By Theorem 5.4, the homotopy equivalence g is homotopic rel ∂M to a map g′ such that
the TOP transverse restriction g′ : X ′ := (g′)−1(X) → X is a simple homotopy equivalence and there is a homeomorphism
X ′ ≈ X . Moreover, M = ∪1X ′ M ′ is obtained by gluing the ends of the smoothable TOP self s-cobordism M ′ := M − X ′ ×
(−1,1) by the identity map.

Define quotient maps

q : X �h S1 −→ S1; [x, s] �−→ [s],
q′ : M −→ S1; q′ := q ◦ g′.

Note ∂q′ = ∂ f : ∂M → S1 is the fiber bundle projection. Therefore, by obstruction theory, the continuous map f : M → S1

and the TOP s-block bundle projection q′ : M → S1 are homotopic rel∂M if and only if they determine the same kernel
subgroup of π1(M). Then, by covering space theory, it suffices to show that the isomorphism g∗ :π1(M) → π1(X �h S1)

maps the subgroup Ker( f∗) = p∗π1(M) onto the subgroup Ker(q∗) = p′∗π1(X × R). Here, p : M → M and p′ : X × R →
X �h S1 are the infinite cyclic covers. Observe that the π1-isomorphism induced by the split homotopy equivalence g2 : X �h
S1 → M �t S1 maps the subgroup Ker(q∗) = π1(X) onto π1(M), and that the π1-isomorphism induced by the homotopy
equivalence g1 : M �t S1 → M maps the subgroup π1(M) onto Ker( f∗). So, since g1 ◦ g2 = g is the homotopy inverse of g ,
we are done. �
Proof of Theorem 5.8. The proof of Theorem 5.6 constructs homotopy equivalences h : Q → Q and g : M → Q �h S1. Observe
Corollary 3.6 implies that Q satisfies Hypothesis 3.2, and Remark 2.6 implies that Q satisfies Hypothesis 2.5. Recall that
Conditions (2) and (3) of Proof of Theorem 5.4 hold. Then, by Theorem 4.1, the homotopy equivalence g is homotopic to
a map g′ such that the DIFF transverse restriction g′ : Q ′ := (g′)−1(Q ) → Q is a simple homotopy equivalence and there
is a diffeomorphism Q ′ ≈ Q . Moreover, the DIFF 5-manifold M = ∪1Q ′ M ′ is obtained by gluing the ends of the DIFF self

s-cobordism M ′ := M − Q ′ × (−1,1) by the identity map. The remainder of Proof of Theorem 5.6 shows that f : M → S1 is
homotopic to the DIFF s-block bundle projection q′ :∪1Q (M ′; Q , Q ) → S1 obtained from g′ . �
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