Free Transformations of S' x S™

of Square-free Odd Period

QAYUM KHAN

ABSTRACT. Let n be a positive integer, and let £ > 1 be square-
free odd. We classify the set of equivariant homeomorphism classes
of free Cyp-actions on the product S x S™ of spheres, up to inde-
terminacy bounded in #. The description is expressed in terms of
number theory.

The techniques are various applications of surgery theory and
homotopy theory, and we perform a careful study of h-cobordisms.
The £ = 2 case was completed by B. Jahren and S. Kwasik (2011).
The new issues for the case of € odd are the presence of nontrivial
ideal class groups and a group of equivariant self-equivalences with
quadratic growth in £. The latter is handled by the composition
formula for structure groups of A. Ranicki (2009).

1. INTRODUCTION

Let £ > 1 be an integer. Consider the £-periodic homeomorphism without fixed
points:

Ty : STxS™ — S x 8™ (z,x) — (Cpz,x) where Cp := o2 < .

Write A} for the set of conjugacy classes (C) in Homeo(S! x S™) of those cyclic
subgroups C of order £ without fixed points. B. Jahren and S. Kwasik classified
the case £ = 2 [JK11].

Recall the Euler totient function @ is the number of units modulo a given
natural number. Let d > 1. A partition Q(’; of 7} is given by [q] = [q'] if
a*q = +q' (mod d) for some a. The map (g — g~') on the cyclic group Cy4
induces an involution t on the projective class group Who(Cy) := Ko(ZCy) /Ko(Z)
with coinvariants Ho(Cy; Who(Cg)) := Who(Cz) /(1 = 0).
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Theorem 1.1 (Classification Theorem). Let £ > 1 be square-free odd. Then,
ﬂli)k = {(Typ)} forallk > 0 andﬂli = {(Tp)}. Otherwise, for each k > 1, there is a
[finite-to-one surjection

[] QKxz@=D/2x Ho(Cos Who(Cq)) —» AFT — {(Tp)}.
1<d | €

The A-indexed terms in the disjoint union have disjoint images. In the d-th image,
each point-preimage has cardinality dividing 8 ged(k, ©(d)/2), which has bounded
growth in 0. In particular, the set A3*™" of fiee Cp-actions on S* x S~V is countably
infinite if k > 1.

Different preimages have different cardinalities (6.5). For n = 3, this theo-
rem answers the existence part of [Sch85, Problem 6.14]; indeterminacy in the
uniqueness is at most 16.

Corollary 1.2. Let p + 2 be prime. Then, A% = {(Tp)} for all k > 0 and
ﬂl%, = {(Tp)}. Otherwise, for any given k > 1, there is a finite-to-one surjection

Qk x 7P~V x Hy(Ca5Cly) —» AZ — {(Tp)}.

Each preimage has cardinality dividing 8 gcd(k, (p — 1)/2), which is bounded in p.

Here, Cl, is the ideal class group of Z[T,1; the involution t is induced by
(Cp — C,"). The three parts are understood by using the quotient manifold
M of the free Cp-action, specifically, invariants of the infinite cyclic cover M, as
follows. The QK-part is the first Postnikov invariant of M. The ZP~D/2-part is
a projective p-invariant of M. The Cl,-part is the Siebenmann end obstruction
of M. The indeterminacy 8 ged(k, (p — 1)/2) is due to ineffective action of the
group (quadratic growth in p) of self-homotopy equivalences of M.

Remark 1.3. Consider the ideal class group Cl,, of the real subring Z[C, +
<, 1 of Z[Cp]. Write G for the Galois group of Q(Cp) over Q. The induced
Z[G]-module map Cl; — Clp, is injective ([Was97, Theorem 4.14]). The norm
mapN:=1+1:Cl, — Cl;,r is surjective ([Was97, Proof 10.2]). Since the fixed
field of the automorphism ¢ € G is Q(Tp + <, 1), t induces the identity on Cl;.
Then, ¢ induces negative the identity on Cl,, := Cl,, / Cl,,, since

(D) =N(I)-I=-I (mod CL)).

Therefore, we obtain an exact sequence of Z[G/t]-modules:

2(CL) 55 15— Hy(Cy;Cly) —— Cly /2 —— 0.
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Here, ;A := {a € A| 2a = 0} denotes the exponent-two subgroup of any abelian
group A, and 1=1:= (1 -0 os is a well-defined homomorphism via a setwise
section s : Cl,, — Cl,.

Remark 1.4. The Cl; /2 are only known for p < 500 [Sch98]. Even worse,
the Cl, are only known for p < 151. The Cl,, are conditionally known for
157 < p < 241 [Mill5], which we denote by *, under the Generalized Rie-
mann Hypothesis for the zeta function of the Hilbert class field of Q(Zp + T, ).
We list these new results of R. Schoof and J. C. Miller:

TABLE 1.1. Cl;,r derives from [Mill5, Theorem 1.1]. Cl; /2
derives from Table 4.4 in [Sch98]. For Hy(C»;Clp), this group
vanishes* for the 46 primes p < 241 not listed.

p | Cl, | Cl,/2 | Hy(Cy;Cly)
29 0 ](222) (2,2,2)
113 0 |(2,22) (2,2,2)
163 | (2,2)* | (2,2) |4 <order < 16*
191 | (11)* 0 (11)*

197 [ 0% | (2,2,2) (2,2,2)*
229 | (3)* 0 (3)*
239 0% | (2,2,2) (2,2,2)%

Theorem 1.1 follows from Theorems 1.6 and 1.7 below. Consider complex

coordinates
Skl —tyeck|u-u=1).

For any q coprime to any d > 1, there is a linear isometry of S?*~! giving a free
Cg4-action:

q)d,q : SZk71 - SZkil; (u11u2""iuk) — (Cguli Cdu21---JCduk)-

Note that the quotient manifold Lfi’fq’ Vo= §21/0, 4 is called the lens space of type
(d;q,1,...,1).
Remark 1.5. The products of S! with the classical lens spaces

A oftype (psai, ..., qx),
N of type (p;q1,---,ap),

are distinguished in Corollary 1.2, first by homotopy type in the first factor, and
then by homeomorphism type in the other factors, as follows. First, note that A
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has the homotopy type of L, 4, where q := q; - - - qk, and similarly for A" with
a' := q} - - - q;. Furthermore, these types are equal if and only if [q] = [q'] in
the set Q’,f, [Coh73, (29.4)]. Now, assume [q] = [q'], so there exists a homotopy
equivalence f : A" — A.

Second, assume 0 = p[A’, f]1 = p(A’) — p(A), which is independent of
the choice of f. Indeed, p is an invariant of the h-bordism class of (A’, f)
[AS68, 7.5]. Then, [A, f]1 = [S! x A,ids1 Xf] in S§op(ST X A) maps to zero
in $8.p(S! x A) = ZP=V/2 (see Corollary 3.6). This kernel is identified with
the kernel of ié‘k(Cp) — igk(Cp), which is further identified with the following
cokernel H (Cp) arising in the Ranicki-Rothenberg sequence [Bak78]:

H (Cp) := Cok(Ho(Ca; Ko(ZCp, QCp)) — Ho(Ca;Cly)).

Thus, the structure [A’, f1 lies in the subquotient # (Cp) of the third factor, that
iS, H()(Cz; Clp)

Third, assume the given two-torsion element [A’, f] of S%OP (A) vanishes in
Hy(C»;Clp). Then, f: A" — A is h-bordant to the identity map. In particular,
A’ is h-cobordant to A. Therefore, they are isometric [Mil66, 12.12]; equivalently,
A and A" are homeomorphic.

For any closed manifold X, consider the set M5, (X) of closed topological
manifolds M homotopy equivalent to X up to homeomorphism. The calculation
of Ay reduces to M.

Theorem 1.6. Let € be square-free odd. Then, ﬂ%,k = {(Typ)} forallk > 0 and
Ay = {(Tp)}. Otherwise, for all k > 1, passage to orbit spaces induces a bijection

AP @t ——— LI [ Micp(s' < L.
1<dl€ [q1€Q¥

We calculate these M by methods of surgery theory, and express them with
K-theory.

Theorem 1.7. Let d be square-free odd, q coprime ro d, and k > 1. There is a
surjection

2@-D12 % Hy(Cp; Who(Ca)) — MEGL(ST x Lagh.-

Any preimage has cardinality dividing 8 gcd(k, () /2), which has bounded growth
ind.

Theorem 1.6 and Theorem 1.7 are proven in Section 2 and Section 6, respec-
tively. The difficulty in generalizing Theorem 1.1 to all odd ¢ comes from the
proof of Theorem 1.6. When d > 1 is not square-free, say d = p?, the groups
NK(Z[Cp2]) are huge: they are closely related to infinitely generated modules
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over the Verschiebung algebra of F,[t]. Nonetheless, there would be two diffi-
culties in handling elements of NK in this paper: topologically, there would be a
“relaxation” obstruction to making Proposition 2.2 work, and algebraically, there
would be a “homothety” obstruction to making Lemma 4.1 (1) work.

2. CLASSIFICATION OF HOMOTOPY TYPES

The first stage is the homotopy classification of orbit spaces, then analysis of con-
jugacy.

Proposition 2.1. Let S' X S™ be an {-fold regular cyclic cover of a topological
space M, withn > 1 and odd £ > 1. Then, M is homotopy equivalent to S' x S™ or
S'x Ly, with d|L.

The degree £ must be odd, or else the Klein bottle M = RP?#RP? is a coun-
terexample.

Proof: The regular covering map S' X §™ — M has degree £ > 1. Since ¢
is odd, the quotient manifold M is oriented. If n = 1, then M must be homeo-
morphic to the torus S! x S1. If n = 2, then M must be homotopy equivalent to
S! x §2. Thus, we now assume 1 > 3.

The covering map S! x §™ — M has covering group Cp. Write I := 111 (M)
for the fundamental group of the quotient space. The exact sequence of homotopy
groups contains

1 Co ——>T —2

Cy 1.

Write T € T for the image under t of a generator of Ce. Select an element S € T
such that § maps under @ to a generator s of Cy. Define a setwise section

0:Cp—T; 52— 8P forall0<b <.

In general, for a group extension equipped with a setwise section, one has that
I' = (Imt)(Imo). Then, for each x € T, we obtain the normal form x = T2S?
forsomea € Zand 0 < b < £. Note S™'TS € {T, T~ !}. If S7'TS = T°1,
then S~{TS? = T(’l)ﬂ, but S’ € Kerp = Imtand £ isodd, so T = T°!, a
contradiction. Hence, TS = ST; therefore, T is abelian. Hence, we have that
T (M) =T = Co X Cy4 for some divisor d of € (this includes the case of d = 1).

There exists a corresponding infinite cyclic cover M with covering translation
t : M — M. There is a bundle sequence R — Torus(t) — M, with total space
the mapping torus of t.

Observe that M is a PDy-complex, since the PDy-complex R x S™ is its
universal cover with finite covering group (M) = C4. Also, for any PDy-
complex X with n > 3 and X =~ §™, Wall showed that the first Postnikov invariant
ki(X):K(mX,1) — K(Z,n + 1) is a generator of abelian group H" " (1, X;Z),
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and that the oriented homotopy type of X is uniquely determined by the orbit
[k1(X)] under action of the group Out(mr;X) [Wal67, Theorem 4.3].

If d = 1, then M is homotopy equivalent to S". Otherwise, we assume
d > 1. Recall the cohomology ring H* (Cy; Z) = Z[t]/(dt), where t has degree 2;
in particular, K(Cg,1) has 2-periodic cohomology. However, C4 acts freely on
R x §™ =~ §™, so a standard argument with the Leray-Serre spectral sequence
shows that K(Cg4,1) has (n + 1)-periodic cohomology. Hence, n = 2k — 1 for
some k > 1. Write gtk € H2%(C4;Z) = 7/d for the first Postnikov invariant of
M; we have ged(d, q) = 1. The lens space L(d; q, 1,..., 1) also has first Postnikov
invariant ¢, so M must be homotopy equivalent to Lé’fq_l =L(d;q,1,...,1).

In any of these cases of d and g, there exist a closed n-manifold L and a
homotopy equivalence h : L — M. Select a homotopy inverse h : M — L for h;
consider the oriented homotopy equivalence o« := h ot o h : L — L. By cyclic
permutation of factors,

Torus(x) =~ Torus(h o h o t) ~ Torus(t) ~ M.

Then, on fundamental groups we have Cg X, Co = Cgq X Co, Where oy €
Out(Cy) is the induced automorphism on 1 (L). Hence, &# = id, and there-
fore, ¢ = id [Coh73, (29.5A)]. O

The linking form on the (k —1)-st homology group of the infinite cyclic cover
M is the 1 X 1 matrix [q/p] € Q/Z [ST80, Section 77: p. 290], which recovers
the Postnikov invariant qt¥.

In the sequel, we shall fix k > 1 and consider the latter, closed 2k-dimensional
manifold

Xaq:=S" XL

The following definition generalizes the homeomorphism of Jahren-Kwasik [JK11,
Section 4]. Write t and s for the usual generators of Co and Cy, respectively.
Note (t¥,s7) — (tk, sk77) in Aut(Co x Cg) is induced by the well-defined self-
homeomorphism (like a Dehn twist):

& Xd’q i Xd’q;

21 (z,[ur:uz:...:ug)) — (z,[z94u, : 214

This is multiplication by the path

[0,211] — GLi(C); 0 — diag(e?4/4, %4, ¢%1/d),
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Proposition 2.2. Let f : M — Xga,4 be a homotopy equivalence with M a closed
manifold. There exists 5 € Homeo(M) satisfying a homotopy commutative diagram

M % Xd,q

l Je

M—L x4

Later, in Section 4, we prove Proposition 2.2 based on surgery-theoretic cal-
culations.

Notice that 1 (Xg,4) = Ce X C4 does not have a unique infinite cyclic sub-
group Z of index d; rather, there are exactly d such subgroups (generated by ts”
with 0 < 7 < d). Although each Z is normal, none is characteristic: Aut(Co XCq)
acts transitively on them.

Corollary 2.3. Let M be a closed manifold in the homoropy type of Xa,q4. Let Z
and Z' be infinite cyclic subgroups of index d in 10, (M). Then, 64(Z) = Z' for some
0’ € Homeo(M).

Proof- Select a homotopy equivalence f : M — X, 4. There are integers a
and b such that f4(Z) and f#(Z’) are generated by ts? and ts?, respectively, in
11 (X4,q). By Proposition 2.2, there is § € Homeo(M) with fo8 =~ €20 f. Define
S = 6W-a)(1-d)/2 ¢ Homeo(M). Note

Sy (fil(ts®)) = fil (e~ P0D (57))
:f#—l(ts(b—a)(l—d)sa) Zf#_l(tsb). O

Proof of Theorem 1.6. Conjugate subgroups of Homeo(S 1w sn) give homeo-
morphic orbit spaces. Then, by Proposition 2.1, we can define a function ¢ given
by homeomorphism classes of homotopy types of orbit spaces:

0 ifn=1orn =2k,
n
o: A" — MLt xsmud [T 1] MiGp(Xae)
1<dl|¥ [q]ng
ifn=2k-1=>3.

Note ®{(Tp)} = {[S' x S"]} = .’M?gP(Sl x S§™), where the latter equality
follows from classification of surfaces if n = 1, Thurston’s Geometrization Con-
jecture if n = 2 (see [And04]), and the topological surgery sequence [KS77] if
n = 3 (use [FQI0] if n = 3).

First, suppose n = 1. Then, as noted above, ® is constant, and hence surjec-
tive. (Since € is odd, only the torus S' x S! has £-fold cover S! x S!. That is,
‘b(ﬂi)) = {[S'x S'1})
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Let (C) € A}. There exists a choice of homeomorphism
h:(S'xSh/C — ST xS,

Under the quotient map S! x ST — (S! x §1)/C composed with h, the image of
the fundamental group of S'xS! is a subgroup Z of index € in 11, (S'xS1) = ZxZ.
There exists a nontrivial homomorphism ¢ : ZxZ — Z /€ such that Z = Ker(¢).
Write a := ¢(1,0) and b := ¢(0, 1). Post-composition with an automorphism of
Z /¥ preserves the kernel Z, so we may assume that either a = 1 or (a,b) = (0, 1).
If a = 1 then define A:= [ 1, 9]. If (@, b) = (0,1) then define A := [{}]. In
any case, the unimodular matrix A € GL,(Z/¥) carries (a, b) to (1,0). Observe
(1,0) corresponds to the index £ subgroup £Zx Z. There is ' € Homeo(S! x S1)
inducing A on fundamental group. Write h’ := 6" o h. Then, by the lifting

property of covering spaces, there exists a commutative diagram

e |m

(S1x SHy/C —1 s g1 x s,

The element i’ € Homeo(S!xS!) conjugates Ty into C. Therefore,  is injective.

Now, suppose 1 > 1 and that the orbit space of (C) € A} is homeomorphic
to S! x S™, say by a homeomorphism h. Since 11 (S! X §™) = Co has a unique
subgroup of index ¥, by the lifting property of covering spaces, there exists a
commutative diagram

Slysn —h L glygn

e e

(' x §m)/C — ST x sm,
In other words, there is i € Homeo(S! x ™) that conjugates Ty into C. Thus, ®
restricts to
) ifn=1orn =2k,

. n _ N .
®: AT - {(Tp)} [T ] Mib(Xaq ifn=2k-1>3.
1<dl¥ [q]eQk

Next, we show that ® is surjective if n = 2k — 1 > 3. Let M be a closed mani-
fold in the homotopy type of some example X4 4, say by a homotopy equivalence
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f. There is a pullback diagram of covering spaces

M—L s xsn

-

M——— X4,

Let T # id be a covering transformation of M. Since
MELL (ST % S™) = {[S' x ™},

there is a homeomorphism h : M — S x §". Then, Ty := ho T o h™! is an
element of Homeo(S! x $™) of order d without fixed points. Hence, M = ®(Ty)
and @ is surjective.

Finally, we show that ® is injective if n = 2k — 1 > 3. Let (C),(C") € A}
have orbit spaces M, M’ in the homotopy type of some example X 4. Suppose
there is a homeomorphism h : M — M. Write I := 111 (S X §™). Consider the
lifting problem

By Corollary 2.3, there exists ' € Homeo(M) such that §4((h o p’)#(I1)) =
p#(IT). Note h' := 6" o h : M — M satisfies (b’ o p")#(I1) = p#(IT). Then, by
the lifting property, there is i’ € Homeo(S! x ™) covering h’ that conjugates C’
to C. Therefore, ® is injective. O

See [Thal0O] for the homotopy types of free Cp-actions on products of 1-
connected spheres.

3. CLASSIFICATION OF h-COBORDISM TYPES

For the second stage, consider the subgroup SI(X) of Wh; (111.X) consisting of the
Whitehead torsions of strongly inertial h-cobordisms, that is, the torsion T(W - X)
of any h-cobordism (W; X, X") such that the map X’ — W — X is homotopic to
a homeomorphism.

Theorem 3.1. Let M and X be closed connected topological manifolds of dimen-
sionm = 4. If n = 4, then assume X is good in the sense of Freedman-Quinn
[FQI0]. If M is homotopy equivalent to X, then SI(M) = SI(X) as subgroups of
Whl (TTlM) = Whl (7T1X)
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This theorem is an affirmative answer to a question raised by Jahren-Kwasik
[JK15, Section 7]. Later, in Section 5, we shall develop the techniques needed to
prove this theorem.

Next, for any compact manifold X, write S%%SP(X ) for the set of pairs (M, f),
where M is a compact topological manifold and f : M — X is a homotopy
equivalence that restricts to a homeomorphism 0f : 0M — 0X, taken up to
s-bordism relative to 0X. Assuming that the s-cobordism theorem applies, then
[M, f1=[M', f']if and only if f’ is homotopic to f o h relative to 0X for some
homeomorphism h : M" — M. Then, observe

ML (X) = hMod(X) \ S5, (X).

Here, S%gP(X ) has a canonical left action by the group hMod(X), which consists
of homotopy equivalences X — X restricting to the identity on 0X, taken up to
homotopy rel 0.X.

The first step in proving Theorem 1.7 is an observation of Jahren-Kwasik

[JK15, Section 3]. In the definition of S?gP(X ), weaken the equivalence relation
“s-bordism” to “h-bordism.” Then, the resulting set S%OP(X ) has the structure

of an abelian group, according to Ranicki [Ran92]. Hence, S%op(X) is more
calculable; it also has a left setwise action of hMod (X).

Proposition 3.2 (Jahren-Kwasik). Let X be a closed connected ropological man-
ifold of dimensionn > 4. Ifn = 4, then assume 10X is good in the sense of Freedman-

Quinn [FQI0]. The set St5p(X) has a canonical right action of the Whitehead group
Whi (111 X), so that

Shop(X) = SQSP(X)/Whl(TnX).

The isotropy group of any element [M, f1 in SH135(X) is the subgroup fi SIM). The
forgetful map S?gP(X ) — S%OP(X ) is equivariant with respect to the left action of
hMod(X).

Only the isotropy group of [M, f] = [X,id] is proven in [JK15, Section 3];
we prove the others.

Proof. Recall the canonical left action. Let
y €hMod(X)  and  [M,f] e S"5(X).

Define y - [M, f]:= [M, yo f]. The left action on S%OP(X) has the same formula,
so the forgetful map is equivariant.

Next, we recall the canonical right action. Let [M, f] € S%%SP(X ) and let
o« € Wh; (111.X). By realization, there is an h-cobordism (W; M, M") with torsion
T(W - M) = f-1 (). Define

M, fl-x:=[M,fo(M«W M.
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This is well defined in S75p(X) since (W;M,M’) is unique up to homeomor-
phism rel M. Thus, the forgetful map induces a function

S"Illké)SP(X)/Whl("TlX) — Stop(X),

a bijection.

Finally, we determine isotropy groups of the right action. Clearly, fi SI(M)
fixes [M, f1. Suppose [M, f1- & = [M, f]. Abbreviate the homotopy equivalence
Goai= (M = W - M). Then, f o g« is s-bordant to f. By the s-cobordism the-
orem, there exists a homeomorphism h : M" — M such that f o g is homotopic
to f o h. By post-composition with a homotopy inverse f : X — M of f, we
have g« is homotopic to h. Therefore, f;!(x) € SI(M). O

In general, when X = S! x Y, the Ranicki-Shaneson decomposition for
L"-groups [Ran73a] induces a corresponding decomposition for the h-structure
groups [Ran92, C1].

Proposition 3.3 (Ranicki). LetY be a topological space, and let m be an integer.
There is a functorial isomorphism of algebraic structure groups:

Sh(S'xY)=Sh(v)®Sh (V).

Further, suppose that Y is a closed connected topological manifold of dimen-
sion n— 1. The total surgery obstruction of Ranicki [Ran92, Theorem 18.5] gives
the identifications

s

Shop(STXY) St (ST xY),

and
S

Stop(I X Y) S (Y).

Since s exists for all dimensions n, by the Five Lemma applied to the 4-dimen-
sional surgery sequence [FQ90, Section 11.3], we also have these bijections when
n =4 and ™Y is finite.

The next two lemmas determine certain S (Y) when Y is a lens space of odd
order.

Lemma 3.4. Let d > 1 be odd, select q coprime to d, and let k > 1. Then,

S Ly =0.

Proof- Write L" := Lfi’fl; !. Consider the s- or h-algebraic surgery exact se-
quence [Ran92]:

O_S,h
L3 (Ca) — S5 (L") —— Hyp (L 1(1) —2— L3(Ca).
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First, since d is odd, L;‘kh+1 (Ca) = 0 by BakK’s vanishing result [Bak75]. Next, we
apply the Atiyah-Hirzebruch spectral sequence to the homological version of the
normal invariants:

The coeflicient group L(l) ;j vanishes for j < 0 or j odd. Otherwise, it either is Z
if j =0 (mod4) orisZ/2if j = 2 (mod 4). Note that Heyen(L";Z) = 0, and,
since d is odd, that Heyen(L™;7/2) = 0. Thus, the diagonal entries i + j = even
are zero except along i = 0. Also note that Hoqq(L";Z) € {0,Z/d, Z}, and, since
d is odd, that Hoqq(L™;Z/2) = 0. Therefore, since the image of an odd-order
group in either Z or Z/2 is zero, in summary we obtain

(3.1) Ho (L™ 1L(1)) = Egy = Eq o = L{1)ak = Lox(1).
Thus, the assembly map is injective, 073" : Lox (1) — L3{*(Ca). Hence,

St (L") = =

Lemma 3.5. Ler d > 1 be odd, select q coprime to d, and let k > 1. Then,
Sgk(sz ) is free abelian of rank (d — 1) /2. Moreover, L2k(Cd) Sgk(LZk Ly /s
injective with finite index.

Proof. Write L™ := Lfi’fq’ '; consider the p-algebraic surgery sequence [Ran92]:

Hop (L™ L(1)—25 1P (Cq) — SE (L™

— Ho-1 (L™ U-<1))¢> LY (Ca).

From the proof of Lemma 3.4, the edge map Lox(1) — Hax(L™;L(1)) is an
isomorphism, so 04 is split injective. Also, 07}, _, is zero, since it factors through
L%, (Ca) = 0 above. We thus obtain an exact sequence of abelian groups:

0 — L5 (Ca) — SH.(L™) — Hy 1 (L™;1(1)) — O.

Since RCy = R x [T“"V/2C as rings, the reduced L- -group sz(Cd) is free
abelian of rank (d — 1)/2, and it is detected by the projective multi-signature
[Bak78]. From the same Atiyah-Hirzebruch spectral sequence as in the proof of
Lemma 3.4, since d is odd, note the following:

z ifi =2k — 1, and 4 divides j > 0,
E}; = Hi(L";L(1);) =Z/d if0 <i<2k~1odd, 4 divides j > 0,
0 otherwise,
— Hij(L™;L(1)).

Then, each E 1s either zero or Z /6 with §|d.
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Thus, it follows that Hog—1 (L™; L(1)) is a finite abelian group of odd order.'
Therefore, it remains to show that ka(L") has no odd torsion.

The function S7op(L") — Q ®7 R(G_l)k, defined by the difference of p-
invariants, was shown by Wall to be injective [Wal99, Theorem 14E.7].” Later,
Macko-Wegner promoted this function to a homomorphism of abelian groups
and re-proved its injectivity [MW11, Theorem 5.2]. Therefore, S5qp(L") is
free abelian. Then, by the Ranicki-Rothenberg exact sequences [Ran92, p. 327],
L") — Sé‘k(L”) and Sg‘k(L") — ka(L") have kernels and cokernels of expo-
nent two, and so S;’k (L™) has no odd torsion; it is free abelian of rank (d—1)/2. &

Corollary 3.6. Let d > 1 be odd, select q coprime to d, and letk > 1. Then, the

group S%OP(SI X Lﬁ{‘q—l) is free abelian of rank (d — 1) /2. Moreover, the component

homomorphism igk(Cd) — L?k+1("1Xd,q) — S%OP(Xd,q) of Wall realization is
injective with finite index.

Proof. This is immediate from Proposition 3.3, Lemma 3.4, and Lemma 3.5.
[

4. APPLICATION TO THE “DEHN TwIST” HOMEOMORPHISM

Fix n = 2k — 1 > 3. Recall the self-homeomorphism ¢ of X4,4 = S' X Ljj ; in
equation (2.1).

Lemma 4.1. Ler d > 1 be an odd integer, and select q coprime ro d. We have
the following:

(1) The self-map € induces the identity map on Why (101 Xa,q) if A is square-free.

(2) The self-map € induces the identity map on Stop(Xa,q).
(3) The self-map &2 induces the identity map on Stop(Xa,q)-

The d = 2 case for part (2) was a key technical assertion of Jahren-Kwasik
[JK11, Section 4].

Remark 4.2. Milnor [Mil66, 1.6] falsely claimed SK;(ZG) = 0 for all finite
abelian groups G; when G = Cp2 X Cp2, this SK;-group is isomorphic to (Z/p)?~!
[Oli88, 9.8 (ii)]. However, it holds for all finite cyclic groups G = C, by Bass-
Milnor-Serre [Bas68, XI:7.3], and so the determinant map K (ZCy) — (ZCy)*
is an isomorphism. By a theorem of Higman [Bas68, XI:7.1a], the torsion sub-
group of (ZCp)* is £Cyn. Hence, Wh;(Cy) is free abelian. Consequently, the
proof of [Mil66, Lemma 6.7] still holds in this case, so that the group-ring invo-
lution (g — g~ !) induces the identity on the Whitehead group Wh; (Cp).

1A more detailed analysis can show furthermore that Hpg_1 (L™ L(1)) — Hag—1 (L™; ko[ % 1) is an
isomorphism.

2For the case of k = 2, we use the simple homology structure set of the three-dimensional lens space
L3=1(d,q).
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Proof of Lemma 4.1 (1). On the fundamental group 1 (Xg,4) = Co X Cq,
recall that € induces (t%,s/) — (t¥, sk*J); it is the identity on the subgroup Cg,
which is generated by s. Then, by Proposition 5.2(1), we obtain a commutative
diagram whose rows are split exact:

0 —— Why(Cq) —— Why (11 X44) —— Who(Cq) — 0

P

0 —— Why(Cq) —— Why (11 X44) —— Who(Cq) — 0

Here, note that R := Z[Cy4], and € : R[t,t~'] — R[t,t"!] restricts to ring maps
€:R[t*'] — R[t*'].
~ Now, the splitting of the epimorphism 8 of Bass-Heller-Swan [Bas68, XI1:7.4]
; h:Who(Cq) — Why (11 Xa,4); [P] — [t:P[t,t™'] - P[t,t7']].
Here, P is a finitely generated projective R-module. Then, note
ex[P] = (ex 000 h)[P] = (do&x)|t:P[t,t 1]~ P[t,t7']].
Since £(t) = st, and since £(s) = s implies
(R = R[t,t7'}-> R[t, t7']) = (R = R[t, t7']),
we have
ex[t: P[t,t7'] = P[t,t7']] = [st: P[t,t7'] = P[t,t7']].
Recall [Bas68, IX:6.3] the map 0 in the localization sequence for R[t] — R[t,t ]
ex[P] =0[st:P[t,t7'] - P[t,t7!]] = [Cok(st : P[t] — P[t])] = [P].
Thus, €4 = id on Wh(Cgq). Moreover, in Wh (111X4,4) note

ex(h[P]) = h[P] =[s:P — P] € Wh;(Ca),
d-[s:P—-P]=[s*=1:P—-P]=0.

Thus, since Whi (Cy) is torsion-free by Remark 4.2, we obtain

Ex = <1(§i 1(31) on Wh1(7T1Xd,q) = Whl(Cd) EBWh()(Cd).

Therefore, € induces the identity automorphism on Wh (111 X4,4). O
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Proof of Lemma 4.1 (2). By Corollary 3.6, it suffices to show that €4 = id on
Lgk(Cd). Its definition is & := B o €4 o B, which is in terms of the induced
automorphism &, : L | (Coo X Cq) — L% | (Cs X Cy), the epimorphism

B: LY (Cox Cq) — LY (Ca),

and its algebraic splitting B : L}, (Cq) — L% ., (Cw X C4) (see Theorem 1.1
in [Ran73a]). Then, heavily using Ranicki’s notation and slightly modifying his
proof of splitness [Ran73b, p. 134], we note
Ex[Q, @]l =(Boegygo B)[Q; @]
=B[(Q1 e Qi pe-9) @ H.(-Q);
A @ —Q4, ((1) 50t> A © _Qt]
= [Bfr (A(Q,CP) ® Afgx gy ((1) sot) (A ® A?Q*,w)))’(p ® _‘P]
o [H:.(-Q)]
=[Bf(QeQ,QestQ),po—-@le[H.(-Q)]
=[Q, @] € L5 (Ca).
Here, the equivalence classes are of various quadratic forms and formations. We

have only used that the Z[Cy]-algebra map &4 : Z[Cyl[t,t™ 1] — Z[Callt,t71]
is graded of degree 0. O

Proof of Lemma 4.1 (3). Observe &4 respects the Ranicki-Rothenberg exact se-

quence

Hn+3(C2§Wh1Xd,q) - S'Srop(Xd,q) - Sl}op(xd,q)
— H"™2(Cys Why Xg,q)-
In particular, by Corollary 3.6, this restricts to an exact sequence

with H finite abelian and K free abelian. By Lemma 4.1 (1)—(2), &« = id on H
and K. Hence,

idH \ %
Ex = ( 0 ldlK) on S'SFOP(Xd,q) = H@ l.K,

where v : K — H is a component of €4 and t : K — S75p(Xa,q) is a choice
of the right-inverse of S§qp(Xa,q) — K. Since 2H = 0, note 2v = 0. Hence,
€2 =id on Sjop(Xaq)- O
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We show that the homotopy-theoretic order of ¢ divides 2d? (see more in the
proof of Corollary 6.4).

Lemma 4.3. The homeomorphism €24 is homotopic to the identity on Xaq =
Stx L™,

Proof. Observe that the d-th power of € induces the identity on the funda-
mental group:

el S I — SUx L (2, [uy s Uz : v UK))

— (z,[z%U1 : zUz ;... ZUk]).

Each 1 < j < k has an isotopy of diffecomorphisms that lifts the generator of
T (S03) = (3:

pj:SIXL"—>Sl><L";(Z,[u1:...:j:...:k])
— (z,[ur:.oorzug s ugd).

In the proof of [H]83, Proposition 3.1], Hsiang-Jahren showed that each homo-
topy class [p;] has order 2d in the group 11 (Map L™, id). As S! is a co-H-space
and DiffL™ is an H-space, the two multiplications on 11 (Diff L™, id) are equal
(and abelian), so

[ =[pfopro---opkl=1[p1]9 % [p2] % -+ x [px] € T (DIFL", id).
Therefore,
[£24] = [e4124 = [p1 )2 [py]24 - - [ = 1 inm(MapL™,id). O

Structure sets quantify homeomorphism types within a homotopy type, so we
can start, as follows.

Proof of Proposition 2.2. Consider the homotopy equivalence
x:=fo&lof:M—M,
where f denotes a homotopy inverse for f. By the composition formula for

Whitehead torsion [Mil66, Lemma 7.8], by topological invariance [Cha74], and
by Lemma 4.1 (1),

T(x) = T(f) + fa(T(2) + E2T(f))
= —f' T () + 10+ T(f) =0 € Why (1, M).

That is, « is a simple homotopy equivalence, and hence it defines an element
[M, &] € Sop(M).
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On the other hand, by Lemma 4.1 (3) and Lemma 4.3, note

0 = fro&tofu=froidofs =id: S§op(M) — SSop(M)
O(dz:f‘os2d20f:f‘0id0f:id:M_,M_

Then, by Ranicki’s composition formula for simple structure groups [Ran09], note

a*-1 d*-1 )
AM, ol = > Ml = > () [M, ]
j=0 j=0

= [M,a®] = [M,id] = 0 € S§op(M).
By equation (4.1) and Corollary 3.6, S7op(M) = S7op(Xa,q) is a sum of copies
of Z/2 and Z. Thus, since d is odd, we must have [M, ] = 0. That is, « is s-
bordant to the identity. Therefore, by the s-cobordism theorem, « is homotopic

to a self-homeomorphism 6. O

5. CLASSIFICATION OF HOMEOMORPHISM TYPES

We resume with the calculation of the isotropy subgroups SI(M) from Proposition
3.2. Understood in the context of an abelian group A with involution *, we
consider subgroups

(—=1)"-symmetrics := {a € A | a = (-1)"a*},
(=1)™-evens := {b + (=1)"b* | b € A}.

Furthermore, for use later, we abbreviate symmetrics and evens as, respectively,
(+1)-symmetrics and (+1)-evens,

and skew-symmetrics and skew-evens as, respectively,
(—1)-symmetrics and (—1)-evens.

Proposition 5.1. Ler M be a closed connected topological manifold of dimension
n > 4. Ifn = 4, then assume T, M is good in the sense of Freedman-Quinn [FQ90].

(1) With respect to the standard involution on Why (11, M) given by (g — g~ '),
(—=1)"-evens < SI(M) < (—1)"-symmetrics.

Hence, SIM)/(=1)"-evens < H™(Cy; Wh,(1T0;M)), which is a sum of
copies of Z/2.
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(2) This quotient is expressible in structure groups (add by stacking in the I-
coordinate):

ors SI(M)
n t
Cok(Stop(M X I) = Stop(M X 1)) —— (—1)"-evens’

This quantification generalizes a specific argument given by Jahren-Kwasik
[JK15, Section 7]. Our structure sets are “rel 07 (homeomorphism on the unspec-

ified boundary [Wal99, Section 0]).

Proof of Proposition 5.1(1). Let « € SI(M). There is a strongly inertial h-
cobordism (W;M,M’) such that ® = T(W - M). By the composition formula
[Mil66, Lemma 7.8],

O=7(dy) =T(IM W >M)=TW > M)+ (W > M)eT(M - W).
Next, by Milnor duality [Mil66, Section 10], note
TM = W)= (-D"T(M - W)*.

Finally, since the h-cobordism is strongly inertial, by Chapman’s topological in-
variance of Whitehead torsion [Cha74], by the composition formula again, and
by substitution, note

O=TM =W ->M)=T(W >M)+ (W > M)y T(M = W)
=&+ (=D)"(W » M)yT(M = W)* = x — (-1)"x*.

Thus, SI(M) < (=1)"-symmetrics in Wh; (11;M).
We let B € Whi(myM). There exists an h-cobordism (W’';M,M') with
B =T1(W' - M). Consider the untwisted double

W:=W uyr —W'.

To avoid confusion, we denote 0W =: —M, LI M; with the canonical homeo-
morphisms M; ~ M understood. Note that (W;Mo, M) is a strongly inertial
h-cobordism, since (W' - M"" — W’) is homotopic to the identity:

(My =W > My) = M) = -W >M" - W - M)
,ﬂip ,
= (M - -W = W' - M)
id
~ (M) = My).
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Using the above techniques, this doubled h-cobordism has Whitehead torsion

T(W > My) = T(W > W - M)
=T(W - My) + (W > My) s T(W > W)
=B+ M" =W - My)sT(-W - M")
=B+ (-D"T (=W - M)*
=B+ (-1)"B*.

In the third step, we could excise W’ since W - W’ is the identity on W', whose

mapping cone consists of elementary expansions. Thus, SI(M) > (—1)"-evens in
Whi (Tt M). O

Proof of Proposition 5.1 (2). Let f : (W;My,M;) — M x (I;0, 1) be a homo-
topy equivalence of manifold triads such that the restriction 0f : 0OW — M x 01
is a homeomorphism. Since f : W — M X I represents the retraction W - My, the
h-cobordism (W; My, M;) is strongly inertial. Then, assuming the identification
0of : My — M, we have

T(f) = T(W - Mo) € SI(M).
Now, we suppose that F : (V;W,W’') — M x I x (I;0,1) is an h-bordism,
relative to M X 0I X I, existing from f to another such homotopy equivalence
S (W's Mg, M{) — M x (I;0, 1) of triads. By the composition formula [Mil66,

Lemma 7.8], note

TMy=WoV)=T(W=V)+ (W < V), T(My = W),
TMy =W =« V)=T(W < V)+ W < V), T(Mj = W').

As above, T(f") = T(W' -~ My). Since T(idy) = 0, by [Mil66, Lemma 7.8]

again, note

T(Mg = W) = =(Mo = W)xT(f),
T(My = W') = —(My = W)sT(f').

By Milnor duality [Mil66, Section 10], note
TW < V)= (=D"1(W < V)*,
Then, since My ~ M and since

(Mp = W = V) is homotopic to (M = W - V),
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note

TW = V) = (Mg = V)xT(f) = (=D)""'T(W = V)* = (Mg = V)xT(f"),
TF) = T(f) = (Mo = V), (1 + (=D)"s)T(W = V).
Thus, we obtain a well-defined homomorphism of abelian groups, where addition

in this relative structure set is given by stacking homotopy equivalences in the
I-coordinate:

SIM) 61 [ ().

(—=1)"-evens’

S’}Il‘op (M x 1) tors

Let @ € SI(M). Then, there exists an h-cobordism (W;M,M’) with torsion
T(W - M) = « such that (M" = W - M) is homotopic to a homeomorphism.
By first mapping W ~ M X {1}, and then applying the Homotopy Extension
Property with regard to a choice of the above homotopy to a homeomorphism
M’ — M and a choice of homotopy of (M — W — M) to the identity on M,
we obtain a homotopy equivalence f : (W;M,M’) — M X (I;0, 1) such that
of : OW — M x 0I is the prescribed homeomorphism and f : W — M x I
represents W — M. Then, [f] € S%OP(M x I) and T(f) = . Therefore, tors is
surjective.

Finally, tors[ f] = 0 if and only if f : W — M X I is h-bordant to a simple
homotopy equivalence (as was done in the proof of Proposition 5.1 (1)). Thus,
the kernel of tors is the image of S§qp(M X I). )

The homotopy invariance of the subgroup SI(X) < Whi(m1X) is now a
corollary.

Proof of Theorem 3.1. The function tors is a homomorphism with respect to
Ranicki’s abelian group structure on the structure sets. This follows from the
commutative diagram with exact rows (using Proposition 5.1 and Theorem 18.5

of [Ran92]):

S5op(X X I) —— SBop(X x I) —*== SI(X)/(—1)"-evens

| |

S5 (X XI) —— Sh (X xT) —22— A"(Cy; Why (11, X))

[ ;

L5 (X X I) —— L1 (X xI) = A"*2(Cy; Wh (11,X))

The bottom two squares consist of homotopy-invariant functors from the cate-
q Y
gory of spaces to the category of abelian groups; that is, if continuous functions
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of spaces are homotopic, then these functors induce equal homomorphisms of
abelian groups.

Consider the homotopy class of any continuous function f : M — X, which
induces a homomorphism fix : Wh; (11;M) — Wh; (11, X). By the funcroriality
of the upper-right corner of the diagram, the induced map

fr : HY(Co; Why (T1;M)) — H™(Ca; Why (11, X))

restricts to a map fx : SI(M) /(—1)"-evens — SI(X)/(—1)"-evens of subgroups.
Therefore, the induced map fix : Why(mM) — Wh; (111X) restricts to a map
Sfx : SIIM) — SI(X). If f is a homotopy equivalence, then all of these induced
maps are isomorphisms. -

The following proposition is not original; it is merely a record. Recall that
k—
Xaq =S" < LY
Proposition 5.2. Let d > 1 be a square-free odd integer. Select an integer q
coprime to d. We have the following:

(1) There is a canonical identification
Whi (111 X4,5) = Whi(Cgq) @ Who(Cq).

(2) The standard involution (g — g=') on Why (111X 4,q) restricts to the stan-
dard involution on Why(Cq) and to negative the standard involution on
Who (Ca).

(3) Furthermore, with respect to these restricted involutions,

Whi(Ca) Why (Ca)
——=0 and ———
symmetrics skew-evens

= H(C2; Who(Cqg)).

Proof:
Part (1) is the fundamental theorem of algebraic K-theory [Bas68, XII:7.3, 7.4b]
combined with the vanishing of NK;(Z[Cg4]) for d square-free [Har87].

Part (2) is the analysis of the restriction of the overall involution done in page 21

of [Ran73b].

For (3), by Remark 4.2, the group-ring involution (g — g~!) on Z[C4] induces
the identity on Whi(C4). Therefore, Wh;(Cg)/symmetrics = 0. The assertion
about Why (Cy) is simply the definition of Hy(Cz; Who(Ca)). O

Corollary 5.3. Ler d > 1 be square-free odd, select an integer q coprime to d,
and let k > 1. Let M be any closed topological manifold in the homotopy type of Xa 4.
We can identify

Whi (111 X4,4)

SIM) = H(C2; Who(Cqg)).
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Proof. By Theorem 3.1, SI(M) = SI(Xg4,q) as subgroups of Wh; (111X4,4).

The surgery exact sequence for X4 x I'rel 0 admits forgetful maps of dec-
orations. Consider the commutative diagram with exact rows, which we write
schematically:

Hogiy — L3,y — 85— Hope1 — L34

N |

h n
Hoksy —— LYy —— SP —— Hopoy —— LY, .

By Ranicki’s version of Shaneson’s thesis [Ran73a], Bak’s vanishing result [Bak75],
and Bak-Kolster’s vanishing result [BK82, Corollary 4.7], note the computations:

L512(Coo X Ca) = L35 (Ca) ® LYy (Ca) = L3y (Ca),
L2 (Co X Ca) = LY (Ca) @ Ly, (Ca) = LYy ,»(Ca),

L5, 1 (Co X Cq) = L3, (Ca) ® LI (Ca) = L. (Ca),
LM (Co x Cq) = LI (Ca) ® LY (Ca) = LY, (Ca).

Substituting, we may now consider the following commutative diagram of groups:

0 0 0
0 —— L34, (Ca) /Hak+z §* Hogr1/Lok (1) —— 0
52) 00— I ,(Ca)/Hpss sh Hojsr/Lok(1) —— 0
0 —— H*2(Cy; Wh (Cy)) Shyss 0 0
0 0 0

Clearly, the right column of (5.2) is exact. Next, the work of Bass-Milnor-Serre
showed that Whi(Cy) is a free abelian group and that the group-ring involu-
tion (g — g~!) on Z[C4] induces the identity on Wh;(Cy) (refer to Remark
4.2). Then, the subgroup of skew-symmetrics in Wh; (Cy) is zero, and therefore,
A2%43(Cy; Why (C4)) = 0. Recall the vanishing result above: L3;,,(Cq) = 0.
Therefore, by the Rothenberg sequence, the left column of (5.2) is exact. Then,
finally, a diagram chase in (5.1) shows that the middle column of (5.2) is exact.



Free Transformations of S' x S™ of Square-free Odd Period 1475

The generalized homology of a space cross a circle admits a canonical decom-
position:

Hope1 = Hort(Xa,q3 L(1)) = Hyper (L35 5 1L(1)) @ Ho (L 5 1L(1)).

By naturality, the assembly map Hyx1 — Lé’khﬂ for X44 is the direct sum of
the assembly maps Hax 1 — L3, = 0 and Hy = Lyx(1) — L;L,’f’ for 3!

by (3.1). Thus, the kernel of the assembly map Hoxs1 — Lé’khﬂ for Xg4,4 is the
summand Hjg 41 (Lé’fq_l; L(1)) = Hok+1/Lak(1). Therefore, by exactness of rows
in (5.1), the top and middle rows of (5.2) are exact.

Thus, by the Nine Lemma, the bottom row of (5.2) is exact. Then, by Propo-

sition 5.1,

SI(X A ics in Wh; (C,
(Xaq) _ FP%42(CyiWh (Cy)) = symmetrics in 1(Ca)
evens evens in Whi(Cy)

Therefore, we obtain the formula
SI(X4,q) = symmetrics in Wh (Ca) & skew-evens in Who(Cy).

The calculation of Wh (X4,4)/ SI(X4,4) now follows from Proposition 5.2. O

Remark 5.4. Proposition 3.2, Corollary 3.6, and Corollary 5.3 produce a
based bijection

_ h

Z214=D12 5 Hy (Cos Who(Ca)) ———  Stp (Xag)-
6. COMPUTATION OF THE ACTION OF
THE GROUP OF SELF-EQUIVALENCES

For any topological space Z, write Map(Z) for the topological monoid of con-
tinuous self-maps Z — Z. Recall that hMod(Z) ¢ 1y Map(Z) is the group of
homotopy classes of self-homotopy equivalences. A pair (X1, X3) of based topo-
logical spaces satisfies the Induced Equivalence Property if

[f] S hMOd(X1 X X2)=> [pj Of o ij] S hMOd(Xj)

for both j = 1,2, with based inclusion i; : X; — X; X X, and with projection
pj : X1 X Xo — Xj. We slightly simplify the following result of P. 1. Booth
and P R. Heath [BH90, Corollary 2.8]. Write [—, —]o for the set of the based

homotopy classes of maps preserving basepoint.

Theorem 6.1 (Booth-Heath). Let X be a connected CW complex equipped
with a co-H-space structure, and let Y be a based connected CW complex such that
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[Y,Xlo = 0 = [X AY,X]o. If(X,Y) satisfies the Induced Equivalence Property,
there is a split exact sequence of groups:

1 — [X,Map(Y)]o — hMod(X x Y) — hMod(X) x hMod(Y) — 1.

Corollary 6.2. Ler Y be a nonempty connected CW complex.  Suppose that
1 (Y) is finite. Then, there is a natural decomposition of groups:

hMod(S! X Y) = 111 Map(Y) x (hMod S! x hMod Y).

Hence, each element of hMod(S! X Y) is splittable: it restricts to a self-equivalence
of 1 XY.

This is false without the hypothesis, since hMod(S! x ') = GL,(Z) # Z x
({x1} xZ).

Proof of Corollary 6.2. The circle X = S! is a co-H-space, and it is a model of
K(Z,1). Note that [Y, X]o = H'(Y;Z) = 0 and

[XAY,X]o=HY(S'AY;Z) = Hy(Y;Z) =0.

By Theorem 6.1, it remains to show that (S!,Y) satisfies the Induced Equivalence
Property. Let f : S' X Y — S! X Y be a based homotopy equivalence.

On the one hand, to prove that p; o f o i; : S! — S! is a homotopy equiv-
alence, we must show that induced map on the Hopfian group m;(S!) = Cx is
surjective. Since f% is surjective, there exists (a,b) € 1(S!) x ™ (Y) such that
f#(a,b) = (t, 1), where t generates 1(S!). Then, since Hom(m Y, m S!) = 1,
note (p1)#(f#(1,b)) = 1. Thus, (p1)#(fs(a, 1)) = t.

On the other hand, f induces an isomorphism on 11, (S'XY) = 11, (Y) forall
n > 1. Since Y is a CW complex, by the Whitehead theorem, it remains to show
that p; o f o i, is injective on the co-Hopfian group 111 (Y). For all b € 1 (Y),
recall (pl)#(f#(l, b)) =1. Then, (pz Ofoiz)#(b) =1 ifand Only lff#(l, b) = 1,

ifand only if b = 1, since f% is injective. O

Remark 6.3. The corollary below is parallel to p = 2; Jahren-Kwasik [JK11,
3.5] showed

G, x(C)? ifk=0 (mod?2)
G, x Cy4 ifk=1 (mod?2)
X (Cy x Cy).

hMod(S! x RP*-1) = {

Unlike below, the first factor (the C; on the left) is not represented by a diffeomor-
phism. The very last C;, factor is represented by the diffeomorphism that reflects
RP" in RP"!,
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Corollary 6.4. Let d > 1 be odd, q coprime to d, and k > 1. We have a
metabelian group

hMod(S' x L") = A X (C; X B),

where A is abelian of order 2d2, and B is the exponent e := ged(2k, @ (d)) subgroup
of Aut(Cy).> Furthermore, the subgroup A X C, is generated by the three diffeomor-
phisms

p:(z,[u]) — (z,[zur : Uy : ... : ugl)

1/d

£:(z,[ul) — (z,[z%%; : 2V, « ... : 2V90])

- X idLn s (zy[u]) — (z,[ul).

Proof. Since the fundamental group 1 (L") = Cg is finite, by Corollary 6.2,
we have

hMod(S! x L") = 11y Map(L™) x (hMod S! x hMod L").

The subgroup hMod(S!) is generated by the homotopy class of the diffeomor-
phism ~ X idzn. Since d is odd, by [Coh73, (29.5)], any homotopy equivalence
h: L™ — L" is classified uniquely by the induced automorphism hy : s — 5%
on 111 (L") where ak = deg(h) (mod d) and deg(h) = £1; any a with ak = +1
(mod d) is induced by an equivalence h, : L™ — L™, That is, since ak = +1
(mod d) if and only if a** = 1 (mod d), the homomorphism

#: hMod(L"™) — Out(mr;L™) = Out(Cy)

is injective with image the subgroup B of exponent e.

Consider then the fibration sequence Map, (L") — Map (L") — L™, where
Map, € Map is the topological submonoid of basepoint-preserving self-maps.
Since (L") = 0, and since any unbased homotopy between two based self-maps
of a connected CW complex is relatively homotopic to a based homotopy, there is
an exact sequence of abelian groups:

1 —— m Map, (L") —— m Map(L") —— m (L") —— 1.

On the one hand, Hsiang-Jahren [H]83, Proposition 3.1] showed that the for-
getful map m Diffo(L™) — 11, Map, (L") is surjective with image of order 2d
generated by the based homotopy class [p]o of the diffeomorphism p. On the
other hand, since €4(t) = ts, the unbased homotopy class [€] of the diffeomor-
phism & maps to the generator s of 7, (L™). Therefore, 71; Map(L") is an abelian
group of order 2d? generated by [p]o and [£]. O

3 Classically, it is known that Aut(Cy) has order @ (d). If d is an odd-prime power, then Aut(Cy)
is cyclic. Conversely, Aut(Cy) contains a product of copies of C2, one for one for each odd-prime
factor of d, such as Aut(Cy5) = Co X Cy.
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To find M"555(Xa.4), we now compute the action of the group hMod(X.4)
on S%P(Xd,q).

Proof of Theorem 1.7. First, we show the order d* subgroup of hMod(X4 4)
acts trivially. By the proof of Corollary 6.4, this subgroup is generated by the
classes [p?] and [€2] of diffeomorphisms. Let [M, f1 € Stip(Xa,q), and write
f : Xa.4q — M for a homotopy inverse of f : M — Xg,4. Then, for any element

[¢] € hMod(X4,4), consider the pullback f*[¢] := [fodoflehMod(M).
Recall, by Proposition 2.2, that each pullback f*[&?] is represented by a homeo-

morphism. Thus, [£2] acts trivially on the hybrid structure set St (Xa.4).

The overall argument for [p?] is similar to but slightly simpler than that of
[£2] in Section 4. By the composition formula for Whitehead torsion, by Lemma
7.8 of [Mil66], and since pz = id,

T(f) + fu(T(P) + psT(f))
— T () + f2H0+ T(F) =0 € Why (11, M).

T(f*p)

Thus, [M, f*p] € Siop(M). Much as in Proposition 3.3, there is a direct sum
decomposition

S5op(Xag) = Shop(I X L™) @ SEop(L™).

Since p restricts to id on 1 x L™ € S! x L", there is an induced commutative
diagram

lue li
0 —— S§op x L") 255 88 (Xag) —— ShoL (L") —— 0

l(pn lp* [p+]
~

| 1i
0 S:}OP(I X Ln) & S%OP(Xd,q) th> S!’lkop(Ln) — 0.

The decomposition is compatible with those of L, (111X 4,4) and Hy (Xg,4; L(1)),
inducing

0 —— LI (Cq) — Slop(L™) —— Hy (L% 1(1)) — 0

J[(p#)*]ﬂd J{[p*] l

0 —— LN (Ca) —— Stop(L™) —— Hap—1 (L™ 0(1)) — 0.

Recall from the proof of Lemma 3.5 that Hax—1 (L"; L(1)) is an abelian group an-
nihilated by a power of d. An argument similar to that proof shows that $%, (L")
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has no “d-torsion.”® Thus, [p«] = id on $%5p(L™). But S§qp(I X L) = 0 by
Lemma 3.4. Therefore, psx = id on Sqp(Xa,4), and then,

(f*Pz)* =f* 0(02)* °f>s< :f* OidOf* :id5SSTOP(M) _’S”SFOP(M)’
(f*p)i = fop™of~foidof ~id: M — M.

Then, by Ranicki’s composition formula for simple structure groups [Ran09], note

-1 -1 ,
dlM, f*p*]1 = > M, f*p*1 = > (f*p?)iIM, f*p*]
Jj=0 Jj=0
= [M,(f*pH?%] =0 € S§op(M).

By equation (4.1) and Corollary 3.6, Stop(M) = Stop(Xa,q) is a sum of copies
of Z/2 and Z. Thus, [M, f*p?] = 0 since d is odd. That is, f*p? is s-bordant to
id. By the s-cobordism theorem, f*p? is homotopic to a homeomorphism, and
so [p?] acts trivially on S#gP(Xd,q). Therefore, from Corollary 6.4, the order d?
subgroup of hMod (X, 4) acts trivially.

Now, this induces a left action of the quotient group C; X C; X B on the

set S%gP(Xd,q). Thus, by Remark 5.4, we are done, since this group has order
de = 8ged(k, p(d)/2). O

Remark 6.5. Let p + 2 be prime. This quotient group does not act with
uniform isotropy, unlike the order p? subgroup. To conclude, we discuss the three
generators of C; X Cz X C,.

(1) The above methods demonstrate that post-composition with p? is the identity
on the h-cobordism structure group. There may be a “cross-effect” on the s-
cobordism structure group, that is, a nonzero component of p¥ from the free part

of S1op(Xp,q) to the 2-torsion part. The author is unaware of the effect within
H()(Cz; Clp )—orbits.

(2) Since complex conjugation ~ reverses orientation on the symmetric Poincaré
complex 0*(S') € L'(Cw), post-composition with the diffeomorphism ~ xidr,
is negation’ on the h-cobordism structure group

Stop(Xp.a) —Skop(Lpq) = 2P~ D12,

“This lack of “d-torsion” is true for the h-structure group, despite that l’,gk(Cd) may now have
some 2-torsion.

S[JK11, Lemma 3.7] falsely implies that = xidgpn induces the identity on STop(S! X RP™), rather
than negation. The proof’s error is that Ranicki’s L"-orientation of a manifold is preserved by tangential
homotopy equivalences. Call a manifold w1 -oriented if an orientation is chosen on the Ker(w1)-cover
[Wal67, p. 216]. The correction is that the L -orientation of a wj-oriented manifold is preserved
by wi-oriented tangential homotopy equivalences [Ran92, 16.16, Appendix A]. For example, the
diffeomorphism ~ X idgpn is tangential with 4 = +1 but reverses w1 -orientation.
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Then, = xidr,, must act freely away from the Hy(Cz; Clp)-orbit of the basepoint
[Xp,q,1d] of S%gP(Xp,q). But = xidy,, must fix [X) 4,id], since any two home-
omorphisms M — X, 4 are s-bordant.® Thus, = X id,, acts non-uniformly on

Stor(Xpa)-

(3) Let a be a primitive e-th root of unity in the field F,. Recall, from the proof
of Corollary 6.4, that the homotopy equivalence hg : Ly g — Lp,4 uniquely in-
duces s — s% on fundamental group. Note ids1 Xhg : Xp g — Xp,q has zero
Whitehead torsion, by the product formula, but the author suspects that ids1 xh,
is often non-representable by a homeomorphism of X}, 4.7 On the other hand, the
automorphism of %, (X, 4) induced by idsi xh, is identified with the automor-
phism of $§qp(Lpq) = ZP~1/2 induced by h,, given by a permutation matrix
I1, of order e/2 determined by a. Both these issues complicate the systematic use
of Ranicki’s composition formula:

[(ids1 xha) o (f : M — Xpq)]
= [ids1 Xhal + Hal ] € Shop(Xp,q) = 2P~D/2,
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