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ABSTRACT. Let n be a positive integer, and let ℓ > 1 be square-
free odd. We classify the set of equivariant homeomorphism classes
of free Cℓ-actions on the product S1 × Sn of spheres, up to inde-
terminacy bounded in ℓ. The description is expressed in terms of
number theory.

The techniques are various applications of surgery theory and
homotopy theory, and we perform a careful study of h-cobordisms.
The ℓ = 2 case was completed by B. Jahren and S. Kwasik (2011).
The new issues for the case of ℓ odd are the presence of nontrivial
ideal class groups and a group of equivariant self-equivalences with
quadratic growth in ℓ. The latter is handled by the composition
formula for structure groups of A. Ranicki (2009).

1. INTRODUCTION

Let ℓ > 1 be an integer. Consider the ℓ-periodic homeomorphism without fixed
points:

Tℓ : S1 × Sn -→ S1 × Sn; (z,x) 7 -→ (ζℓz,x) where ζℓ := ei2π/ℓ ∈ C.

WriteAn
ℓ for the set of conjugacy classes (C) in Homeo(S1 × Sn) of those cyclic

subgroups C of order ℓ without fixed points. B. Jahren and S. Kwasik classified
the case ℓ = 2 [JK11].

Recall the Euler totient function ϕ is the number of units modulo a given
natural number. Let d > 1. A partition Qkd of Z×d is given by [q] = [q′] if
akq ≡ ±q′ (mod d) for some a. The map (g 7 -→ g−1) on the cyclic group Cd
induces an involution ι on the projective class group Wh0(Cd) := K0(ZCd)/K0(Z)
with coinvariants H0(C2; Wh0(Cd)) :=Wh0(Cd)/(1− ι).
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Theorem 1.1 (Classification Theorem). Let ℓ > 1 be square-free odd. Then,
A2k
ℓ = {(Tℓ)} for all k > 0 andA1

ℓ = {(Tℓ)}. Otherwise, for each k > 1, there is a
finite-to-one surjection

∐

1<d |ℓ

Qkd × Z
(d−1)/2 ×H0(C2; Wh0(Cd)) A2k−1

ℓ − {(Tℓ)}.

The d-indexed terms in the disjoint union have disjoint images. In the d-th image,
each point-preimage has cardinality dividing 8 gcd(k,ϕ(d)/2), which has bounded
growth in ℓ. In particular, the setA2k−1

ℓ of free Cℓ-actions on S1×S2k−1 is countably
infinite if k > 1.

Different preimages have different cardinalities (6.5). For n = 3, this theo-
rem answers the existence part of [Sch85, Problem 6.14]; indeterminacy in the
uniqueness is at most 16.

Corollary 1.2. Let p ≠ 2 be prime. Then, A2k
p = {(Tp)} for all k > 0 and

A1
p = {(Tp)}. Otherwise, for any given k > 1, there is a finite-to-one surjection

Qkp × Z
(p−1)/2 ×H0(C2; Clp) A2k−1

p − {(Tp)}.

Each preimage has cardinality dividing 8 gcd(k, (p − 1)/2), which is bounded in p.

Here, Clp is the ideal class group of Z[ζp]; the involution ι is induced by
(ζp 7 -→ ζ−1

p ). The three parts are understood by using the quotient manifold

M of the free Cp-action, specifically, invariants of the infinite cyclic cover M̄, as
follows. The Qkp-part is the first Postnikov invariant of M̄. The Z(p−1)/2-part is
a projective ρ-invariant of M̄. The Clp-part is the Siebenmann end obstruction
of M̄ . The indeterminacy 8 gcd(k, (p − 1)/2) is due to ineffective action of the
group (quadratic growth in p) of self-homotopy equivalences of M .

Remark 1.3. Consider the ideal class group Cl+p of the real subring Z[ζp +
ζ−1
p ] of Z[ζp]. Write G for the Galois group of Q(ζp) over Q. The induced

Z[G]-module map Cl+p -→ Clp is injective ([Was97, Theorem 4.14]). The norm

map N := 1 + ι : Clp -→ Cl+p is surjective ([Was97, Proof 10.2]). Since the fixed

field of the automorphism ι ∈ G is Q(ζp + ζ−1
p ), ι induces the identity on Cl+p .

Then, ι induces negative the identity on Cl−p := Clp /Cl+p , since

ι(I) = N(I)− I ≡ −I (mod Cl+p).

Therefore, we obtain an exact sequence of Z[G/ι]-modules:

2(Cl−p) Cl+p H0(C2; Clp) Cl−p /2 0.
1̃−ι



Free Transformations of S1 × Sn of Square-free Odd Period 1455

Here, 2A := {a ∈ A | 2a = 0} denotes the exponent-two subgroup of any abelian

group A, and Ç1− ι := (1 − ι) ◦ s is a well-defined homomorphism via a setwise
section s : Cl−p -→ Clp.

Remark 1.4. The Cl−p /2 are only known for p < 500 [Sch98]. Even worse,

the Cl+p are only known for p à 151. The Cl+p are conditionally known for
157 à p à 241 [Mil15], which we denote by ∗, under the Generalized Rie-
mann Hypothesis for the zeta function of the Hilbert class field of Q(ζp + ζ−1

p ).
We list these new results of R. Schoof and J. C. Miller:

TABLE 1.1. Cl+p derives from [Mil15, Theorem 1.1]. Cl−p /2
derives from Table 4.4 in [Sch98]. For H0(C2; Clp), this group
vanishes∗ for the 46 primes p à 241 not listed.

p Cl+p Cl−p /2 H0(C2; Clp)

29 0 (2,2,2) (2,2,2)

113 0 (2,2,2) (2,2,2)

163 (2,2)∗ (2,2) 4 à order à 16∗

191 (11)∗ 0 (11)∗

197 0∗ (2,2,2) (2,2,2)∗

229 (3)∗ 0 (3)∗

239 0∗ (2,2,2) (2,2,2)∗

Theorem 1.1 follows from Theorems 1.6 and 1.7 below. Consider complex
coordinates

S2k−1 = {u ∈ Ck | u · ū = 1}.

For any q coprime to any d > 1, there is a linear isometry of S2k−1 giving a free
Cd-action:

Φd,q : S2k−1 -→ S2k−1; (u1, u2, . . . , uk) 7 -→ (ζ
q
du1, ζdu2, . . . , ζduk).

Note that the quotient manifold L2k−1
d,q := S2k−1/Φd,q is called the lens space of type

(d;q,1, . . . ,1).

Remark 1.5. The products of S1 with the classical lens spaces

Λ of type (p;q1, . . . , qk),

Λ′ of type (p;q′1, . . . , q
′
k),

are distinguished in Corollary 1.2, first by homotopy type in the first factor, and
then by homeomorphism type in the other factors, as follows. First, note that Λ
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has the homotopy type of Lp,q, where q := q1 · · ·qk, and similarly for Λ′ with
q′ := q′1 · · ·q

′
k. Furthermore, these types are equal if and only if [q] = [q′] in

the set Qkp [Coh73, (29.4)]. Now, assume [q] = [q′], so there exists a homotopy
equivalence f : Λ′ -→ Λ.

Second, assume 0 = ρ[Λ′, f ] = ρ(Λ′) − ρ(Λ), which is independent of
the choice of f . Indeed, ρ is an invariant of the h-bordism class of (Λ′, f )
[AS68, 7.5]. Then, [Λ′, f ] = [S1 × Λ′, idS1 ×f ] in SsTOP(S

1 × Λ) maps to zero
in ShTOP(S

1 × Λ) ≅ Z(p−1)/2 (see Corollary 3.6). This kernel is identified with
the kernel of L̃h2k(Cp) -→ L̃

p
2k(Cp), which is further identified with the following

cokernelH (Cp) arising in the Ranicki-Rothenberg sequence [Bak78]:

H (Cp) := Cok(Ĥ0(C2;K0(ZCp ,QCp)) -→ Ĥ0(C2; Clp)).

Thus, the structure [Λ′, f ] lies in the subquotientH (Cp) of the third factor, that
is, H0(C2; Clp).

Third, assume the given two-torsion element [Λ′, f ] of ShTOP(Λ) vanishes in
H0(C2; Clp). Then, f : Λ′ -→ Λ is h-bordant to the identity map. In particular,
Λ′ is h-cobordant toΛ. Therefore, they are isometric [Mil66, 12.12]; equivalently,
Λ and Λ′ are homeomorphic.

For any closed manifold X, consider the set Mh/s
TOP(X) of closed topological

manifolds M homotopy equivalent to X up to homeomorphism. The calculation
ofAℓ reduces toM.

Theorem 1.6. Let ℓ be square-free odd. Then,A2k
ℓ = {(Tℓ)} for all k > 0 and

A1
ℓ = {(Tℓ)}. Otherwise, for all k > 1, passage to orbit spaces induces a bijection

A2k−1
ℓ − {(Tℓ)} -----------------------------------------------------------------------------------------------------------------------------------------------------------→

≈

∐

1<d|ℓ

∐

[q]∈Qkd

M
h/s
TOP(S

1 × L2k−1
d,q ).

We calculate these M by methods of surgery theory, and express them with
K-theory.

Theorem 1.7. Let d be square-free odd, q coprime to d, and k > 1. There is a
surjection

Z(d−1)/2 ×H0(C2; Wh0(Cd)) M
h/s
TOP(S

1 × L2k−1
d,q ).

Any preimage has cardinality dividing 8 gcd(k,ϕ(d)/2), which has bounded growth
in d.

Theorem 1.6 and Theorem 1.7 are proven in Section 2 and Section 6, respec-
tively. The difficulty in generalizing Theorem 1.1 to all odd ℓ comes from the
proof of Theorem 1.6. When d > 1 is not square-free, say d = p2, the groups
NK1(Z[Cp2]) are huge: they are closely related to infinitely generated modules
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over the Verschiebung algebra of Fp[t]. Nonetheless, there would be two diffi-
culties in handling elements of NK1 in this paper: topologically, there would be a
“relaxation” obstruction to making Proposition 2.2 work, and algebraically, there
would be a “homothety” obstruction to making Lemma 4.1 (1) work.

2. CLASSIFICATION OF HOMOTOPY TYPES

The first stage is the homotopy classification of orbit spaces, then analysis of con-
jugacy.

Proposition 2.1. Let S1 × Sn be an ℓ-fold regular cyclic cover of a topological
space M , with n á 1 and odd ℓ > 1. Then, M is homotopy equivalent to S1 × Sn or
S1 × Lnd,q with d|ℓ.

The degree ℓ must be odd, or else the Klein bottle M = RP2#RP2 is a coun-
terexample.

Proof. The regular covering map S1 × Sn -→ M has degree ℓ > 1. Since ℓ
is odd, the quotient manifold M is oriented. If n = 1, then M must be homeo-
morphic to the torus S1 × S1. If n = 2, then M must be homotopy equivalent to
S1 × S2. Thus, we now assume n á 3.

The covering map S1 × Sn -→ M has covering group Cℓ. Write Γ := π1(M)
for the fundamental group of the quotient space. The exact sequence of homotopy
groups contains

1 C∞ Γ Cℓ 1.
ι ϕ

Write T ∈ Γ for the image under ι of a generator of C∞. Select an element S ∈ Γ
such that S maps under ϕ to a generator s of Cℓ. Define a setwise section

σ : Cℓ -→ Γ ; sb 7 -→ Sb for all 0 à b < ℓ.

In general, for a group extension equipped with a setwise section, one has that
Γ = (Im ι)(Imσ). Then, for each x ∈ Γ , we obtain the normal form x = TaSb

for some a ∈ Z and 0 à b < ℓ. Note S−1TS ∈ {T , T−1}. If S−1TS = T−1,
then S−ℓTSℓ = T (−1)ℓ , but Sℓ ∈ Kerϕ = Im ι and ℓ is odd, so T = T−1, a
contradiction. Hence, TS = ST ; therefore, Γ is abelian. Hence, we have that
π1(M) = Γ ≅ C∞ × Cd for some divisor d of ℓ (this includes the case of d = 1).

There exists a corresponding infinite cyclic cover M̄ with covering translation
t : M̄ -→ M̄. There is a bundle sequence R -→ Torus(t) -→ M , with total space
the mapping torus of t.

Observe that M̄ is a PDn-complex, since the PDn-complex R × Sn is its
universal cover with finite covering group π1(M̄) = Cd. Also, for any PDn-
complex X with n á 3 and X̃ ≃ Sn, Wall showed that the first Postnikov invariant
k1(X) : K(π1X,1)→ K(Z, n+ 1) is a generator of abelian group Hn+1(π1X;Z),
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and that the oriented homotopy type of X is uniquely determined by the orbit
[k1(X)] under action of the group Out(π1X) [Wal67, Theorem 4.3].

If d = 1, then M̄ is homotopy equivalent to Sn. Otherwise, we assume
d > 1. Recall the cohomology ring H∗(Cd;Z) = Z[ι]/(dι), where ι has degree 2;
in particular, K(Cd,1) has 2-periodic cohomology. However, Cd acts freely on
R × Sn ≃ Sn, so a standard argument with the Leray-Serre spectral sequence
shows that K(Cd,1) has (n + 1)-periodic cohomology. Hence, n = 2k − 1 for
some k > 1. Write qιk ∈ H2k(Cd;Z) = Z/d for the first Postnikov invariant of
M̄; we have gcd(d, q) = 1. The lens space L(d;q,1, . . . ,1) also has first Postnikov
invariant q, so M̄ must be homotopy equivalent to L2k−1

d,q = L(d;q,1, . . . ,1).
In any of these cases of d and q, there exist a closed n-manifold L and a

homotopy equivalence h : L -→ M̄. Select a homotopy inverse h̄ : M̄ -→ L for h;
consider the oriented homotopy equivalence α := h̄ ◦ t ◦ h : L -→ L. By cyclic
permutation of factors,

Torus(α) ≃ Torus(h ◦ h̄ ◦ t) ≃ Torus(t) ≃M.

Then, on fundamental groups we have Cd ⋊α# C∞ ≅ Cd × C∞, where α# ∈

Out(Cd) is the induced automorphism on π1(L). Hence, α# = id, and there-
fore, α ≃ id [Coh73, (29.5A)]. ❐

The linking form on the (k−1)-st homology group of the infinite cyclic cover
M̄ is the 1 × 1 matrix [q/p] ∈ Q/Z [ST80, Section 77: p. 290], which recovers
the Postnikov invariant qιk.

In the sequel, we shall fix k > 1 and consider the latter, closed 2k-dimensional
manifold

Xd,q := S1 × L2k−1
d,q .

The following definition generalizes the homeomorphism of Jahren-Kwasik [JK11,
Section 4]. Write t and s for the usual generators of C∞ and Cd, respectively.
Note (tk, sj) 7 -→ (tk, sk+j) in Aut(C∞ × Cd) is induced by the well-defined self-
homeomorphism (like a Dehn twist):

(2.1)
ε : Xd,q -→ Xd,q;

(z, [u1 : u2 : . . . : uk]) 7 -→ (z, [zq/du1 : z1/du2 : · · · : z1/duk]).

This is multiplication by the path

[0,2π] -→ GLk(C); θ 7 -→ diag(eθiq/d, eθi/d, . . . , eθi/d).
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Proposition 2.2. Let f : M -→ Xd,q be a homotopy equivalence withM a closed
manifold. There exists δ ∈ Homeo(M) satisfying a homotopy commutative diagram

M Xd,q

M Xd,q.

f

δ ε2

f

Later, in Section 4, we prove Proposition 2.2 based on surgery-theoretic cal-
culations.

Notice that π1(Xd,q) = C∞ × Cd does not have a unique infinite cyclic sub-
group Z of index d; rather, there are exactly d such subgroups (generated by tsr

with 0 à r < d). Although each Z is normal, none is characteristic: Aut(C∞×Cd)
acts transitively on them.

Corollary 2.3. Let M be a closed manifold in the homotopy type of Xd,q. Let Z
and Z′ be infinite cyclic subgroups of index d in π1(M). Then, δ′#(Z) = Z

′ for some
δ′ ∈Homeo(M).

Proof. Select a homotopy equivalence f : M -→ Xd,q. There are integers a
and b such that f#(Z) and f#(Z′) are generated by tsa and tsb, respectively, in
π1(Xd,q). By Proposition 2.2, there is δ ∈ Homeo(M) with f ◦δ ≃ ε2◦f . Define
δ′ := δ(b−a)(1−d)/2 ∈ Homeo(M). Note

δ′#(f
−1
# (tsa)) = f−1

# (ε(b−a)(1−d)# (tsa))

= f−1
# (ts(b−a)(1−d)sa) = f−1

# (tsb). ❐

Proof of Theorem 1.6. Conjugate subgroups of Homeo(S1×Sn) give homeo-
morphic orbit spaces. Then, by Proposition 2.1, we can define a function Φ given
by homeomorphism classes of homotopy types of orbit spaces:

Φ :An
ℓ -→M

h/s
TOP(S

1 × Sn)⊔




0 if n = 1 or n = 2k,
∐

1<d|ℓ

∐

[q]∈Qkd

M
h/s
TOP(Xd,q)

if n = 2k− 1 á 3.

Note Φ{(Tℓ)} = {[S1 × Sn]} = Mh/s
TOP(S

1 × Sn), where the latter equality
follows from classification of surfaces if n = 1, Thurston’s Geometrization Con-
jecture if n = 2 (see [And04]), and the topological surgery sequence [KS77] if
n á 3 (use [FQ90] if n = 3).

First, suppose n = 1. Then, as noted above, Φ is constant, and hence surjec-
tive. (Since ℓ is odd, only the torus S1 × S1 has ℓ-fold cover S1 × S1. That is,
Φ(A1

ℓ) = {[S
1 × S1]}.)
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Let (C) ∈ A1
ℓ. There exists a choice of homeomorphism

h : (S1 × S1)/C -→ S1 × S1.

Under the quotient map S1 × S1 -→ (S1 × S1)/C composed with h, the image of
the fundamental group of S1×S1 is a subgroup Z of index ℓ inπ1(S1×S1) = Z×Z.
There exists a nontrivial homomorphismφ : Z×Z -→ Z/ℓ such that Z = Ker(φ).
Write a := φ(1,0) and b := φ(0,1). Post-composition with an automorphism of
Z/ℓ preserves the kernel Z, so we may assume that either a = 1 or (a, b) = (0,1).

If a = 1 then define A :=
[

1 0
−b 1

]
. If (a, b) = (0,1) then define A :=

[
0 1
1 0

]
. In

any case, the unimodular matrix A ∈ GL2(Z/ℓ) carries (a, b) to (1,0). Observe
(1,0) corresponds to the index ℓ subgroup ℓZ×Z. There is δ′ ∈ Homeo(S1×S1)
inducing A on fundamental group. Write h′ := δ′ ◦ h. Then, by the lifting
property of covering spaces, there exists a commutative diagram

S1 × S1 S1 × S1

(S1 × S1)/C S1 × S1.

ĥ′

/C /Tℓ

h′

The element ĥ′ ∈Homeo(S1×S1) conjugates Tℓ into C. Therefore, Φ is injective.
Now, suppose n > 1 and that the orbit space of (C) ∈ An

ℓ is homeomorphic
to S1 × Sn, say by a homeomorphism h. Since π1(S1 × Sn) = C∞ has a unique
subgroup of index ℓ, by the lifting property of covering spaces, there exists a
commutative diagram

S1 × Sn S1 × Sn

(S1 × Sn)/C S1 × Sn.

ĥ

/C /Tℓ

h

In other words, there is ĥ ∈ Homeo(S1× Sn) that conjugates Tℓ into C. Thus, Φ
restricts to

Φ :An
ℓ − {(Tℓ)} -→




0 if n = 1 or n = 2k,
∐

1<d|ℓ

∐

[q]∈Qkd

M
h/s
TOP(Xd,q) if n = 2k− 1 á 3.

Next, we show that Φ is surjective if n = 2k−1 á 3. Let M be a closed mani-
fold in the homotopy type of some example Xd,q, say by a homotopy equivalence
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f . There is a pullback diagram of covering spaces

M̂ S1 × Sn

M Xd,q

f̂

/Td,q

f

Let T ≠ id be a covering transformation of M̂. Since

M
h/s
TOP(S

1 × Sn) = {[S1 × Sn]},

there is a homeomorphism h : M̂ -→ S1 × Sn. Then, TM := h ◦ T ◦ h−1 is an
element of Homeo(S1×Sn) of order d without fixed points. Hence, M = Φ(TM)
and Φ is surjective.

Finally, we show that Φ is injective if n = 2k − 1 á 3. Let (C), (C′) ∈ An
ℓ

have orbit spaces M,M ′ in the homotopy type of some example Xd,q. Suppose
there is a homeomorphism h : M ′ -→ M . Write Π := π1(S1 × Sn). Consider the
lifting problem

S1 × Sn S1 × Sn

M ′ M.

p′ p

h

By Corollary 2.3, there exists δ′ ∈ Homeo(M) such that δ′#((h ◦ p
′)#(Π)) =

p#(Π). Note h′ := δ′ ◦ h : M ′ -→ M satisfies (h′ ◦ p′)#(Π) = p#(Π). Then, by

the lifting property, there is ĥ′ ∈ Homeo(S1×Sn) covering h′ that conjugates C′

to C. Therefore, Φ is injective. ❐

See [Tha10] for the homotopy types of free Cp-actions on products of 1-
connected spheres.

3. CLASSIFICATION OF h-COBORDISM TYPES

For the second stage, consider the subgroup SI(X) of Wh1(π1X) consisting of the
Whitehead torsions of strongly inertial h-cobordisms, that is, the torsion τ(W ։ X)
of any h-cobordism (W ;X,X′) such that the map X′ ֓ W ։ X is homotopic to
a homeomorphism.

Theorem 3.1. Let M and X be closed connected topological manifolds of dimen-
sion n á 4. If n = 4, then assume π1X is good in the sense of Freedman-Quinn
[FQ90]. If M is homotopy equivalent to X, then SI(M) ≅ SI(X) as subgroups of
Wh1(π1M) ≅Wh1(π1X).
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This theorem is an affirmative answer to a question raised by Jahren-Kwasik
[JK15, Section 7]. Later, in Section 5, we shall develop the techniques needed to
prove this theorem.

Next, for any compact manifold X, write Sh/sTOP(X) for the set of pairs (M, f ),
where M is a compact topological manifold and f : M -→ X is a homotopy
equivalence that restricts to a homeomorphism ∂f : ∂M -→ ∂X, taken up to
s-bordism relative to ∂X. Assuming that the s-cobordism theorem applies, then
[M, f ] = [M ′, f ′] if and only if f ′ is homotopic to f ◦ h relative to ∂X for some
homeomorphism h : M ′ -→ M . Then, observe

M
h/s
TOP(X) = hMod(X) \ Sh/sTOP(X).

Here, Sh/sTOP(X) has a canonical left action by the group hMod(X), which consists
of homotopy equivalences X → X restricting to the identity on ∂X, taken up to
homotopy rel ∂X.

The first step in proving Theorem 1.7 is an observation of Jahren-Kwasik

[JK15, Section 3]. In the definition of Sh/sTOP(X), weaken the equivalence relation
“s-bordism” to “h-bordism.” Then, the resulting set ShTOP(X) has the structure
of an abelian group, according to Ranicki [Ran92]. Hence, ShTOP(X) is more
calculable; it also has a left setwise action of hMod(X).

Proposition 3.2 (Jahren-Kwasik). Let X be a closed connected topological man-
ifold of dimensionn á 4. If n = 4, then assumeπ1X is good in the sense of Freedman-

Quinn [FQ90]. The set Sh/sTOP(X) has a canonical right action of the Whitehead group
Wh1(π1X), so that

ShTOP(X) = S
h/s
TOP(X)/Wh1(π1X).

The isotropy group of any element [M, f ] in Sh/sTOP(X) is the subgroup f∗ SI(M). The

forgetful map Sh/sTOP(X) -→ S
h
TOP(X) is equivariant with respect to the left action of

hMod(X).

Only the isotropy group of [M, f ] = [X, id] is proven in [JK15, Section 3];
we prove the others.

Proof. Recall the canonical left action. Let

γ ∈ hMod(X) and [M, f ] ∈ Sh/sTOP(X).

Define γ·[M, f ] := [M,γ◦f ]. The left action on ShTOP(X) has the same formula,
so the forgetful map is equivariant.

Next, we recall the canonical right action. Let [M, f ] ∈ Sh/sTOP(X) and let
α ∈Wh1(π1X). By realization, there is an h-cobordism (W ;M,M ′) with torsion
τ(W ։ M) = f−1

∗ (α). Define

[M, f ] ·α := [M ′, f ◦ (M և W ← M ′)].
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This is well defined in Sh/sTOP(X) since (W ;M,M ′) is unique up to homeomor-
phism relM . Thus, the forgetful map induces a function

S
h/s
TOP(X)/Wh1(π1X) -→ S

h
TOP(X),

a bijection.
Finally, we determine isotropy groups of the right action. Clearly, f∗ SI(M)

fixes [M, f ]. Suppose [M, f ] ·α = [M, f ]. Abbreviate the homotopy equivalence
gα := (M ′ ֓ W ։ M). Then, f ◦ gα is s-bordant to f . By the s-cobordism the-
orem, there exists a homeomorphism h : M ′ -→ M such that f ◦gα is homotopic
to f ◦ h. By post-composition with a homotopy inverse f̄ : X -→ M of f , we
have gα is homotopic to h. Therefore, f−1

∗ (α) ∈ SI(M). ❐

In general, when X = S1 × Y , the Ranicki-Shaneson decomposition for
Lh-groups [Ran73a] induces a corresponding decomposition for the h-structure
groups [Ran92, C1].

Proposition 3.3 (Ranicki). Let Y be a topological space, and letm be an integer.
There is a functorial isomorphism of algebraic structure groups:

Shm(S
1 × Y) ≅ Shm(Y) ⊕ S

p
m−1(Y).

Further, suppose that Y is a closed connected topological manifold of dimen-
sion n−1. The total surgery obstruction of Ranicki [Ran92, Theorem 18.5] gives
the identifications

ShTOP(S
1 × Y)

s
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→

≈
Shn+1(S

1 × Y),

and

ShTOP(I × Y)
s

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------→
≈

Shn+1(Y).

Since s exists for all dimensions n, by the Five Lemma applied to the 4-dimen-
sional surgery sequence [FQ90, Section 11.3], we also have these bijections when
n = 4 and π1Y is finite.

The next two lemmas determine certain S∗(Y) when Y is a lens space of odd
order.

Lemma 3.4. Let d > 1 be odd, select q coprime to d, and let k > 1. Then,

S
s,h
2k+1(L

2k−1
d,q ) = 0.

Proof. Write Ln := L2k−1
d,q . Consider the s- or h-algebraic surgery exact se-

quence [Ran92]:

Ls,h2k+1(Cd) S
s,h
2k+1(L

n) H2k(Ln;L〈1〉) Ls,h2k (Cd).
σ
s,h
2k
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First, since d is odd, Ls,h2k+1(Cd) = 0 by Bak’s vanishing result [Bak75]. Next, we
apply the Atiyah-Hirzebruch spectral sequence to the homological version of the
normal invariants:

E2
i,j = Hi(L

n;L〈1〉j) -⇒ Hi+j(Ln;L〈1〉).

The coefficient group L〈1〉j vanishes for j à 0 or j odd. Otherwise, it either is Z
if j ≡ 0 (mod 4) or is Z/2 if j ≡ 2 (mod 4). Note that H̃even(Ln;Z) = 0, and,
since d is odd, that H̃even(Ln;Z/2) = 0. Thus, the diagonal entries i + j = even
are zero except along i = 0. Also note that Hodd(Ln;Z) ∈ {0,Z/d,Z}, and, since
d is odd, that Hodd(Ln;Z/2) = 0. Therefore, since the image of an odd-order
group in either Z or Z/2 is zero, in summary we obtain

(3.1) H2k(L
n;L〈1〉) = E∞0,2k = E

2
0,2k = L〈1〉2k = L2k(1).

Thus, the assembly map is injective, σ s,h2k : L2k(1) -→ L
s,h
2k (Cd). Hence,

S
s,h
2k+1(L

n) = 0. ❐

Lemma 3.5. Let d > 1 be odd, select q coprime to d, and let k > 1. Then,
S
p
2k(L

2k−1
d,q ) is free abelian of rank (d− 1)/2. Moreover, L̃p2k(Cd) -→ S

p
2k(L

2k−1
d,q ) is

injective with finite index.

Proof. Write Ln := L2k−1
d,q ; consider the p-algebraic surgery sequence [Ran92]:

H2k(L
n;L〈1〉)

σ
p
2k
------------------------------------------------------------------------------→ L

p
2k(Cd) -→ S

p
2k(L

n)

-→ H2k−1(L
n;L〈1〉)

σ
p
2k−1
-----------------------------------------------------------------------------------------------------------------------→ L

p
2k−1(Cd).

From the proof of Lemma 3.4, the edge map L2k(1) -→ H2k(Ln;L〈1〉) is an
isomorphism, so σp2k is split injective. Also, σp2k−1 is zero, since it factors through

Lh2k−1(Cd) = 0 above. We thus obtain an exact sequence of abelian groups:

0 -→ L̃
p
2k(Cd) -→ S

p
2k(L

n) -→ H2k−1(L
n;L〈1〉) -→ 0.

Since RCd = R ×
∏(d−1)/2

C as rings, the reduced L-group L̃
p
2k(Cd) is free

abelian of rank (d − 1)/2, and it is detected by the projective multi-signature
[Bak78]. From the same Atiyah-Hirzebruch spectral sequence as in the proof of
Lemma 3.4, since d is odd, note the following:

E2
i,j = Hi(L

n;L〈1〉j) =




Z if i = 2k− 1, and 4 divides j > 0,

Z/d if 0 < i < 2k− 1 odd, 4 divides j > 0,

0 otherwise,

-→ Hi+j(L
n;L〈1〉).

Then, each E∞i,j is either zero or Z/δ with δ|d.
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Thus, it follows that H2k−1(Ln;L〈1〉) is a finite abelian group of odd order.1

Therefore, it remains to show that S
p
2k(L

n) has no odd torsion.

The function SsTOP(L
n) -→ Q ⊗Z R

(−1)k

Ĝ
, defined by the difference of ρ-

invariants, was shown by Wall to be injective [Wal99, Theorem 14E.7].2 Later,
Macko-Wegner promoted this function to a homomorphism of abelian groups
and re-proved its injectivity [MW11, Theorem 5.2]. Therefore, SsTOP(L

n) is
free abelian. Then, by the Ranicki-Rothenberg exact sequences [Ran92, p. 327],
Ss2k(L

n) -→ Sh2k(L
n) and Sh2k(L

n) -→ S
p
2k(L

n) have kernels and cokernels of expo-
nent two, and so Sp2k(L

n) has no odd torsion; it is free abelian of rank (d−1)/2. ❐

Corollary 3.6. Let d > 1 be odd, select q coprime to d, and let k > 1. Then, the
group ShTOP(S

1 × L2k−1
d,q ) is free abelian of rank (d− 1)/2. Moreover, the component

homomorphism L̃
p
2k(Cd) -→ L

h
2k+1(π1Xd,q) -→ S

h
TOP(Xd,q) of Wall realization is

injective with finite index.

Proof. This is immediate from Proposition 3.3, Lemma 3.4, and Lemma 3.5.

❐

4. APPLICATION TO THE “DEHN TWIST” HOMEOMORPHISM

Fix n = 2k − 1 á 3. Recall the self-homeomorphism ε of Xd,q = S1 × Lnd,q in
equation (2.1).

Lemma 4.1. Let d > 1 be an odd integer, and select q coprime to d. We have
the following:

(1) The self-map ε induces the identity map on Wh1(π1Xd,q) if d is square-free.
(2) The self-map ε induces the identity map on ShTOP(Xd,q).
(3) The self-map ε2 induces the identity map on SsTOP(Xd,q).

The d = 2 case for part (2) was a key technical assertion of Jahren-Kwasik
[JK11, Section 4].

Remark 4.2. Milnor [Mil66, 1.6] falsely claimed SK1(ZG) = 0 for all finite
abelian groups G; when G = Cp2×Cp2 , this SK1-group is isomorphic to (Z/p)p−1

[Oli88, 9.8 (ii)]. However, it holds for all finite cyclic groups G = Cn by Bass-
Milnor-Serre [Bas68, XI:7.3], and so the determinant map K1(ZCn) -→ (ZCn)×

is an isomorphism. By a theorem of Higman [Bas68, XI:7.1a], the torsion sub-
group of (ZCn)× is ±Cn. Hence, Wh1(Cn) is free abelian. Consequently, the
proof of [Mil66, Lemma 6.7] still holds in this case, so that the group-ring invo-
lution (g 7 -→ g−1) induces the identity on the Whitehead group Wh1(Cn).

1A more detailed analysis can show furthermore that H2k−1(L
n;L〈1〉) → H2k−1(L

n;ko[ 1
2 ]) is an

isomorphism.
2For the case of k = 2, we use the simple homology structure set of the three-dimensional lens space

L3 = L(d, q).
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Proof of Lemma 4.1 (1). On the fundamental group π1(Xd,q) = C∞ × Cd,
recall that ε induces (tk, sj) 7 -→ (tk, sk+j); it is the identity on the subgroup Cd,
which is generated by s. Then, by Proposition 5.2(1), we obtain a commutative
diagram whose rows are split exact:

0 Wh1(Cd) Wh1(π1Xd,q) Wh0(Cd) 0

0 Wh1(Cd) Wh1(π1Xd,q) Wh0(Cd) 0

id

∂

ε∗ ε∗

∂

Here, note that R := Z[Cd], and ε : R[t, t−1] -→ R[t, t−1] restricts to ring maps
ε : R[t±1] -→ R[t±1].

Now, the splitting of the epimorphism ∂ of Bass-Heller-Swan [Bas68, XII:7.4]
is

h : Wh0(Cd) -→Wh1(π1Xd,q); [P] 7 -→
[
t : P[t, t−1]→ P[t, t−1]

]
.

Here, P is a finitely generated projective R-module. Then, note

ε∗[P] = (ε∗ ◦ ∂ ◦ h)[P] = (∂ ◦ ε∗)
[
t : P[t, t−1]→ P[t, t−1]

]
.

Since ε(t) = st, and since ε(s) = s implies

(R ֓ R[t, t−1]
ε
--------------------------------→ R[t, t−1]) = (R ֓ R[t, t−1]),

we have

ε∗[t : P[t, t−1]→ P[t, t−1]] =
[
st : P[t, t−1]→ P[t, t−1]

]
.

Recall [Bas68, IX:6.3] the map ∂ in the localization sequence for R[t]→ R[t, t−1]:

ε∗[P] = ∂
[
st : P[t, t−1]→ P[t, t−1]

]
= [Cok(st : P[t] → P[t])] = [P].

Thus, ε∗ = id on Wh0(Cd). Moreover, in Wh1(π1Xd,q) note

ε∗(h[P])− h[P] = [s : P → P] ∈Wh1(Cd),

d · [s : P → P] = [sd = 1 : P → P] = 0.

Thus, since Wh1(Cd) is torsion-free by Remark 4.2, we obtain

ε∗ =

(
id 0
0 id

)
on Wh1(π1Xd,q) =Wh1(Cd)⊕Wh0(Cd).

Therefore, ε induces the identity automorphism on Wh1(π1Xd,q). ❐
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Proof of Lemma 4.1 (2). By Corollary 3.6, it suffices to show that ε∗ = id on
L
p
2k(Cd). Its definition is ε∗ := B ◦ ε∗ ◦ B̄, which is in terms of the induced

automorphism ε∗ : Lh2k+1(C∞ × Cd) -→ L
h
2k+1(C∞ × Cd), the epimorphism

B : Lh2k+1(C∞ × Cd) -→ L
p
2k(Cd),

and its algebraic splitting B̄ : Lp2k(Cd) -→ Lh2k+1(C∞ × Cd) (see Theorem 1.1
in [Ran73a]). Then, heavily using Ranicki’s notation and slightly modifying his
proof of splitness [Ran73b, p. 134], we note

ε∗[Q,ϕ] = (B ◦ ε∗ ◦ B̄)[Q,ϕ]

= B
[
(Qt ⊕Qt ,ϕ⊕−ϕ)⊕H±(−Qt);

∆(Qt ,ϕ) ⊕−Qt,
(

1 0
0 st

)
∆(Qt ,ϕ) ⊕−Qt

]

=
[
B+1

(
∆(Q,ϕ) ⊕∆∗(Q∗,ψ),

(
1 0
0 st

)
(∆(Q,ϕ) ⊕∆∗(Q∗,ψ))

)
,ϕ ⊕−ϕ

]

⊕ [H±(−Q)]

= [B+1 (Q⊕Q,Q⊕ stQ),ϕ⊕−ϕ]⊕ [H±(−Q)]

= [Q,ϕ] ∈ L
p
2k(Cd).

Here, the equivalence classes are of various quadratic forms and formations. We
have only used that the Z[Cd]-algebra map ε# : Z[Cd][t, t−1] -→ Z[Cd][t, t−1]
is graded of degree 0. ❐

Proof of Lemma 4.1 (3). Observe ε∗ respects the Ranicki-Rothenberg exact se-
quence

Ĥn+3(C2; Wh1Xd,q) -→ S
s
TOP(Xd,q) -→ S

h
TOP(Xd,q)

-→ Ĥn+2(C2; Wh1Xd,q).

In particular, by Corollary 3.6, this restricts to an exact sequence

(4.1) 0 -→ H -→ SsTOP(Xd,q) -→ K -→ 0

with H finite abelian and K free abelian. By Lemma 4.1 (1)–(2), ε∗ = id on H
and K. Hence,

ε∗ =

(
idH ν
0 idιK

)
on SsTOP(Xd,q) = H ⊕ ιK,

where ν : K -→ H is a component of ε∗ and ι : K -→ SsTOP(Xd,q) is a choice
of the right-inverse of SsTOP(Xd,q) -→ K. Since 2H = 0, note 2ν = 0. Hence,
ε2
∗ = id on SsTOP(Xd,q). ❐
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We show that the homotopy-theoretic order of ε divides 2d2 (see more in the
proof of Corollary 6.4).

Lemma 4.3. The homeomorphism ε2d2
is homotopic to the identity on Xd,q =

S1 × Ln.

Proof. Observe that the d-th power of ε induces the identity on the funda-
mental group:

εd : S1 × Ln -→ S1 × Ln; (z, [u1 : u2 : . . . : uk])

7 -→ (z, [zqu1 : zu2 : . . . : zuk]).

Each 1 à j à k has an isotopy of diffeomorphisms that lifts the generator of
π1(SO3) = C2:

ρj : S1 × Ln -→ S1 × Ln; (z, [u1 : . . . :j : . . . :k])

7 -→ (z, [u1 : . . . : zuj : . . . : uk]).

In the proof of [HJ83, Proposition 3.1], Hsiang-Jahren showed that each homo-
topy class [ρj] has order 2d in the group π1(MapLn, id). As S1 is a co-H-space
and DiffLn is an H-space, the two multiplications on π1(DiffLn, id) are equal
(and abelian), so

[εd] = [ρ
q
1 ◦ ρ2 ◦ · · · ◦ ρk] = [ρ1]

q ∗ [ρ2]∗ · · · ∗ [ρk] ∈ π1(DiffLn, id).

Therefore,

[ε2d2
] = [εd]2d = [ρ1]

2dq [ρ2]
2d · · · [ρk]

2d = 1 in π1(MapLn, id). ❐
Structure sets quantify homeomorphism types within a homotopy type, so we

can start, as follows.

Proof of Proposition 2.2. Consider the homotopy equivalence

α := f̄ ◦ ε2 ◦ f : M -→ M,

where f̄ denotes a homotopy inverse for f . By the composition formula for
Whitehead torsion [Mil66, Lemma 7.8], by topological invariance [Cha74], and
by Lemma 4.1 (1),

τ(α) = τ(f̄ )+ f̄∗(τ(ε
2)+ ε2

∗τ(f ))

= −f−1
∗ τ(f )+ f

−1
∗ (0+ τ(f )) = 0 ∈Wh1(π1M).

That is, α is a simple homotopy equivalence, and hence it defines an element
[M,α] ∈ SsTOP(M).
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On the other hand, by Lemma 4.1 (3) and Lemma 4.3, note

α∗ = f̄∗ ◦ ε
2
∗ ◦ f∗ = f̄∗ ◦ id◦f∗ = id : SsTOP(M) -→ S

s
TOP(M)

αd
2
≃ f̄ ◦ ε2d2

◦ f ≃ f̄ ◦ id◦f ≃ id :M -→ M.

Then, by Ranicki’s composition formula for simple structure groups [Ran09], note

d2[M,α] =
d2−1∑

j=0

[M,α] =
d2−1∑

j=0

(α∗)
j[M,α]

= [M,αd
2
] = [M, id] = 0 ∈ SsTOP(M).

By equation (4.1) and Corollary 3.6, SsTOP(M) ≅ S
s
TOP(Xd,q) is a sum of copies

of Z/2 and Z. Thus, since d is odd, we must have [M,α] = 0. That is, α is s-
bordant to the identity. Therefore, by the s-cobordism theorem, α is homotopic
to a self-homeomorphism δ. ❐

5. CLASSIFICATION OF HOMEOMORPHISM TYPES

We resume with the calculation of the isotropy subgroups SI(M) from Proposition
3.2. Understood in the context of an abelian group A with involution ∗, we
consider subgroups

(−1)n-symmetrics := {a ∈ A | a = (−1)na∗},

(−1)n-evens := {b + (−1)nb∗ | b ∈ A}.

Furthermore, for use later, we abbreviate symmetrics and evens as, respectively,

(+1)-symmetrics and (+1)-evens,

and skew-symmetrics and skew-evens as, respectively,

(−1)-symmetrics and (−1)-evens.

Proposition 5.1. Let M be a closed connected topological manifold of dimension
n á 4. If n = 4, then assume π1M is good in the sense of Freedman-Quinn [FQ90].

(1) With respect to the standard involution on Wh1(π1M) given by (g 7 -→ g−1),

(−1)n-evens à SI(M) à (−1)n-symmetrics.

Hence, SI(M)/(−1)n-evens à Ĥn(C2; Wh1(π1M)), which is a sum of
copies of Z/2.
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(2) This quotient is expressible in structure groups (add by stacking in the I-
coordinate):

Cok(SsTOP(M × I)→ S
h
TOP(M × I))

tors
-----------------------------------------------------------------------------------------------------------------------------------------------------------→
≅

SI(M)
(−1)n-evens

.

This quantification generalizes a specific argument given by Jahren-Kwasik
[JK15, Section 7]. Our structure sets are “rel ∂” (homeomorphism on the unspec-
ified boundary [Wal99, Section 0]).

Proof of Proposition 5.1 (1). Let α ∈ SI(M). There is a strongly inertial h-
cobordism (W ;M,M ′) such that α = τ(W ։ M). By the composition formula
[Mil66, Lemma 7.8],

0 = τ(idM) = τ(M ֓ W ։ M) = τ(W ։ M)+ (W ։ M)∗τ(M ֓ W).

Next, by Milnor duality [Mil66, Section 10], note

τ(M ′ ֓ W) = (−1)nτ(M ֓ W)∗.

Finally, since the h-cobordism is strongly inertial, by Chapman’s topological in-
variance of Whitehead torsion [Cha74], by the composition formula again, and
by substitution, note

0 = τ(M ′ ֓ W ։ M) = τ(W ։ M)+ (W ։ M)∗τ(M
′ ֓ W)

= α+ (−1)n(W ։ M)∗τ(M ֓ W)∗ = α− (−1)nα∗.

Thus, SI(M) à (−1)n-symmetrics in Wh1(π1M).
We let β ∈ Wh1(π1M). There exists an h-cobordism (W ′;M,M ′′) with

β = τ(W ′ ։ M). Consider the untwisted double

W := W ′ ∪M′′ −W
′.

To avoid confusion, we denote ∂W =: −M0 ⊔ M1 with the canonical homeo-
morphisms Mi ≈ M understood. Note that (W ;M0,M1) is a strongly inertial
h-cobordism, since (W ′ ։ M ′′ ֓ W ′) is homotopic to the identity:

(M1 ֓ W ։ M0) = (M1 ֓ −W
′ ։ M ′′ ֓ W ′ ։ M0)

≃ (M1 ֓ −W
′

flip
≈ W ′ ։ M0)

≃ (M1
id
≈M0).
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Using the above techniques, this doubled h-cobordism has Whitehead torsion

τ(W ։ M0) = τ(W ։ W ′ ։ M0)

= τ(W ′ ։ M0)+ (W
′ ։ M0)∗τ(W ։ W ′)

= β+ (M ′′ ֓ W ′ ։ M0)∗τ(−W
′ ։ M ′′)

= β+ (−1)nτ(−W ′ ։ M1)
∗

= β+ (−1)nβ∗.

In the third step, we could excise W̊ ′ since W ։ W ′ is the identity on W ′, whose
mapping cone consists of elementary expansions. Thus, SI(M) á (−1)n-evens in
Wh1(π1M). ❐

Proof of Proposition 5.1 (2). Let f : (W ;M0,M1) -→ M × (I; 0,1) be a homo-
topy equivalence of manifold triads such that the restriction ∂f : ∂W -→ M × ∂I
is a homeomorphism. Since f :W → M× I represents the retraction W ։ M0, the
h-cobordism (W ;M0,M1) is strongly inertial. Then, assuming the identification
∂0f : M0 -→ M , we have

τ(f ) = τ(W ։ M0) ∈ SI(M).

Now, we suppose that F : (V ;W,W ′) -→ M × I × (I; 0,1) is an h-bordism,
relative to M × ∂I × I, existing from f to another such homotopy equivalence
f ′ : (W ′;M ′0,M

′
1) -→ M × (I; 0,1) of triads. By the composition formula [Mil66,

Lemma 7.8], note

τ(M0 ֓ W ֓ V) = τ(W ֓ V)+ (W ֓ V)∗τ(M0 ֓ W),

τ(M ′0 ֓ W
′ ֓ V) = τ(W ′ ֓ V)+ (W ′ ֓ V)∗τ(M

′
0 ֓ W

′).

As above, τ(f ′) = τ(W ′ ։ M ′0). Since τ(idM) = 0, by [Mil66, Lemma 7.8]
again, note

τ(M0 ֓ W) = −(M0 ֓ W)∗τ(f ),

τ(M ′0 ֓ W
′) = −(M ′0 ֓ W

′)∗τ(f
′).

By Milnor duality [Mil66, Section 10], note

τ(W ′ ֓ V) = (−1)n+1τ(W ֓ V)∗.

Then, since M0 ≈ M
′
0 and since

(M0 ֓ W ֓ V) is homotopic to (M ′0 ֓ W ֓ V),
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note

τ(W ֓ V)− (M0 ֓ V)∗τ(f ) = (−1)n+1τ(W ֓ V)∗ − (M ′0 ֓ V)∗τ(f
′),

τ(f )− τ(f ′) =
(
M0 ֓ V

)−1
∗ (1+ (−1)n∗)τ(W ֓ V).

Thus, we obtain a well-defined homomorphism of abelian groups, where addition
in this relative structure set is given by stacking homotopy equivalences in the
I-coordinate:

ShTOP(M × I)
tors
----------------------------------------------------------------------------→

SI(M)
(−1)n-evens

; [f ] 7 -→ [τ(f )].

Let α ∈ SI(M). Then, there exists an h-cobordism (W ;M,M ′) with torsion
τ(W ։ M) = α such that (M ′ ֓ W ։ M) is homotopic to a homeomorphism.
By first mapping W ։ M × { 1

2}, and then applying the Homotopy Extension
Property with regard to a choice of the above homotopy to a homeomorphism
M ′ → M and a choice of homotopy of (M ֓ W ։ M) to the identity on M ,
we obtain a homotopy equivalence f : (W ;M,M ′) -→ M × (I; 0,1) such that
∂f : ∂W -→ M × ∂I is the prescribed homeomorphism and f : W -→ M × I

represents W ։ M . Then, [f ] ∈ ShTOP(M × I) and τ(f ) = α. Therefore, tors is
surjective.

Finally, tors[f ] = 0 if and only if f : W -→ M × I is h-bordant to a simple
homotopy equivalence (as was done in the proof of Proposition 5.1 (1)). Thus,
the kernel of tors is the image of SsTOP(M × I). ❐

The homotopy invariance of the subgroup SI(X) à Wh1(π1X) is now a
corollary.

Proof of Theorem 3.1. The function tors is a homomorphism with respect to
Ranicki’s abelian group structure on the structure sets. This follows from the
commutative diagram with exact rows (using Proposition 5.1 and Theorem 18.5
of [Ran92]):

SsTOP(X × I) ShTOP(X × I) SI(X)/(−1)n-evens

Ssn+2(X × I) Shn+2(X × I) Ĥn(C2; Wh1(π1X))

Lsn+2(X × I) Lhn+2(X × I) Ĥn+2(C2; Wh1(π1X))

≈s

tors

≈s

tors

∂ ∂

tors

≅

The bottom two squares consist of homotopy-invariant functors from the cate-
gory of spaces to the category of abelian groups; that is, if continuous functions
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of spaces are homotopic, then these functors induce equal homomorphisms of
abelian groups.

Consider the homotopy class of any continuous function f : M -→ X, which
induces a homomorphism f∗ : Wh1(π1M) -→ Wh1(π1X). By the functoriality
of the upper-right corner of the diagram, the induced map

f∗ : Ĥn(C2; Wh1(π1M)) -→ Ĥ
n(C2; Wh1(π1X))

restricts to a map f∗ : SI(M)/(−1)n-evens -→ SI(X)/(−1)n-evens of subgroups.
Therefore, the induced map f∗ : Wh1(π1M) -→ Wh1(π1X) restricts to a map
f∗ : SI(M) -→ SI(X). If f is a homotopy equivalence, then all of these induced
maps are isomorphisms. ❐

The following proposition is not original; it is merely a record. Recall that
Xd,q = S1 × L2k−1

d,q .

Proposition 5.2. Let d > 1 be a square-free odd integer. Select an integer q
coprime to d. We have the following:

(1) There is a canonical identification

Wh1(π1Xd,q) =Wh1(Cd)⊕Wh0(Cd).

(2) The standard involution (g 7 -→ g−1) on Wh1(π1Xd,q) restricts to the stan-
dard involution on Wh1(Cd) and to negative the standard involution on
Wh0(Cd).

(3) Furthermore, with respect to these restricted involutions,

Wh1(Cd)

symmetrics
= 0 and

Wh0(Cd)

skew-evens
= H0(C2; Wh0(Cd)).

Proof.
Part (1) is the fundamental theorem of algebraic K-theory [Bas68, XII:7.3, 7.4b]
combined with the vanishing of NK1(Z[Cd]) for d square-free [Har87].

Part (2) is the analysis of the restriction of the overall involution done in page 21
of [Ran73b].

For (3), by Remark 4.2, the group-ring involution (g 7 -→ g−1) on Z[Cd] induces
the identity on Wh1(Cd). Therefore, Wh1(Cd)/symmetrics = 0. The assertion
about Wh0(Cd) is simply the definition of H0(C2; Wh0(Cd)). ❐

Corollary 5.3. Let d > 1 be square-free odd, select an integer q coprime to d,
and let k > 1. Let M be any closed topological manifold in the homotopy type of Xd,q.
We can identify

Wh1(π1Xd,q)

SI(M)
= H0(C2; Wh0(Cd)).
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Proof. By Theorem 3.1, SI(M) = SI(Xd,q) as subgroups of Wh1(π1Xd,q).
The surgery exact sequence for Xd,q × I rel ∂ admits forgetful maps of dec-

orations. Consider the commutative diagram with exact rows, which we write
schematically:

(5.1)

H2k+2 Ls2k+2 Ss H2k+1 Ls2k+1

H2k+2 Lh2k+2 Sh H2k+1 Lh2k+1.

By Ranicki’s version of Shaneson’s thesis [Ran73a], Bak’s vanishing result [Bak75],
and Bak-Kolster’s vanishing result [BK82, Corollary 4.7], note the computations:

Ls2k+2(C∞ × Cd) = L
s
2k+2(Cd)⊕ L

h
2k+1(Cd) = L

s
2k+2(Cd),

Lh2k+2(C∞ × Cd) = L
h
2k+2(Cd)⊕ L

p
2k+1(Cd) = L

h
2k+2(Cd),

Ls2k+1(C∞ × Cd) = L
s
2k+1(Cd)⊕ L

h
2k(Cd) = L

h
2k(Cd),

Lh2k+1(C∞ × Cd) = L
h
2k+1(Cd)⊕ L

p
2k(Cd) = L

p
2k(Cd).

Substituting, we may now consider the following commutative diagram of groups:

(5.2)

0 0 0

0 Ls2k+2(Cd)/H2k+2 Ss H2k+1/L2k(1) 0

0 Lh2k+2(Cd)/H2k+2 Sh H2k+1/L2k(1) 0

0 Ĥ2k+2(C2; Wh1(Cd)) Sh/Ss 0 0

0 0 0

Clearly, the right column of (5.2) is exact. Next, the work of Bass-Milnor-Serre
showed that Wh1(Cd) is a free abelian group and that the group-ring involu-
tion (g 7 -→ g−1) on Z[Cd] induces the identity on Wh1(Cd) (refer to Remark
4.2). Then, the subgroup of skew-symmetrics in Wh1(Cd) is zero, and therefore,

Ĥ2k+3(C2; Wh1(Cd)) = 0. Recall the vanishing result above: Ls2k+1(Cd) = 0.
Therefore, by the Rothenberg sequence, the left column of (5.2) is exact. Then,
finally, a diagram chase in (5.1) shows that the middle column of (5.2) is exact.
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The generalized homology of a space cross a circle admits a canonical decom-
position:

H2k+1 = H2k+1(Xd,q;L〈1〉) = H2k+1(L
2k−1
d,q ;L〈1〉)⊕H2k(L

2k−1
d,q ;L〈1〉).

By naturality, the assembly map H2k+1 -→ Ls,h2k+1 for Xd,q is the direct sum of

the assembly maps H2k+1 -→ Ls,h2k+1 = 0 and H2k = L2k(1) -→ L
h,p
2k for L2k−1

d,q

by (3.1). Thus, the kernel of the assembly map H2k+1 -→ L
s,h
2k+1 for Xd,q is the

summand H2k+1(L
2k−1
d,q ;L〈1〉) ≅ H2k+1/L2k(1). Therefore, by exactness of rows

in (5.1), the top and middle rows of (5.2) are exact.
Thus, by the Nine Lemma, the bottom row of (5.2) is exact. Then, by Propo-

sition 5.1,

SI(Xd,q)

evens
= Ĥ2k+2(C2; Wh1(Cd)) =

symmetrics in Wh1(Cd)

evens in Wh1(Cd)
.

Therefore, we obtain the formula

SI(Xd,q) = symmetrics in Wh1(Cd)⊕ skew-evens in Wh0(Cd).

The calculation of Wh1(Xd,q)/SI(Xd,q) now follows from Proposition 5.2. ❐

Remark 5.4. Proposition 3.2, Corollary 3.6, and Corollary 5.3 produce a
based bijection

Z(d−1)/2 ×H0(C2; Wh0(Cd)) -----------------------------------------------------------------------------------------------------------------------------------------------------------→
≈

S
h/s
TOP(Xd,q).

6. COMPUTATION OF THE ACTION OF

THE GROUP OF SELF-EQUIVALENCES

For any topological space Z, write Map(Z) for the topological monoid of con-
tinuous self-maps Z -→ Z. Recall that hMod(Z) ⊂ π0 Map(Z) is the group of
homotopy classes of self-homotopy equivalences. A pair (X1, X2) of based topo-
logical spaces satisfies the Induced Equivalence Property if

[f ] ∈ hMod(X1 ×X2)⇒ [pj ◦ f ◦ ij] ∈ hMod(Xj)

for both j = 1,2, with based inclusion ij : Xj -→ X1 × X2 and with projection
pj : X1 × X2 -→ Xj . We slightly simplify the following result of P. I. Booth
and P. R. Heath [BH90, Corollary 2.8]. Write [−,−]0 for the set of the based
homotopy classes of maps preserving basepoint.

Theorem 6.1 (Booth-Heath). Let X be a connected CW complex equipped
with a co-H-space structure, and let Y be a based connected CW complex such that
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[Y ,X]0 = 0 = [X ∧ Y,X]0. If (X, Y) satisfies the Induced Equivalence Property,
there is a split exact sequence of groups:

1 -→ [X,Map(Y)]0 -→ hMod(X × Y) -→ hMod(X)× hMod(Y) -→ 1.

Corollary 6.2. Let Y be a nonempty connected CW complex. Suppose that
π1(Y) is finite. Then, there is a natural decomposition of groups:

hMod(S1 × Y) = π1 Map(Y) ⋊ (hModS1 × hModY).

Hence, each element of hMod(S1 × Y) is splittable: it restricts to a self-equivalence
of 1× Y .

This is false without the hypothesis, since hMod(S1 × S1) = GL2(Z) 6≅ Z ⋊
({±1} × Z).

Proof of Corollary 6.2. The circle X = S1 is a co-H-space, and it is a model of
K(Z,1). Note that [Y ,X]0 = H1(Y ;Z) = 0 and

[X ∧ Y,X]0 = H
1(S1 ∧ Y ;Z) ≅ H̃0(Y ;Z) = 0.

By Theorem 6.1, it remains to show that (S1, Y) satisfies the Induced Equivalence
Property. Let f : S1 × Y -→ S1 × Y be a based homotopy equivalence.

On the one hand, to prove that p1 ◦ f ◦ i1 : S1 -→ S1 is a homotopy equiv-
alence, we must show that induced map on the Hopfian group π1(S1) = C∞ is
surjective. Since f# is surjective, there exists (a, b) ∈ π1(S1) × π1(Y) such that
f#(a, b) = (t,1), where t generates π1(S1). Then, since Hom(π1Y,π1S1) = 1,
note (p1)#(f#(1, b)) = 1. Thus, (p1)#(f#(a,1)) = t.

On the other hand, f induces an isomorphism on πn(S1×Y) = πn(Y) for all
n > 1. Since Y is a CW complex, by the Whitehead theorem, it remains to show
that p2 ◦ f ◦ i2 is injective on the co-Hopfian group π1(Y). For all b ∈ π1(Y),
recall (p1)#(f#(1, b)) = 1. Then, (p2◦f ◦i2)#(b) = 1 if and only if f#(1, b) = 1,
if and only if b = 1, since f# is injective. ❐

Remark 6.3. The corollary below is parallel to p = 2; Jahren-Kwasik [JK11,
3.5] showed

hMod(S1 ×RP2k−1) =

{
C2 × (C2)2 if k ≡ 0 (mod 2)

C2 × C4 if k ≡ 1 (mod 2)

× (C2 × C2).

Unlike below, the first factor (the C2 on the left) is not represented by a diffeomor-
phism. The very last C2 factor is represented by the diffeomorphism that reflects
RPn in RPn−1.
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Corollary 6.4. Let d > 1 be odd, q coprime to d, and k > 1. We have a
metabelian group

hMod(S1 × L2k−1
d,q ) = A⋊ (C2 × B),

where A is abelian of order 2d2, and B is the exponent e := gcd(2k,ϕ(d)) subgroup
of Aut(Cd).3 Furthermore, the subgroup A ⋊ C2 is generated by the three diffeomor-
phisms

ρ : (z, [u]) 7 -→ (z, [zu1 : u2 : . . . : uk])

ε : (z, [u]) 7 -→ (z, [zq/du1 : z1/du2 : . . . : z1/duk])
− × idLn : (z, [u]) 7 -→ (z̄, [u]).

Proof. Since the fundamental group π1(Ln) = Cd is finite, by Corollary 6.2,
we have

hMod(S1 × Ln) = π1 Map(Ln) ⋊ (hModS1 × hModLn).

The subgroup hMod(S1) is generated by the homotopy class of the diffeomor-
phism − × idLn . Since d is odd, by [Coh73, (29.5)], any homotopy equivalence
h : Ln -→ Ln is classified uniquely by the induced automorphism h# : s 7 -→ sa

on π1(Ln) where ak ≡ deg(h) (mod d) and deg(h) = ±1; any a with ak ≡ ±1
(mod d) is induced by an equivalence ha : Ln -→ Ln. That is, since ak ≡ ±1
(mod d) if and only if a2k ≡ 1 (mod d), the homomorphism

# : hMod(Ln) -→Out(π1L
n) =Out(Cd)

is injective with image the subgroup B of exponent e.
Consider then the fibration sequence Map0(L

n) -→ Map(Ln) -→ Ln, where
Map0 ⊆ Map is the topological submonoid of basepoint-preserving self-maps.
Since π2(Ln) = 0, and since any unbased homotopy between two based self-maps
of a connected CW complex is relatively homotopic to a based homotopy, there is
an exact sequence of abelian groups:

1 π1 Map0(L
n) π1 Map(Ln) π1(Ln) 1.

On the one hand, Hsiang-Jahren [HJ83, Proposition 3.1] showed that the for-
getful map π1 Diff0(Ln) -→ π1 Map0(L

n) is surjective with image of order 2d
generated by the based homotopy class [ρ]0 of the diffeomorphism ρ. On the
other hand, since ε#(t) = ts, the unbased homotopy class [ε] of the diffeomor-
phism ε maps to the generator s of π1(Ln). Therefore, π1 Map(Ln) is an abelian
group of order 2d2 generated by [ρ]0 and [ε]. ❐

3 Classically, it is known that Aut(Cd) has order ϕ(d). If d is an odd-prime power, then Aut(Cd)
is cyclic. Conversely, Aut(Cd) contains a product of copies of C2, one for one for each odd-prime
factor of d, such as Aut(C15) = C2 × C4.
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To find Mh/s
TOP(Xd,q), we now compute the action of the group hMod(Xd,q)

on Sh/sTOP(Xd,q).

Proof of Theorem 1.7. First, we show the order d2 subgroup of hMod(Xd,q)
acts trivially. By the proof of Corollary 6.4, this subgroup is generated by the

classes [ρ2] and [ε2] of diffeomorphisms. Let [M, f ] ∈ Sh/sTOP(Xd,q), and write
f̄ : Xd,q -→ M for a homotopy inverse of f : M -→ Xd,q. Then, for any element
[φ] ∈ hMod(Xd,q), consider the pullback f∗[φ] := [f̄ ◦φ ◦ f ] ∈ hMod(M).
Recall, by Proposition 2.2, that each pullback f∗[ε2] is represented by a homeo-

morphism. Thus, [ε2] acts trivially on the hybrid structure set Sh/sTOP(Xd,q).
The overall argument for [ρ2] is similar to but slightly simpler than that of

[ε2] in Section 4. By the composition formula for Whitehead torsion, by Lemma
7.8 of [Mil66], and since ρ# = id,

τ(f∗ρ) = τ(f̄ )+ f̄∗(τ(ρ) + ρ∗τ(f ))

= −f−1
∗ τ(f )+ f

−1
∗ (0+ τ(f )) = 0 ∈Wh1(π1M).

Thus, [M, f∗ρ] ∈ SsTOP(M). Much as in Proposition 3.3, there is a direct sum
decomposition

SsTOP(Xd,q) ≅ S
s
TOP(I × L

n)⊕ ShTOP(L
n).

Since ρ restricts to id on 1 × Ln ⊂ S1 × Ln, there is an induced commutative
diagram

0 SsTOP(I × L
n) SsTOP(Xd,q) ShTOP(L

n) 0

0 SsTOP(I × L
n) SsTOP(Xd,q) ShTOP(L

n) 0.

glue

(ρ|)∗

split

ρ∗ [ρ∗]

glue split

The decomposition is compatible with those of Ls∗(π1Xd,q) and H∗(Xd,q;L〈1〉),
inducing

0 L̃h2k(Cd) ShTOP(L
n) H2k−1(Ln;L〈1〉) 0

0 L̃h2k(Cd) ShTOP(L
n) H2k−1(Ln;L〈1〉) 0.

[(ρ#)∗]=id [ρ∗]

Recall from the proof of Lemma 3.5 that H2k−1(Ln;L〈1〉) is an abelian group an-
nihilated by a power of d. An argument similar to that proof shows that ShTOP(L

n)
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has no “d-torsion.”4 Thus, [ρ∗] = id on ShTOP(L
n). But SsTOP(I × L

n) = 0 by
Lemma 3.4. Therefore, ρ∗ = id on SsTOP(Xd,q), and then,

(f∗ρ2)∗ = f̄∗ ◦ (ρ
2)∗ ◦ f∗ = f̄∗ ◦ id◦f∗ = id : SsTOP(M) -→ S

s
TOP(M),

(f∗ρ2)d ≃ f̄ ◦ ρ2d ◦ f ≃ f̄ ◦ id◦f ≃ id : M -→ M.

Then, by Ranicki’s composition formula for simple structure groups [Ran09], note

d[M, f∗ρ2] =
d−1∑

j=0

[M, f∗ρ2] =
d−1∑

j=0

(f∗ρ2)
j
∗[M, f

∗ρ2]

= [M, (f∗ρ2)d] = 0 ∈ SsTOP(M).

By equation (4.1) and Corollary 3.6, SsTOP(M) ≅ S
s
TOP(Xd,q) is a sum of copies

of Z/2 and Z. Thus, [M, f∗ρ2] = 0 since d is odd. That is, f∗ρ2 is s-bordant to
id. By the s-cobordism theorem, f∗ρ2 is homotopic to a homeomorphism, and

so [ρ2] acts trivially on Sh/sTOP(Xd,q). Therefore, from Corollary 6.4, the order d2

subgroup of hMod(Xd,q) acts trivially.
Now, this induces a left action of the quotient group C2 × C2 × B on the

set Sh/sTOP(Xd,q). Thus, by Remark 5.4, we are done, since this group has order
4e = 8 gcd(k,ϕ(d)/2). ❐

Remark 6.5. Let p ≠ 2 be prime. This quotient group does not act with
uniform isotropy, unlike the order p2 subgroup. To conclude, we discuss the three
generators of C2 × C2 × Ce.

(1) The above methods demonstrate that post-composition with ρp is the identity
on the h-cobordism structure group. There may be a “cross-effect” on the s-
cobordism structure group, that is, a nonzero component of ρ

p
∗ from the free part

of SsTOP(Xp,q) to the 2-torsion part. The author is unaware of the effect within
H0(C2; Clp)-orbits.

(2) Since complex conjugation − reverses orientation on the symmetric Poincaré
complex σ∗(S1) ∈ L1(C∞), post-composition with the diffeomorphism −× idLp,q
is negation5 on the h-cobordism structure group

ShTOP(Xp,q)
≅
←------------------------------------------ S

p
TOP(Lp,q) = Z

(p−1)/2.

4This lack of “d-torsion” is true for the h-structure group, despite that L̃h2k(Cd) may now have

some 2-torsion.
5[JK11, Lemma 3.7] falsely implies that −×idRPn induces the identity on STOP(S

1×RPn), rather
than negation. The proof ’s error is that Ranicki’s L·-orientation of a manifold is preserved by tangential
homotopy equivalences. Call a manifoldw1-oriented if an orientation is chosen on the Ker(w1)-cover
[Wal67, p. 216]. The correction is that the L·-orientation of a w1-oriented manifold is preserved
by w1-oriented tangential homotopy equivalences [Ran92, 16.16, Appendix A]. For example, the
diffeomorphism − × idRPn is tangential with µ = +1 but reverses w1-orientation.
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Then, −× idLp,q must act freely away from the H0(C2; Clp)-orbit of the basepoint

[Xp,q, id] of Sh/sTOP(Xp,q). But − × idLp,q must fix [Xp,q, id], since any two home-

omorphisms M -→ Xp,q are s-bordant.6 Thus, − × idLp,q acts non-uniformly on

S
h/s
TOP(Xp,q).

(3) Let a be a primitive e-th root of unity in the field Fp. Recall, from the proof
of Corollary 6.4, that the homotopy equivalence ha : Lp,q -→ Lp,q uniquely in-
duces s 7 -→ sa on fundamental group. Note idS1 ×ha : Xp,q -→ Xp,q has zero
Whitehead torsion, by the product formula, but the author suspects that idS1 ×ha
is often non-representable by a homeomorphism of Xp,q.7 On the other hand, the
automorphism of ShTOP(Xp,q) induced by idS1 ×ha is identified with the automor-
phism of SpTOP(Lp,q) ≅ Z

(p−1)/2 induced by ha, given by a permutation matrix
Πa of order e/2 determined by a. Both these issues complicate the systematic use
of Ranicki’s composition formula:

[(idS1 ×ha) ◦ (f : M -→ Xp,q)]

= [idS1 ×ha]+Πa[f ] ∈ ShTOP(Xp,q) ≅ Z
(p−1)/2.
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