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Topological rigidity and
H1–negative involutions on tori

FRANK CONNOLLY

JAMES F DAVIS

QAYUM KHAN

We show, for n� 0; 1 .mod 4/ or nD 2; 3 , there is precisely one equivariant home-
omorphism class of C2 –manifolds .N n;C2/ for which N n is homotopy equivalent
to the n–torus and C2 D f1; �g acts so that ��.x/ D �x for all x 2 H1.N / . If
n� 2; 3 .mod 4/ and n> 3 , we show there are infinitely many such C2 –manifolds.
Each is smoothable with exactly 2n fixed points.

The key technical point is that we compute, for all n � 4 , the equivariant structure
set STOP.Rn; �n/ for the corresponding crystallographic group �n in terms of the
Cappell UNil–groups arising from its infinite dihedral subgroups.

57S17; 57R67

1 Introduction

1.1 Statement of results

Our goal here is to analyze topological rigidity for a sequence of crystallographic groups
containing 2–torsion. For each n, we define the group �n D Zn Ì�1 C2 , where C2

acts on Zn by negation: v 7! �v .

We classify the proper actions of �n on contractible n–manifolds.

The most powerful inspiration for our work is the remarkable rigidity theorem of Farrell
and Jones concerning a discrete cocompact group of isometries of a simply connected
nonpositively curved manifold .M; �/. They classify the cocompact proper actions of
such a � on a contractible manifold, if � is torsion-free.

The second major inspiration for our paper is the work of Cappell on UNil. If � as
above has elements of order 2, then the nontrivial elements of UNil–groups coming
from virtually cyclic subgroups of � can provide examples of cocompact � –manifolds
.M 0; �/ which are isovariantly homotopy equivalent to, but not homeomorphic to
.M; �/. So how do we classify such actions?
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The Topological rigidity conjecture stated below does this. We view it as a version of
an old conjecture of Quinn, sharpened through the precision afforded by the work of
Davis and Lück [23]. We then prove this conjecture for �n using Bartels and Lück [5],
and Connolly and Davis [15].

We can cast our results in terms of an action of a group C2 WD f1; �g. We say an
involution � W N !N is H1 –negative if ��.x/D�x , for all x 2H1.N /. We prove:

Theorem 1.1 Let � W N ! N be an H1 –negative involution on a closed manifold
homotopy equivalent to the n–torus T n . Consider the C2 –manifold .N;C2/.

(1) The fixed set N C2 is discrete and consists of exactly 2n points.

(2) If n� 0; 1 .mod 4/ or nD 2; 3, then .N n;C2/ is equivariantly homeomorphic
to the standard example, .T n;C2/.

(3) If n � 2; 3 .mod 4/ and n > 3, there are infinitely many such C2 –manifolds,
.N n;C2/. All are isovariantly homotopy equivalent to .T n;C2/, but no two are
equivariantly homeomorphic. Each is smoothable, hence locally linear.

By the standard example .T n;C2/ above, we mean the involution � W T n! T n given
by �Œx� D Œ�x� for all Œx� 2 Rn=Zn D T n . Recall that any n–manifold homotopy
equivalent to the n–torus is homeomorphic to it; see Wall [53], Freedman and Quinn [27]
and Anderson [1].

The construction of the exotic involutions mentioned in the theorem uses surgery theory,
specifically Wall’s realization [53, Theorems 5.8, 6.5]. Write X WD .T n�.T n/C2/=C2 ,
an open n–manifold. Define xX as the obvious manifold compactification of X obtained
by adding a copy of RPn�1 at each end of X . Note for all n> 2 that �1. xX /D�n and
that xX is orientable if and only if n is even. Let wnW �n! f˙1g be the orientation
character of xX . Then, for n� 5, an element � 2LnC1.�n; wn/ determines a compact
smooth manifold � � xX , homotopy equivalent to xX relative to the boundary. Passing to
the two–fold cover and gluing in 2n copies of Dn with the antipodal action, we get a
smooth involution on the torus. All the exotic involutions in the above theorem arise in
this way.

Observe that �n is isomorphic to a rank n crystallographic group. This isometric
action of �n on Rn is given by Zn acting by translation and C2 acting by reflection
through the origin. We let .Rn; �n/ denote this �n –manifold.

We let S.�n/ be the set of equivariant homeomorphism classes of contractible n–
dimensional manifolds equipped with a proper �n –action. We compute S.�n/.
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To parametrize the set S.�n/, we will need to use the unitary nilpotent groups of
Cappell. For D1 , these have been computed recently by Connolly and Koźniewski [20],
Connolly and Davis [15], Connolly and Ranicki [21], and Banagl and Ranicki [2],
yielding

(1) UNilm.ZIZ;Z/Š

8̂̂̂<̂
ˆ̂:

0 if m� 0 .mod 4/;

0 if m� 1 .mod 4/;

.Z=2Z/1 if m� 2 .mod 4/;

.Z=2Z˚Z=4Z/1 if m� 3 .mod 4/:

Let mid.�n/ be the set of maximal infinite dihedral subgroups of �n . Let .mid/.�n/

be a subset of mid.�n/ chosen so that it contains exactly one maximal infinite dihedral
subgroup from each conjugacy class. Let D be a maximal infinite dihedral subgroup
of �n . For any integer n, with "D .�1/n , there is a composite map

UNilnC1.ZIZ
";Z"/ �!LnC1.D; wn/ �!LnC1.�n; wn/:

If n is odd, then there is an isomorphism UNiln�1.ZIZ;Z/
Š
�!UNilnC1.ZIZ

�;Z�/.

Theorem 1.2 Suppose n� 4. Write " WD .�1/n . The Wall realization map induces a
bijection of pointed sets, mapping the zero element to the basepoint ŒRn; �n�:

@˚W
M

D2.mid/.�n/

UNilnC1.ZIZ
";Z"/

�
�! S.�n/

Consequently, S.�n/ consists of a single element if n� 0; 1 .mod 4/, and S.�n/ is
countably infinite if n� 2; 3 .mod 4/.

We do not need to assume any conditions beyond continuity in order to obtain a full
homeomorphism classification and to show all actions are smoothable. It turns out that
Smith theory guarantees the fixed sets consist of isolated points (see Section 2). Also,
local linearity is a consequence of our calculation (see Remark 4.2, which concludes
that the forgetful map STOP. xX ; @ xX /! STOP.@ xX / is constant).

An action � �X !X of a discrete group � on a locally compact Hausdorff space X

is proper if f
 2 � jK\ 
K ¤¿g is finite for each compact set K �X .

Note that, given .M; �n/ 2 S.�n/, the quotient manifold M n=Zn is homotopy equiv-
alent to, and hence homeomorphic to, the n–torus by the Borel conjecture; see Hsiang
and Wall [29]. Therefore the universal cover M admits a homeomorphism to Rn .
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Outline of the argument

In Section 2, we show that any H1 –negative involution on an n–manifold homotopy
equivalent to the n–torus has exactly 2n fixed points. This allows one to deduce a
correspondence between H1 –negative involutions on n–manifolds homotopy equiva-
lent to the n–torus and contractible n–manifolds equipped with a proper �n –action.
Later in Section 2 we show that any compact C2 –manifold with finite fixed set has
the C2 –homotopy type of a finite C2 –CW–complex. This allows one to conclude
that any H1 –negative involution on a manifold homotopy equivalent to the n–torus is
equivariantly homotopy equivalent to .T n;C2/ and that any contractible n–manifold
equipped with a proper �n –action is equivariantly homotopy equivalent to .Rn; �n/.

For n� 4, the six structure sets we use are introduced in Section 3. These are

S.�n/; STOP.R
n; �n/; S iso

TOP.R
n; �n/;

STOP. xX ; @ xX /; STOP.T
n;C2/; S iso

TOP.T
n;C2/:

For example, the isovariant structure set S iso
TOP.R

n; �n/ is the set of equivalence classes
of proper �n –manifolds .M n; �n/, together with an isovariant homotopy equivalence
M ! Rn . We show all six structure sets are isomorphic, and compute the fourth
one to prove Theorem 1.2. The isomorphisms between the first and second, between
the second and fifth, and the third and sixth structure sets are formal and are shown
in Section 3. The isomorphism between the fifth and sixth structure set requires a
detailed discussion of equivariance versus isovariance and is discussed in Appendix A.
The isomorphism between the fourth and fifth structure set requires the use of end
theory; see Lemma 3.1. Finally, the computation of the classical surgery-theoretic
structure set STOP. xX ; @ xX / uses the Farrell–Jones conjecture and is presented at the
end of Section 4. This computation also uses the main result of Appendix B, which
identifies the assembly map in surgery theory with a corresponding map in equivariant
homology.

We prove Theorem 1.2 in Section 4 and then deduce Theorem 1.1 in Section 5.

The final bit of the paper, Section 6, is independent of [5] and gives examples of
nonstandard structures on .Rn; �n/, hence of exotic H1 –negative involutions on tori.
The intent is to show that Cappell’s work, for straightforward reasons, gives obstructions
to isovariant rigidity of a � –space when � has elements of order two. Shmuel
Weinberger pointed out these counterexamples to simple isovariant rigidity some time
ago. Since the argument was never published, we include it here.
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1.2 Equivariant rigidity

This paper represents the start of a systematic attack on Quinn’s ICM conjecture
and the closely related questions of equivariant, isovariant and topological rigidity
for a discrete group � . We take some time to formulate these questions precisely.
Recall that two closed aspherical manifolds with the same fundamental group � are
homotopy equivalent and that the Borel conjecture for � states that any such homotopy
equivalence is homotopic to a homeomorphism.

Let � be a discrete group. A continuous function f W A! B between �–spaces is
equivariant, or a � –map, if f .
x/D 
f .x/ for all x 2A and 
 2 � ; it is isovariant
if furthermore 
f .x/D f .x/ implies 
x D x . A model for Efin� is a � –space M

� –homotopy equivalent to a � –CW–complex such that, for all subgroups H of � ,

MH is
�

contractible if H is finite;
empty otherwise:

Given any � –CW–complex X with finite isotopy groups, there is an equivariant map
X !Efin� , unique up to equivariant homotopy. It follows that any two models are
� –homotopy equivalent. Furthermore, a model Efin� exists for any group � .

A cocompact manifold model for Efin� is a model M for Efin� so that M=� is
compact and so that MF is a manifold for all finite subgroups F of � . A geometric
example is given by a discrete cocompact group � of isometries of a simply connected
complete nonpositively curved manifold M . Equivariant (respectively, isovariant)
rigidity holds for � if any �–homotopy equivalence (respectively, �–isovariant ho-
motopy equivalence) M !M 0 between cocompact manifold models for Efin� is
� –homotopic (respectively, � –isovariantly homotopic) to a homeomorphism.

With this terminology, our results can be restated as showing every proper �n –action
on a contractible manifold is a cocompact manifold model for Efin� , equivariant
and isovariant rigidity for �n holds when n � 0; 1 .mod 4/ or n D 2; 3, and equi-
variant and isovariant rigidity fail for all other n. Previous results on equivariant and
isovariant rigidity are found in Rosas [44], Connolly and Koźniewski [18; 19], Wein-
berger [54, Section 14.2], Prassidis and Spieler [38] and Moussong and Prassidis [37].
In particular, [19] gave the first examples of groups where isovariant rigidity fails; this
proceeded via a version of Whitehead torsion. Proposition 1.1 below shows that the
relevant Whitehead group vanishes for �n . We give the first counterexamples to simple
isovariant rigidity in print.

In this paper we restrict ourselves to the study of equivariant and isovariant rigidity
of �n , rather than for more general discrete groups � , for two reasons. First, by
Theorem 1.1(1), the singular set is discrete, and that simplifies the local analysis
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immensely. Second, by Proposition 1.1 below, the group �n is K–flat, so we avoid the
subtleties of equivariant Whitehead torsion for topological manifolds. In forthcoming
work [16], announced by the third author in [31], we will study equivariant rigidity of
Efin� –manifolds with discrete singular set, without assuming the K–flat condition.

Remark 1.1 A key algebraic property of �n is that it admits split epimorphisms

"W �n �! �1 D ZÌC2 D C2 �C2

to the infinite dihedral group. The last equality results from noting that we have
�1 D h.0; �/; .1; �/i D C2 �C2 . The existence of " follows from the fact that every
epimorphism f W Zn ! Z gives a split epimorphism f Ì idW Zn Ì C2 ! Z Ì C2 .
Thus �n has an injective amalgamated product decomposition,

�n D "
�1.C2 � 1/�"�1.1/ "

�1.1�C2/Š �n�1 �Zn�1 �n�1:

Our analysis of Efin�n will have no issues with Whitehead torsion because of this:

Proposition 1.1 The group �n is K–flat, that is, Wh.�n �Zk/D 0 for all k � 0.

Proof We prove K–flatness of �n by induction on n, as follows. First, note for
�0 D C2 that Wh.C2 � Zk/ D 0, by using Rim’s cartesian square of rings (see
Milnor [35, Section 3]) and the vanishing of lower NK –groups of Z and F2 ; see
Bass [6, Chapter XII].

Next, by Remark 1.1 and Waldhausen’s sequence [51], we obtain

Wh.�m�1 �Zk/˚2
�!Wh.�m �Zk/

@
�! zK0.ZŒZ

m�1Ck �/D 0:

This sequence is exact, since the Nil term vanishes because the ring ZŒZm�1Ck � is
regular coherent. Therefore, by induction, we are done proving �n is K–flat.

1.3 The Topological rigidity conjecture

This section is motivated by the conjecture of F Quinn [39] at the 1986 ICM. It aims to
say the same thing, but in a more precise way, by employing the language of Davis
and Lück [23].

Our Topological rigidity conjecture concerns a discrete cocompact group � of isome-
tries of a simply connected complete nonpositively curved manifold X n (that is, a
Hadamard manifold). It says, roughly, that any simple isovariant homotopy equivalence
f W M ! X should be isovariantly homotopic to a homeomorphism, except for the
examples created by UNil–groups of virtually cyclic subgroups of � . But it does so
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by parametrizing the set of such f in terms of a homology group. The coefficient
spectrum of this homology group, L=Lfin , is an Or.�/–spectrum in the sense of [23]
(see Section 4). The homology is applied to a � –space with virtually cyclic isotropy.
For these virtually cyclic subgroups of � , the nonzero homotopy groups of the spectrum
are just the UNil of amalgamated products of finite groups.

To formulate the conjecture, one must restrict to isovariant homotopy equivalences
since there is no reason to expect equivariant homotopy equivalences to be well behaved
(see [54, Section 14.2] for some ill-behaved examples). We also restrict to simple
isovariant homotopy equivalences, whose definition is indicated below, to separate out
the roles of K–theory and L–theory. Furthermore, Theorem 1.1(2) shows that this
conjecture cannot be extended to low dimensions.

Conjecture 1.1 Let X n be a Hadamard manifold of dimension n > 3. Let � be
a discrete cocompact group of isometries of X . Assume the fixed set X H has
codimension greater than 2 in X K whenever K ¤ H are isotropy groups. There
is a bijection

H�
nC1.Evc�IL=Lfin/

�
�! S iso

rel .X
n; �/:

The elements of S iso
rel .X; �/ are equivalence classes of pairs .M; f /, where M is

a cocompact, locally flat topological �–manifold, and f W M ! X is a simple � –
isovariant homotopy equivalence that restricts to a homeomorphism on the singular
set. Locally flat means if MH �MK then MH is a locally flat submanifold of MK .
Here, f W M !X and f 0W M 0!X are equivalent if there is a � –homeomorphism
hW M !M 0 such that f 0 ıh is � –isovariantly homotopic to f . Shmuel Weinberger
has been a long-time proponent of this “rel sing” structure set in a very similar conjecture
(for example, see Cappell, Weinberger and Yan [14, Section 3]).

If � has no element of order 2, the conjecture implies each such f is isovariantly
homotopic to a homeomorphism. The left side is defined in Davis, Quinn and Reich [24],
using [23].

Quinn’s conjecture should have included a vanishing hypothesis on equivariant White-
head torsion, as first noticed in [18; 19]. We state this simpleness condition using
his subsequent work. A � –isovariant homotopy equivalence f W M ! X between
locally flat, cocompact � –manifolds is simple if Quinn’s stratified Whitehead torsion
�. xf W M=�!X=�/ vanishes. The element �. xf / is defined using [40, Corollary 1.6,
Theorem 1.10(1)]. The geometric interpretation of �. xf / D 0 generalizes the inter-
pretation for finite CW–complexes and is given by [40, Theorem 1.10(3)]: if f is
simple, then there is a homotopically stratified space Z and a stratified cell-like map
zW Z!M=� such that xf ı zW Z!X=� is stratified homotopic to a cell-like map.
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The Hadamard hypothesis is not, strictly speaking, necessary. We could have stated
the conjecture when X is a locally flat, cocompact manifold model for Efin� where
each X H has codimension greater than 2 in X K . We stated it in the Hadamard case to
minimize jargon and to remind the reader that verification of Conjecture 1.1 will require
the Farrell–Jones conjecture in L–theory for � , and that, to date, the verification of
the Farrell–Jones conjecture requires some geometric input. In the more general case,
we could conjecture

H�
nC1.X �! �IL/

�
�! S iso

rel .X
n; �/:

This alternative conjecture would have the advantage that its verification should be
independent of the Farrell–Jones conjecture, but the disadvantage that the left-hand
side is not particularly computable without the Farrell–Jones conjecture.

The present paper proves Conjecture 1.1 for � D �n , using the facts that the singular
set in Rn is discrete and that all finite subgroups of �n have vanishing lower K–theory.
In fact our Theorem 1.2 is stronger than Conjecture 1.1 for �n , and computes S.�n/

using Smith theory and other topological tools. The bijection in Conjecture 1.1 for
� D �n is defined in Section 4 using maps of Cappell and Wall.
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1210991, 0904276). In addition this research has been facilitated by the support of the
Hausdorff Institute, the Max Planck Institute, and the Humboldt Stiftung in Bonn.

2 Applications of Smith theory

Given a universal covering map pW E!B and an effective action of a group G on B ,
consider the group

D.p;G/ WD fh 2 Homeo.E/ j p ı hD g ıp for some g 2Gg:

There is an obvious exact sequence

(2) 1 �!D.p/ �!D.p;G/ �!G �! 1;

where D.p/ is the deck transformation group of p (those which cover the identity
on B ).
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For the quotient map qW Rn! T n and standard action C2Õ T n , note D.q;C2/D�n .

Theorem 2.1 Let C2 act on a manifold N n homotopy equivalent to T n so that
��.˛/D�˛ for all ˛ 2H1.N

n/.

(1) The fixed set N C2 consists of 2n points and D.p;C2/ Š �n , where p is the
universal covering map of N n . Moreover, if G is any nontrivial finite subgroup
of D.p;C2/, then zN G consists of one point.

(2) Fix an isomorphism D.p;C2/Š �n . There is a �n –homotopy equivalence of
the universal covers, zJ W zN n!Rn . Any two such �n –homotopy equivalences
are �n –homotopic. Furthermore zJ is the universal covering of a C2 –homotopy
equivalence, J W N n! T n .

To prove this theorem we use lemmas concerning involutions on Rn and T n . We
state and prove these lemmas in their ultimate generality: actions of p–groups on
contractible and aspherical manifolds.

Lemma 2.1 Let G be a finite p–group.

(1) The fixed set of a G –action on a manifold is locally path-connected.

(2) The fixed set of a G–action on a contractible manifold is mod p acyclic and
path-connected.

(3) If the fixed set of a G–action on a contractible manifold is compact, then the
fixed set is a point.

The proof of this lemma involves Smith theory. Our primary reference is Borel’s
Seminar on transformation groups [7]. Borel et al use Alexander–Spanier cohomology
xH�.X IR/ with coefficients in a commutative ring R. This is, in turn, isomorphic

to Čech cohomology {H�.X IR/ for X paracompact Hausdorff, hence also for X

metrizable; see Spanier [49, Corollary 6.8]. Of course, if X is a CW–complex then
Alexander–Spanier and Čech and singular cohomology coincide; but fixed sets of
actions are far from CW–complexes.

The proof of this lemma is inductive; any nontrivial p–group has a normal Cp subgroup,
hence G=Cp acts on M Cp . However the fixed set M Cp is not necessarily a manifold,
so we will have to work abstractly.

Proof of Lemma 2.1 (1) Consider the following four properties of a topological
space: locally compact (lc), complete metrizable (cm), cohomology locally con-
nected (clcp ) and cohomology finite-dimensional (cfdp ). We show that a manifold
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satisfies these four properties, that the fixed set of a Cp –action on a space which
satisfies the four properties also satisfies the four properties, and that a space which
satisfies the four properties is locally path-connected.

A space is complete metrizable if it admits a complete metric. A space X is cohomology
locally connected with respect to Fp (written clcp ) if each neighborhood U of each
x 2X contains a neighborhood V of x so that the restriction map from U to V is zero
on reduced Čech cohomology with coefficients in Fp ; see [7, I.1.3] or Bredon [8, II.17.1]
for the definition. A locally compact space X is cohomology finite-dimensional
(written cfdp ) if there is an integer n� 0 so that for all open sets U of X , the .nC1/st

Čech cohomology with compact supports vanishes: {H nC1
c .U IFp/D 0; see [7, I.1.2]

or [8, II.16] for the definition.

Let M be topological n–manifold. Clearly it is locally compact. We claim that
it is complete metrizable. Indeed by Urysohn’s metrization theorem it admits the
structure of a metric space .M; d/. Since M is locally compact and the union of
a countable number of compact sets, it admits a proper map f W M ! R. Then a
complete metric on M is given by D.x;y/ WD d.x;y/Cjf .x/�f .y/j. A manifold
is clcp since it is locally contractible. A topological n–manifold is cfdp : a reference
is [8, Corollary 16.28]; it also follows from Poincaré duality.

Thus it suffices to show that the fixed set of a Cp –action on a locally compact, locally
path-connected, cohomology finite-dimensional, complete metrizable space satisfies
each of these properties. Note that the fixed set X Cp is closed in X . It clearly follows
that X Cp is lc and cm, and it can be shown that any subspace of a cfdp metrizable
space is cfdp (see [8, Theorem 16.8]). Finally, the fixed set of a Cp –action on a lc,
cfdp , clcp space is clcp (see [7, Proposition V.1.4], also [8, Exercise II.44].) This is
the one point where Smith theory is used.

Thus we conclude by induction on jGj that the fixed set M G of a finite p–group acting
on a manifold is clcp and cm. By looking at Čech cohomology in degree zero, it is
easy to see that a clcp –space is locally connected (see [7, page 6] and [8, page 126].) A
theorem of Moore, Menger and Mazurkiewicz (see Kuratowski [32, page 254]) shows
that a locally connected complete metric space is locally path-connected.

(2) By a mod p acyclic space, we mean a Hausdorff space X which satisfies
{H�.X IFp/Š {H

�.ptIFp/. A standard result from global Smith theory is that, if a finite
p–group G acts on a cohomology finite-dimensional mod p acyclic space X , then its
fixed set is also mod p acyclic; see for example [7, Corollary III.4.6]. In particular
{H 0.M G IFp/ Š Fp , so M G is connected. By part (1), it is locally path-connected.

Therefore M G is path-connected.
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(3) Since M is a topological manifold and is contractible, M is an orientable mod p

cohomology manifold (see [7, Definition 3.3].) If G acts on an orientable mod p

cohomology manifold M n , then by Smith theory the fixed set M G is an orientable
mod p cohomology manifold [7, Theorem V.2.2] of dimension d � n. Recall that M G

is connected and mod p acyclic. If M G is compact, then there is a fundamental
cohomology class in dimension d , so {H d .M G IFp/ Š Fp [7, Theorem I.4.3(1)].
But M G is mod p acyclic so d D 0. Also, for a connected compact mod p homology
manifold X of dimension d , {H d .AIFp/D 0 for any closed proper subset A of X

by [7, Theorem I.4.3(1)]. Therefore M G is a point.

In the literature, we have not seen the application of Smith theory to path-connectivity.
The above lemma seems to be the first occurrence. We use path-connectivity in the
covering space arguments below.

Lemma 2.2 Let G be a discrete group. Suppose that G acts effectively on a space M

fixing a point x 2M . Let pW . �M ; zx/! .M;x/ be the universal cover.

(1) There is a unique action GÕ . �M ; zx/ so that pW �M !M is a G –map.

(2) The action GÕ .M;x/ gives a homomorphism G! Aut.�1.M;x// and the
action GÕ . �M ; zx/ gives a splitting of the short exact sequence

1 //D.p/ //D.p;G/ //G
oo //1:

The usual isomorphism kW �1.M;x/!D.p/ is equivariant with respect to the
G –action on the fundamental group and the G –action given on D.p/ given by
conjugation. Thus k sends �1.M;x/G to

D.p/G D fh 2D.p/ j ghg�1
D h 2D.p;G/ for all g 2Gg:

(3) The map pG W �M G! p. �M G/ is a regular D.p/G –cover.

(4) If M G
x is the path component of M G containing x , then M G

x � p. �M G/.

(5) If M is an aspherical manifold and G is a finite p–group, then p. �M G/ is a
connected component of M G .

(6) If M is a compact, aspherical manifold and G is a finite p–group, then p. �M G/

is compact.

Proof (1) Any map gW .M;x/! .M;x/ lifts to a unique map zgW . �M ; zx/! . �M ; zx/

so that pı zgD gıp . Uniqueness implies that eg ı hD zgı zh. Define the action GÕ �M
by gy WD zg.y/.
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(2) Clearly the G–action on .M;x/ gives a G–action on the fundamental group
and the G–action on . �M ; zx/ gives a splitting of the short exact sequence. The iso-
morphism k is specified by kŒ˛�.zx/ D z̨.1/ where z̨W I ! �M is the unique lift of
˛W I !M so that z̨.0/D zx . One then checks that k is equivariant.

(3) Abstracting a bit, if � W E ! B is a regular � –cover, if E0 is a closed subset
of E , and if �0 is a subgroup of � so that �0ÕE0 , and if 
E0 and E0 are disjoint
whenever 
 2 � ��0 , then �0W E0! �.E0/ is a regular �0 –cover. To check this in
the case at hand, let y 2 �M G . If h 2D.p/G , then for all g 2 G , ghy D hgy D hy ,
so hy 2 �M G . Conversely, if h 2D.p/�D.p/G , then for some g 2G , hg 6D gh, so
ghy 6D hgy D hy by the freeness of the D.p/–action, so hy 62 �M G .

(4) Let y 2M G
x and ˛W I !M G be a path from x to y . Let z̨W I ! �M be the

unique lift of ˛ with z̨.0/D zx . Then for any g 2G , g z̨ is a lift starting at gzx D zx ,
so g z̨ D z̨ . Hence z̨.1/ 2 �M G and since we have p.z̨.1//D y , we have arrived at
our conclusion.

(5) By Lemma 2.1(2), p. �M G/ is path-connected and so by part (4), M G
x D p. �M G/.

On the other hand, by Lemma 2.1(1), M G is locally path-connected so path components
are components.

(6) The fixed set M G is closed in M . Connected components are closed, so p. �M G/

is closed in M G . Hence if M is compact so is p. �M G/.

Proof of Theorem 2.1(1) Let � be an involution on a manifold N n homotopy equiv-
alent to the n–torus such that ��˛ D�˛ for all ˛ 2H1.N /.

We first note that � has a fixed point, because its Lefschetz number is 2n ¤ 0. Indeed,
L.�/D

Pn
kD0.�1/kTr.��W Hk.N /!Hk.N //D

Pn
kD0.�1/k.�1/k

�
k
n

�
D 2n . Thus

by Lemma 2.2(2), D.p;C2/ Š �n . Since D.p/ Š Zn is torsion-free, all nontrivial
finite subgroups of �n have order two and map isomorphically to C2 under the map
D.p;C2/! C2 .

Let G by a nontrivial finite subgroup of D.p;C2/. We will show zN G is a point.
By Lemma 2.1(2), zN G is nonempty. Since D.p;C2/

G is the trivial subgroup, by
Lemma 2.2(3), zN G is homeomorphic to p. zN G/, which by Lemma 2.2(6) is compact.
Hence by Lemma 2.1(3), zN G is a point.

Next we must show that jN C2 j D 2n . Each involution s 2D.p;C2/D �n determines
a point, p. zN s/ in N C2 . Moreover, for involutions s and s0 , we have the following:
p. zN s/Dp. zN s0/, if and only if for some deck transformation t 2D.p/, t. zN s/D zN s0 ,
if and only if ts0t�1 D s for some t 2 D.p/, if and only if s and s0 are conjugate
in �n by an element t 2 Zn , if and only if s and s0 are conjugate in �n (because
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�n D Zn [ sZn ). Therefore this rule s 7! p. zN s/ induces a bijection between the
set of conjugacy classes of involutions in �n D Zn ÌC2 and N C2 . Since each such
conjugacy class is represented uniquely by an element of f."; �/ j " 2 f0; 1gng, we
obtain jN C2 j D 2n .

Much of the above proof could be recast in a homological light. The exact sequence
(2) is split, since H 2.C2ID.p// D 0, so D.p;C2/ Š �n . Then one shows, using
the argument above, that for each nontrivial finite subgroup G of D.p;C2/, zN G is
a point. It follows that fixed points of N C2 are in one-to-one correspondence with
conjugacy classes of splittings of (2) which is in turn in one-to-one correspondence
with H 1.C2ID.p//Š .C2/

n .

Jiang [30] used fixed point theory to show that if zf W zX ! zX is a lift of a self-map
f W X !X of a finite complex, then p.Fix zf / is compact. This can be used to give
an alternate proof that p. zN C2/, and hence zN C2 , is compact.

Before proving Theorem 2.1(2), we need the following useful fact.

Lemma 2.3 Let .N n;C2/ be compact C2 –manifold with finite fixed set. If n � 5,
assume �1.Nfree=C2/ Š �n . Then .N;C2/ has the equivariant homotopy type of a
finite C2 –CW–complex.

Proof This is implicit, certainly in Quinn [40] but we will make it explicit here.
First, the pair .N=C2;N

C2/ is forward tame (tame in the sense of Quinn [40])
by [40, Propositions 2.6 and 3.6]. Second, the pair is reverse tame (tame in the sense of
Siebenmann [47]) by [40, Proposition 2.14]. From this it follows from Siebenmann [47],
when n� 6, that N �N C2 is the interior of a compact, free C2 manifold, xN , with 2n

boundary components and N is homeomorphic to xN =�, where � is the equivalence
relation identifying each boundary component to a separate point. But xN and each
of its boundary components are homotopy equivalent to a finite free C2 complex. It
follows that xN =� is homotopy equivalent to a finite C2 complex with 2n fixed points.

Alternatively, in any dimension, we can argue .N�N C2/=C2 and Holink.N=C2;N
C2/

are finitely dominated (see [40, Proposition 2.15]). Since the projective class groups
vanish, zK0.ZŒC2�/D 0D zK0.ZŒ�n�/, by Wall’s finiteness theorem [52, Theorem F],
each is homotopy equivalent to a finite CW–complex. So there is a finite C2 –CW
pair .K;L/, homotopy equivalent to the pair .Cyl.e1/;Holink.N;N C2//, where
e1W Holink.N;N C2/!N �N C2 is the evaluation map at time 1. This map passes to
a C2 –homotopy equivalence of pairs:

.K[L Cyl.p/;N C2/ �! .Cyl.e1/[H Cyl.e0/;N
C2/;
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where H DHolink.N;N C2/ and pW L!N C2 is the composite C2 –map, L!H
e0
�!

N C2 . But, as noted in Quinn [40], Cyl.e1/[H Cyl.e0/ is C2 –homotopy equivalent
to N and K[L Cyl.p/ is a finite C2 –CW–complex.

Proof of Theorem 2.1(2) For a discrete group � , recall that a �–space E is a
model for Efin� if EG is contractible for each finite subgroup G � � , E has the � –
homotopy type of a � –CW–complex, and the � –space .E; �/ is proper. Consider Rn

with its �n –action. The action is obviously proper. The only nontrivial finite subgroups
have the form f1; �g for some involution � ; for this subgroup the fixed set is a single
point. Finally, Rn admits the structure of a �n –CW–complex. For it is the universal
covering of .T n;C2/, and .T n;C2/ is the n–fold cartesian product of .S1;C2/, (with
the diagonal action), which is a C2 –CW–complex with exactly two (fixed) vertices.

Now let .N;C2/ be as in the hypothesis of Theorem 2.1. After the choice of an
isomorphism D.p;C2/Š �n , zN is a proper �n –manifold, and has the �n –homotopy
type of a �n –CW–complex by Lemma 2.3. For each finite subgroup G of �n , zN G

is contractible by Theorem 2.1(1). Therefore zN / is also �n –universal, and there is a
unique �n –homotopy class of �n –maps gW Rn! zN . By uniqueness, g and zJ are
mutually �n –homotopy inverse. Therefore zJ W zN !Rn and its quotient, J W N ! T n

are C2 –equivariant homotopy equivalences.

This paper focuses on actions of C2 D f1; �g on a torus N for which ��.x/ D �x

for all x 2H1.N /. But the following lemma (with Theorem 2.1) shows that this is
equivalent to saying that the torus has at least one isolated fixed point:

Lemma 2.4 Suppose C2 D f1; �g acts on a torus N and there is at least one fixed
point which is isolated in N C2 . Then ��.x/D�x for all x 2H1.N /.

Proof Lift the involution to an involution z� W zN ! zN with an isolated fixed point
zx 2 zN . The group G D f1; z�g fixes only zx since the fixed set is mod 2 acyclic. But
the centralizer, ZD.p/.G/, acts freely on this fixed set fzxg, since the action is proper.
So if t 2 D.p/, and tz� D z� t , then t D 1. Therefore, if x 2 H1.N / Š D.p/, and
��.x/D x , then x D 0. This implies that ��.x/D�x for all x 2H1.N /.

3 Equivariant and isovariant structures

Definition 3.1 The equivariant structure set STOP.Rn; �n/, is the set of equivalence
classes of pairs ..M; �n/; f /, where .M; �n/ is a manifold with a cocompact proper
�n –action, and f W M!Rn is a �n –equivariant homotopy equivalence. Often we write
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such pairs as .M; f /. Two such pairs .M; f / and .M 0; f 0/ are equivalent if there is
an equivariant homeomorphism hW M !M 0 and an equivariant homotopy H from f

to f 0 ı h. One defines the isovariant structure sets S iso
TOP.R

n; �n/ and S iso
TOP.T

n;C2/

similarly, except one requires that f is an isovariant homotopy equivalence and that H

is an isovariant homotopy.

Remark 3.1 We make no requirements on the fixed sets of subgroups in M and N

above, because we have seen (see Section 2) these fixed sets are discrete. A result of
Quinn [40, Propositions 2.6, 3.6] then guarantees there are no local pathologies in such
manifolds.

The universal covering of a C2 –homotopy equivalence, f W N n ! T n is a �n –
homotopy equivalence zf W zN n ! Rn . Moreover zf is isovariant if f is isovariant.
This gives obvious bijections

uW STOP.T
n;C2/

�
�! STOP.R

n; �n/;(3)

uiso
W S iso

TOP.T
n;C2/

�
�! S iso

TOP.R
n; �n/:(4)

Consider the closed C2 –manifold T WDT n . Write X WDTfree=C2 , an open n–manifold.
Define xX as the obvious manifold compactification of X obtained by adding a copy
of RPn�1 at each end of X . Label the boundary components as

@ xX D

2nG
iD1

@i
xX :

Definition 3.2 For n � 5, the structure set STOP. xX ; @ xX / is the set of equivalence
classes of triples . xY ; xh; @xh/, where xY is a compact n–manifold and .xh; @xh/W . xY ; @ xY /!
. xX ; @ xX / is a homotopy equivalence of pairs. Such triples . xY 0; xh0; @xh0/; . xY 1; xh1; @xh1/

are equivalent if there is a homeomorphism 'W xY 0! xY 1 such that .xh1; @xh1/ ı ' is
homotopic to .xh0; @xh0/. Compare [53, Section 10]; we used Wh.�n/D 0.

For the four-dimensional case, some modifications are required.

Definition 3.3 For n D 4, the structure set STOP. xX ; @ xX / is the set of equivalence
classes of triples . xY ; xh; @xh/, where xY is a compact topological 4–manifold and
.xh; @xh/W . xY ; @ xY /! . xX ; @ xY / is a ZŒ�4�–homology equivalence of pairs. Such triples
. xY 0; xh0; @xh0/ and . xY 1; xh1; @xh1/ are equivalent if there is a ZŒ�4�–homology h–
bordism . SW I xY 0; xY 1/! xX �.I I 0; 1/ between them. Compare with [27, Section 11.3].

For our application, we give a more explicit form of this general notion.
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Remark 3.2 Since Wh.�4/ D 0 and �4 is “good” in the sense of [27], we can
simplify Definition 3.3. First, for a representative . xY ; xh; @xh/, by the manifold-theoretic
plus-construction rel boundary [27, Section 11.1], we can assume that xhW @ xY ! @ xX

is a homotopy equivalence. Second, two triples . xY 0; xh0; @xh0/ and . xY 1; xh1; @xh1/ are
equivalent, by plus-construction on SW , if and only if there are

� a nonorientable closed 3–manifold P D
F16

iD1 Pi ,

� ZŒ�4�–homology h–cobordisms . xZj I @ xY j ;P / for both j D 0; 1,

� ZŒ�4�–homology equivalences gj W xZj ! @ xX extending @xhj W @ xY j ! @ xX ,

� a homeomorphism 'W xY 0[@ xY 0
xZ0! xY 1[@ xY 1

xZ1 relative to P ,

such that .xh1[g1/ı' is homotopic to .xh0[g0/ relative to P ; see [27, Section 11.1].

Lemma 3.1 Suppose n� 4. There is a bijection

ˆW STOP. xX ; @ xX /
�
�! S iso

TOP.T
n;C2/:

Proof First, suppose n� 5. Let .xh; @xh/W . xY ; @ xY /! . xX ; @ xX / be a homotopy equiva-
lence of pairs, where xY is a compact n–dimensional topological manifold. So Œxh; @xh�
is an element of STOP. xX ; @ xX /. Denote yX and yY as the corresponding double cover
of xX and xY . Passage to double covers induces a C2 –equivariant homotopy equivalence
.yh; @yh/W . yY ; @ yY /! . yX ; @ yX /. Each component @i

yY of @ yY is homotopy equivalent
to, and therefore homeomorphic to the sphere Sn�1 ; see Smale [48] and [27]. Hence
the cone c.@i

yY / is homeomorphic to the disc Dn . So N WD yY [
F

i c.@i
yY / is a

topological C2 –manifold. Thus, by coning off each map @i
yh, we obtain a function

ˆW STOP. xX ; @ xX / �! S iso
TOP.T;C2/ .xh; @xh/ 7�! yh[

G
i

c.@i
yh/:

Now we show that ˆ is a bijection by exhibiting its inverse. Let f W N ! T n be a
C2 –isovariant homotopy equivalence. This induces a proper homotopy equivalence

ffree=C2W Nfree=C2 �! Tfree=C2:

Then, since all the ends of Tfree=C2 are tame, the ends of Nfree=C2 are also tame.
Note Wh.C2/ D zK0.ZŒC2�/ D 0. Then, by a theorem of Siebenmann [47] (or of
Freedman if nD 5, see [27]), we can fit a unique boundary, @ xN onto .N �N C2/=C2 ,
thereby creating a compact manifold xN , unique up to homeomorphism. So we can
extend ffree=C2 to @ xN . (Here a small proper equivariant homotopy of ffree=C2 may
be needed before the extension.) This construction, ŒN; f � 7! Œ xN ; xf � is clearly inverse
to ˆ. We conclude that ˆ is both surjective and injective.
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Finally, it remains to consider ˆ for n D 4. Let .xh; @xh/W . xY ; @ xY /! . xX ; @ xX / be a
map of pairs such that xhW xY ! xX is a homotopy equivalence of 4–manifolds and
each @i

xhW @i
xY ! @i

xX is a ZŒC2�–homology equivalence of 3–manifolds. Recall
the notation y. � / for the double cover of x. � /, used above for n � 5. For each i ,
by [27, Proposition 11.1C], there is a compact contractible 4–manifold c�.@i

yY / with a
C2 –action such that its C2 –equivariant boundary is the homology 3–sphere @i

yY and
it has a single fixed point. It is unique up to C2 –homeomorphism. Using that isolated
fixed point, one can construct a C2 –isovariant homotopy equivalence

c�.@i
yh/W c�.@i

yY / �! c.@i
yX /:

Suppose . xY 0; xh0; @xh0/ is equivalent to . xY 1; xh1; @xh1/, in the sense of Definition 3.3. In
the setting of Remark 3.2, there is a C2 –homeomorphism yY 0[ yZ0! yY 1[ yZ1 . For
each j D0; 1, by uniqueness in [27, Proposition 11.1C], there are C2 –homeomorphisms

c�.@i
yY j / �! yZ

j
i [ c�. yPi/:

Using the identity map on each c�. yPi/, these produce a C2 –homeomorphism

N 0�
WD yY 0

[

G
i

c�.@i
yY 0/ �!N 1�

WD yY 1
[

G
i

c�.@i
yY 1/:

Thus we may define ˆ on equivalence classes similarly to the high-dimensional case,
except we use the “homotopy cones” c� instead of the “honest cones” c . The argument
for showing that ˆ is a bijection as in the high-dimensional case, except for surjectivity
we invoke the weak end theorem [27, Theorem 11.9B] and for injectivity we invoke
the classification of weak collars [27, Theorem 11.9C(3)].

Lemma 3.2 Suppose n� 4. Consider the above-defined structure sets.

(1) The following forgetful maps are bijections:

‰W S iso
TOP.R

n; �n/
�
�! STOP.R

n; �n/

 W S iso
TOP.T

n;C2/
�
�! STOP.T

n;C2/

(2) The following forgetful map is a bijection:

�W STOP.R
n; �n/

�
�! S.�n/

Proof For part (1), in view of the bijections u and uiso , it suffices to prove that  is
a bijection. This is achieved by Theorem A.1, which we provide in Appendix A.

For part (2), by Theorem 2.1(2), it is immediate that � is injective. We must prove �
is surjective. Let ŒM; �n� be in S.�n/. Since M is a contractible n–manifold and the
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restricted action ZnÕM is free, the quotient space M=Zn is an n–manifold and an
Eilenberg–Mac Lane space of form K.Zn; 1/' T n . The action �nÕM descends to
C2ÕM=Zn with .˛ 7! �˛/ on H1 . So, by Theorem 2.1(2), there is a �n –homotopy
equivalence zJ W M !Rn , yielding an element Œ.M; �n/; zJ � 2 STOP.Rn; �n/. Thus �
is surjective.

Proposition 3.1 Suppose n� 4. The following map ˛ is a bijection:

˛ WD � ıu ı ıˆW STOP. xX ; @ xX /
�
�! S.�n/; Œ xX ; id� 7�! ŒRn; �n�

Proof This follows immediately from (3) and Lemmas 3.1 and 3.2.

4 Calculation of the isovariant structure set

Our ultimate goal here is to prove Theorem 1.2. We also establish the Topological
rigidity conjecture (of Section 1.3) for the crystallographic groups �n .

Throughout this section, we assume n� 4 and shall use the shorthand � WD �n . For
each family F of subgroups of � , we write EF� for the classifying space for � –CW–
complexes whose isotropy groups are in F . We use the families fin, vc, and all,
consisting of finite, virtually cyclic and all subgroups respectively. For the remainder
of this section, since the subgroups of � D �n have trivial reduced lower K–theory,
for ease of reading, we shall simply write L for the Or.�/–spectrum Lh .

Recall the Wall realization map [53, Theorems 5.8, 6.5], relative to the boundary:

@Wall
W Lh

nC1.�;wn/ �! STOP. xX / �! STOP. xX ; @ xX /

Using Cappell’s map [12], define a composite homomorphism

ˇW
M

D2.mid/.�/

UNilnC1.ZIZ
";Z"/ �!

M
D2.mid/.�/

Lh
nC1.D; wn/ �!Lh

nC1.�;wn/:

Now we can define the desired basepoint-preserving function

@˚ WD ˛ ı @
Wall
ıˇW

M
D2.mid/.�/

UNilnC1.ZIZ
";Z"/ �! S.�/:

It remains to show that @˚ is a bijection of sets. This will span several lemmas.
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4.1 Algebraic structure groups and equivariant homology

For cofibrant pairs .A;B/ of topological spaces, A Ranicki [41] defined the algebraic
structure groups Sh

� as the homotopy groups of the homotopy cofiber of an assembly
map ˛h1i, so that there is a long exact sequence

� � � !H�.A;BILh1i/
˛h1i
���!Lh

�.A;B/! Sh
�.A;B/!H��1.A;BILh1i/

˛h1i
���! � � � :

Here Lh1i is the 1–connective cover of the 4–periodic surgery spectrum L alge-
braically defined in [41]. (The homotopy invariant functor Sh

� is a desuspended
chain-complex analogue of the geometric structure groups Sh

� originally defined by
F Quinn.) When a map i W B!A is understood, we shall write .A;B/ for the cofibrant
pair .Cyl.i/;B/. The relative L–groups Lh

�.A;B/ D Lh
�.i W B ! A/ were defined

algebraically by Ranicki [42], following C T C Wall [53].

For computational purposes, we employ the nonconnective version Sper;h
� of Sh

� . It is
the homotopy groups of a homotopy cofiber of an assembly map ˛ :

� � � !H�.A;BIL/
˛
�!Lh

�.A;B/! Sper;h
� .A;B/!H��1.A;BIL/

˛
�! � � �

Remark 4.1 Suppose B D ¿ and that A is the quotient of a free �–action on a
space zA each of whose components is simply connected. Write …0. zA/ for the � –set
of components of zA; there is a canonical � –map zA! …0. zA/. By Theorem B.1,
the Quinn–Ranicki assembly map can be naturally identified with the Davis–Lück
assembly map, at the spectrum level. Then the cofibers of these assembly maps
agree in a functorial manner. Specifically, Appendix B constructs an isomorphism in
Ho sc.�; 1/CW–Spectra, whose value on zA after the application of homotopy groups
gives an isomorphism

(5) H�
� .…0. zA/; zAIL/

Š
�! Sper;h

� .A/:

Write Rn
free WD fx 2Rn j �x D 1g for those points with trivial isotropy group. Observe

that Rn
free equivariantly deformation retracts to the universal cover of xX . There is a

canonical � –map from Rn to its singleton fRng with trivial � –action.

Lemma 4.1 There is a commutative diagram with long exact rows:

H�
� .R

n;Rn
freeIL/

//

��

H�
� .fR

ng;Rn
freeIL/

//

��

H�
� .fR

ng;RnIL/ //

��

H�
��1.R

n;Rn
freeIL/

��

Sper;h
� .@ xX / // Sper;h

� . xX / // Sper;h
� . xX ; @ xX / // Sper;h

��1
.@ xX /

Furthermore, the vertical maps are isomorphisms of abelian groups.
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Proof The top row is the long exact sequence of the triple .fRng;Rn;Rn
free/ in � –

equivariant L–homology [23]. The bottom row is the long exact sequence of the
pair . xX ; @ xX / in algebraic structure groups; see Ranicki [43]. The inner left vertical
map is induced on homotopy groups from (5) for zADRn

free . Write D.Rn
sing/ for the

� –subset of points in Rn of distance less than or equal to 0:2 from Rn
sing . Define

S.Rn
sing/ WD @D.R

n
sing/. The outer vertical maps are induced on homotopy groups from

(5) for zAD S.Rn
sing/, precomposed with the inverse of the induced excision map

H�
� .D.R

n
sing/;S.R

n
sing/IL/ �!H�

� .R
n;Rn

freeIL/:

By functoriality of (5), the left square’s diagram of spectra homotopy-commutes. In
particular, the left square itself commutes. Then the inner right map is induced from a
well-defined homotopy class of map of spectra. So the middle square and right square
are defined and commute. Therefore, since (5) implies the outer maps and inner left
map are isomorphisms, by the Five Lemma, we conclude that the inner right map is an
isomorphism also.

Remark 4.2 By the Isomorphism conjecture [5] and Bartels’ splitting theorem [3] on
the top row, we conclude the connecting homomorphism Sper;h

� . xX ; @ xX /! Sper;h
��1

.@ xX /

is zero. Therefore, using Ranicki’s natural bijection (see Remark 4.3 below), the
forgetful map STOP. xX ; @ xX /! STOP.@ xX / is constant.

We now calculate H�
� .Evc�;Efin�IL/ by using a specific model for the spaces

involved. Models of EvcG for crystallographic groups G are due to Connolly, Fehrman
and Hartglass [17]. For any group G , Lück and Weiermann [33] built models of EvcG

from EfinG . However, the following lemma is shown directly for our � .

Let C be an infinite cyclic subgroup of � . Let PC denote the collection of all affine
lines ` � Rn which are stabilized by C . Endow PC with the affine structure and
topology of a copy of Rn�1 . Since PC is a partition of Rn , there is a continuous
quotient map �C W R

n! PC . Since C is normal in � , the � –action on Rn extends
to a � –action on the mapping cylinder, Cyl.�C /.

Let mic.�/ denote the collection of maximal infinite cyclic subgroups of � .

Lemma 4.2 A model E for the classifying space Evc� (which classifies � –CW–
complexes with virtually cyclic isotropy) is the union along Rn of mapping cylinders:

E WD
[

C2mic.�/

Cyl.�C W R
n
�! PC /
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Proof If H is a finite nontrivial subgroup of � , then EH is a tree with one edge
in Cyl.�/C for each C 2 mic.�/. So EH is contractible. If H is infinite cyclic or
infinite dihedral, there is just one C 2mic.�/ for which Cyl.�C /

H is nonempty. For
this C , observe that Cyl.�C /

H is a single point when H is dihedral and is all of
Cyl.�C / when H is cyclic. Also E DEf1g is contractible, and EH is empty if H is
not virtually cyclic.

Finally, we must prove that E has the structure of a � –CW–complex. We begin by
assuming K is a �–CW structure on Rn which is convex. By this we mean each
closed cell is convex, and its boundary is a subcomplex. It suffices to show how to
extend K to a � –CW structure over each mapping cylinder, Cyl.�C / in E .

So fix C and parametrize Cyl.�C / as

Cyl.�C /DRn
� Œ�1; 1�[�C

PC ; where .x; 1/D �C .x/ for all x 2Rn :

There are convex � –CW structures, L on PC , and yL on Rn , so that each j –
cell f of L has the form �C . yf / for some .j C 1/–cell yf of yL. This endows
Rn � Œ0; 1� [�C

PC with the structure of a � –CW–complex, KC so that Rn � 0

is the complex yL. Now yL and K have a common subdivision K0 , since each is
convex. There is then a CW structure K� on Rn � Œ�1; 0� in which K , K0 and yL
are identified with Rn�f�1g;Rn�f�

1
2
g and Rn�f0g respectively as subcomplexes.

(Also, e� Œ�1;�1
2
� and f � Œ�1

2
; 0� are cells of K� if e and f are cells of K and yL

respectively.) Then KC[K� is the required � –CW structure on Cyl.�C /.

Each infinite dihedral subgroup D of � contains a unique maximal infinite cyclic
subgroup C . Moreover, D has a unique invariant line, `D � Rn . The image of `D
in PC is a single point, which we denote by the singleton f`Dg D �C .`D/.

Lemma 4.3 The inclusion-induced map is an isomorphism of abelian groups:M
D2.mid/.�/

HD
� .f`Dg; `D IL/ �!H�

� .E;R
n
IL/

Proof Lemma 4.1 of [24] allows one to translate between maps induced by � –maps
of classifying spaces for actions with isotropy in a family to maps induced by maps of
Or.�/–spectra. There is a homotopy cofiber sequence of Or.�/–spectra,

Lfin �!L �!L=Lfin:

By [24, Lemma 4.1(ii)], the following absolute homology group vanishes:

H�
� .R

n
IL=Lfin/D 0
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Also, by [24, Lemma 4.1(iii)], the following relative homology group vanishes:

H�
� .E;R

n
ILfin/D 0

So we obtain a composite isomorphism, informally first observed by Quinn:

(6) H�
� .E;R

n
IL/

Š
�!H�

� .E;R
n
IL=Lfin/

Š
 �H�

� .EIL=Lfin/

Now, since N�.C /D � , by Lemma 4.2 and excision, we obtain

(7)
M

C2mic.�/

H�
� .PC IL=Lfin/

Š
�!H�

� .EIL=Lfin/:

Fix C 2mic.�/. Observe that the action of the group �=C on the parallel pencil PC

has a discrete singular set

singPC WD f`D 2 PC j C �D for some D 2mid.�/g:

Let U be a � –tubular neighborhood of singPC in PC . Write V WD PC � singPC .
Recall, by a theorem of J Shaneson [46], that the following assembly map is a homotopy
equivalence:

AC W S
1
C ^L.1/

'
�!L.C /

That is, the spectrum .L=Lfin/.�=C / is contractible. So, since V has isotropy C ,

H�
� .U \V IL=Lfin/D 0DH�

� .V IL=Lfin/:

Since singPC is discrete, there is a � –homotopy equivalenceG
D�C

D2.mid/.�/

� �D f`Dg
Š
�! singPC

'
�! U:

So the homotopy and excision axioms of equivariant homology implyM
D�C

D2.mid/.�/

H�
� .� �D f`DgIL=Lfin/

�
�!H�

� .U IL=Lfin/
Š
�!H�

� .PC IL=Lfin/:

Thus (7) and the induction axiom of equivariant homology implyM
D2.mid/.�/

H D
� .f`DgIL=Lfin/

Š
�!H�

� .EIL=Lfin/:

Finally, since `D is a model for EfinD , by [24, Lemma 4.1(ii)] again, we obtain

HD
� .f`Dg; `D IL/

Š
�!H D

� .f`Dg; `D IL=Lfin/
Š
 �H D

� .f`DgIL=Lfin/:
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Lemma 4.4 Recall "D .�1/n . Let D be an infinite dihedral subgroup of � . Then
the following composite map is an isomorphism of abelian groups:

UNilnC1.ZIZ
";Z"/ �!LnC1.D; wn/DH D

nC1.f`DgIL/ �!H D
nC1.f`Dg; `D IL/

Proof Denote the map under consideration by � . Consider the three maps

LnC1.C2; "/˚LnC1.C2; "/
i
�!H D

nC1.`D IL/
j
�!LnC1.D; wn/;

Ln.1/
k
�!Ln.C2; "/˚Ln.C2; "/:

Observe that � has a factorization given by the commutative diagram

Cok.i/

j�
��

@alg
// Ker.k/

UNilnC1.ZIZ
";Z"/

�

��

c // Cok.j ı i/

�

��

@top
// Ker.k/

H D
nC1

.f`Dg; `D IL/ Cok.j /:Šoo

Here, the map @alg is a monomorphism induced from the connecting map in the Mayer–
Vietoris sequence for D–equivariant L–homology. The map @top is induced from
the connecting map in Cappell’s exact sequence in L–theory. By [12, Theorem 2],
the map c is injective. By [12, Theorem 5(ii)], the middle row is exact. By Bartels’
Theorem [3], the bottom horizontal map is an isomorphism. For general group-theoretic
reasons, the middle column is exact and � is surjective.

Note, by the calculation in [53, Theorem 13A.1], that Ker.k/D 0 for all n. Then c is
surjective and Cok.i/D 0. Therefore � , hence � , is an isomorphism.

Remark 4.3 By Proposition 1.1 and the s–cobordism theorem, there is a bijection

STOP. xX ; @ xX /
�
�! Sh

TOP.
xX ; @ xX /:

For any compact manifold W of dimension n� 6, Ranicki gives a bijection from the
geometric structure set to the algebraic structure group [43, Theorem 18.5]:

Sh
TOP.W; @W /

�
�! Sh

nC1.W; @W /

In the case .W; @W /D . xX ; @ xX / this bijection is valid for nD 5 since all the funda-
mental groups are good in the sense of Freedman and Quinn [27], and it is valid for
nD 4 since we use homology equivalences on the 3–dimensional boundary.
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The Atiyah–Hirzebruch spectral sequence shows that HnC1.W; @W IL=Lh1i/D 0 for
a compact n–manifold W with boundary. A diagram chase using this fact together
with the definitions of the algebraic structure groups give a monomorphism

Sh
nC1.W; @W /� Sper;h

nC1
.W; @W /:

Recall the definitions of @Wall and ˇ from the introduction of Section 4.

Proposition 4.1 The following composite function is a bijection of pointed sets:

@Wall
ıˇW

M
D2.mid/.�/

UNilnC1.ZIZ
";Z"/ �! STOP. xX ; @ xX /

Proof Consider the commutative diagramL
UNilnC1.ZIZ";Z"/ //

Š

��

L
Lh

nC1.D; wn/ //

vv

Lh
nC1.�;wn/ //

��

STOP. xX ; @ xX /

Š

��L
HD

nC1.f`Dg; `D IL/
Š // H�

nC1.E;R
nIL/

Š // H�
nC1.fR

ng;RnIL/
Š // Sper;h

nC1 .
xX ; @ xX /:

The composition of the three maps in the top row is @Wall ı ˇ . By Lemma 4.4, the
leftmost vertical map is an isomorphism. By Lemma 4.3, the leftmost map of the
bottom row is an isomorphism. By Lemma 4.2 and the Farrell–Jones conjecture [5],
the middle map of the bottom row is an isomorphism. By Lemma 4.1, the rightmost
map of the bottom row is an isomorphism.

In particular, the composite from the upper left of the diagram to the lower right
of the diagram must be surjective. Hence the right vertical map is surjective. By
Remark 4.3, the rightmost vertical map is injective. Hence the right vertical map is
bijective. Therefore, the three top horizontal maps compose to a bijection.

Observe that the map Sh
nC1

. xX ; @ xX / �! Sper;h
nC1

. xX ; @ xX / from the nonconnective struc-
ture group to the connective structure group is an isomorphism in our case, since the
rightmost vertical map in the diagram above is an isomorphism.

Proof of Theorem 1.2 This follows from Propositions 3.1 and 4.1, and (1).

4.2 Verification of the Topological rigidity conjecture

Lastly, we show that our family of crystallographic examples satisfies our conjecture.
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Proof of Conjecture 1.1 for .Xn; �/D .Rn; �n/ Consider the commutative diagram

H�
nC1

.RnIL/
Avc

fin // H�
nC1

.EIL/
Aall

vc //

��

Lh
nC1

.�;wn/
@Wall

//

��

STOP. xX ; @ xX /

�

��

H�
nC1

.E;RnIL/
Š // H�

nC1
.fRng;RnIL/

Š // Sper;h
nC1

. xX ; @ xX /:

The three bijections hold as in the earlier diagram. Define a precursor map y@ by

y@ WD uiso
ıˆ ı @Wall

ıAall
vc W H

�
nC1.EIL/ �! S iso

rel .R
n; �/:

By a theorem of A Bartels [3], there is a short exact sequence

0 �!H�
nC1.R

n
IL/

Avc
fin
���!H�

nC1.EIL/ �!H�
nC1.E;R

n
IL/ �! 0:

Then y@ induces a map @ from Cok.Avc
fin/. Using the identification (6), we obtain

@W H�
nC1.Evc�IL=Lfin/ �! S iso

rel .R
n; �/:

Therefore, since uiso and ˆ are bijections, this desired map @ is also a bijection.

5 Classification of involutions on tori

The goal of this section is to prove Theorem 1.1.

Proof of Theorem 1.1(1) This is immediate from Theorem 2.1(1).

Proof of Theorem 1.1(2) The case nD 0 is trivial: T 0 DR0=Z0 D pt.

Assume nD 1. Set D1
˙
WD fz D xC iy 2 S1 �C j ˙y � 0g.

Write a; b 2 N for the fixed points of � . Let f W D1
C ! N be a homeomorphism

of D1
C onto either arc in N with endpoints a and b . Extend f to a continuous map

f W S1!N by setting

f .z/D �f .xz/ for all z 2D1
�:

Then f W .S1;C2/! .N;C2/ is an equivariant homeomorphism.

Assume nD2; 3. There is a homeomorphism f W N!T n (by work of Perelman [1] for
nD3). We want to show that each fixed point x2N C2 has an invariant neighborhood D

such that .D;C2/ is homeomorphic to .Dn;C2/, the orthogonal action fixing only 0.
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To see this, note the involution � of .N;x/ lifts to an involution of the universal
cover . zN ; zx/ (for any point zx over x ) whose one point compactification provides an
involution z� with two fixed points on Sn . If this involution is standard, this yields
arbitrarily small standard disk neighborhoods of zx and the required invariant standard
disk neighborhood .D;C2/ of x in N .

But this involution on Sn is standard. For, when nD 2 this was proved by Kérékjartò,
Brouwer and Eilenberg (see Constantin and Kolev [22]); when nD 3 it was proved by
Hirsch and Smale, and Livesay; see Rubinstein [45].

Around each fixed point remove the interior of such an invariant standard disk, to obtain
a compact manifold with a free involution, .N n

0
; �0/ whose boundary consists of 2n

copies of Sn�1 with the antipodal involution. This manifold with free involution is
smooth. This is by Moise [36, Theorem 9.1] and Whitehead [56] if nD 3, and by the
classification of surfaces in nD 2. Gluing back the 2n standard disks, we conclude N

is smooth, and � is smooth.

If n D 3, a theorem of Meeks and Scott [34] then proves there is a flat, invariant
Riemannian metric on .N;C2/. So we may assume N DT 3 and C2 acts by isometries,
and the origin is an isolated fixed point. The group of all isometries fixing the origin is
O.3/\GL3.Z/. Only �I acts with the origin as an isolated fixed point. This is the
standard involution on T 3 . This proves the theorem when nD 3.

If nD 2, we see by the Euler characteristic that N=C2 must be S2 , and .N;C2/ must
be the two–fold cover, branched at four points of S2 . This, again, is the standard
involution on T 2 . This proves the theorem when nD 2.

Assume n � 4 and n � 0; 1 .mod 4/. By Theorem 2.1(2), there is a C2 –homotopy
equivalence J W N ! T n . Recall, from Section 3, the bijection uW STOP.T

n;C2/!

STOP.Rn; �n/. By Lemma 3.2(2), there is a bijection �W STOP.Rn; �n/! S.�n/. By
Theorem 1.2, S.�n/ is a singleton. Thus STOP.T

n;C2/ is also. Therefore J is C2 –
homotopic to a homeomorphism.

The proof of Theorem 1.1(3) will take a little preliminary work. Let Tn denote the
set of equivariant homeomorphism classes of H1 –negative C2 –manifolds .N n;C2/

for which N n has the homotopy type of T n . We must prove that Tn is infinite in
the case that n � 2; 3 .mod 4/ and n � 6. Write hAut.T n;C2/ for the group of
C2 –homotopy classes of C2 –homotopy equivalences, f W .T n;C2/! .T n;C2/. Note,
by Theorem 2.1(2), that

(8) Tn � STOP.T
n;C2/= hAut.T n;C2/:

We begin by constructing a homomorphism Aut.�n/! hAut.T n;C2/.
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Recall �nDZnÌ�1C2 . For increased clarity below, we shall write An for the subgroup
of translations in �n and write �0 2 �n for the reflection through 0:

An WD f.x; 1/ 2 Zn Ì�1 C2 j x 2 Zn
g; �0 WD .0; �/ 2 Zn Ì�1 C2

Also, below we shall use the identification

kW An �!H1.T
n/; .x; 1/ 7�! .Œ0; 1�! T n

I � 7! �xCZn/:

For each automorphism aW �n! �n choose an a–equivariant continuous map

(9) zJaW R
n
�!Rn; that is, zJa.
 � v/D a.
 / � zJa.v/; for all .
; v/ 2 �n �Rn:

Note zJa is unique up to a–equivariant homotopy. Since a.An/ D An , we see zJa

descends to a map, JaW .T
n;C2/! .T n;C2/. So ŒJa� 2 hAut.T n;C2/. From (9) we

see that for all a; b 2 Aut.�n/; zJab and zJa
zJb are ab–equivariantly homotopic.

For each x 2 �n , we write c.x/ for the automorphism

c.x/W �n �! �n; 
 7�! x
x�1:

If t 2An is any translation, a valid choice for zJc.t/ is

zJc.t/W R
n
�!Rn; v 7�! t � v;

since (9) holds for this choice. So this construction specifies a homomorphism

J W Aut.�n/=c.An/ �! hAut.T n;C2/; Œa� 7�! ŒJa�:

Write Aut.�n/�0
WD fa2Aut.�n/ j a.�0/D �0g. For a2Aut.�n/�0

, let T W Rn!Rn

be the unique linear isomorphism satisfying: T .t � 0/D a.t/ � 0, for all t 2An . Then
T .
 �x/D a.
 / �x for all x 2Rn , and therefore a valid choice for zJa is: zJa D T .

Proposition 5.1 The map J is an isomorphism.

Proof Let Œa� 2Ker.J /. We show Œa�D 1. Using the isomorphism kW An ŠH1.T
n/

and the fact that .Ja/� D idW H1.T
n/! H1.T

n/, note that a.t/D t for all t 2 An .
Also Ja fixes the discrete set .T n/C2 , since ŒJa�D1. Therefore zJa.0/2Zn . Replacing
a 2 Œa� with a � c.t/ for a suitable t 2An , we conclude for our new a that zJa.0/D 0.
So a.�0/D �0 . But �n D hAn; �0i. So aD id�n

and J is injective.

Now we show J is surjective. Let Œf � 2 hAut.T n;C2/. Here f W T n ! T n is a
C2 –map. Let a00 2 Aut.�n/�0

satisfy: a00.t/ D k�1f �1
� .k.t// 2 An for all t 2 An .

Then .Ja00f /� D idH1.T n/ . Let zf W Rn! Rn be a lift of f . Note 0 2 Rn
sing , and so

p WD zJa00
zf .0/ 2Rn

sing . There is an involution �p 2 �n�An fixing p .
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Let resW Aut.�n/! Aut.An/ be the restriction homomorphism. Observe Ker.res/
acts transitively on �n � An , since �n D hAn; �i for any � 2 �n � An , and each
such � is an involution. Therefore there exists a0 2 Ker.res/ such that a0.�p/D �0 .
So 0 D zJa0.p/ D zJa0

zJa00
zf .0/. Note zJa0a00

zf W .Rn; 0/! .Rn; 0/ is An equivariant.
But Ja0a00f is C2 –equivariant, so zJa0a00

zf is �0 equivariant. Therefore zJa0a00
zf is

�n –equivariant and so zJa0a00
zf is �n –homotopic to idRn . Therefore Œf �D ŒJa�, where

aD .a0a00/�1 . So J is surjective.

Proof of Theorem 1.1(3) Assume n � 2; 3 .mod 4/ and n � 6. For any group G ,
we are going to abbreviate

H G
WDH G

nC1.EvcGIL=Lfin/:

From Proposition 5.1 and Section 4.2 and (8), we see that H�n=Aut.�n/� Tn . So we
must prove that this set H�n=Aut.�n/ is infinite. The proof is based on the fact that,
for any maximal infinite dihedral subgroup D , we have HD Š UNilnC1.ZIZ

";Z"/
by Lemma 4.4, and so HD is an infinite set by (1). We will produce an injective map
from an infinite set,

HD=Aut.D/ �!H�n=Aut.�n/;

and this will show that Tn is an infinite set.

Take D2 .mid/.�n/, a maximal dihedral subgroup. The inclusion iD W D!�n induces
a map, iD�W H

D!H�n . It is easy to see that each automorphism of D extends to an
automorphism of �n . For any a 2 Aut.�n/, we have

a� ı iD� D ia.D/� ı .ajD/�W H
D
�!H�n ;

where ajD W D! a.D/ denotes the restriction of a.

By Lemma 4.3, we have that the induced map iD�W H
D !H�

n is a monomorphism,
and iD�.H

D/\ ia.D/�.H
D/D 0 if a.D/ is not conjugate to D . But if a.D/D c
 .D/

for some 
 2 �n , then the following diagram commutes:

(10)

HD iD� //

.c

�1 ajD/�

��

H�n

.c

�1 /�a�

��
HD iD� // H�n

By a theorem of Taylor [50], for any 
 2D , the map c
�W H
D!HD is just multipli-

cation by .�1/k , if w.
 /D .�1/k . Now if n� 3 .mod 4/, then w.
 /D 1 for all 
 ,
and if n� 2 .mod 4/, then 2 �HD D 0, so, in all cases c
� D id. For the same reason,
if 
 2 �n , then c
� D idW H�n !H�n .
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This together with (10) proves, first, that the induced map

.iD/�W H
D=Aut.D/!H�n=Aut.�n/

is injective, and second that Inn.D/ acts trivially on the infinite group HD . But
Aut.D/= Inn.D/Š C2 , so HD=Aut.D/ is an infinite set. Therefore H�n=Aut.�n/

and Tn are also infinite sets, as required.

6 A nontrivial element of S.�n/

In this section, which is independent of the rest of the paper, we give a classical
argument for the existence of nontrivial elements of S.�n/ for some n. Indeed the
argument for the case n� 2 .mod 4/, could have been written in 1976. It was in fact
pointed out by Weinberger to the first author many years ago.

Theorem 6.1 Suppose n � 2 or 3 .mod 4/ and n � 6. There exists a cocompact
action of the group �n on a manifold M n such that .M n; �n/ is simply isovariantly
homotopy equivalent to .Rn; �n/ but is not equivariantly homeomorphic to .Rn; �n/.

The proof depends only on an idea of Farrell [25] and on Cappell’s splitting theorem [11,
Theorem 6; 13]. It does not depend on [5].

Let wnW �n D Zn ÌC2! f˙1g be the homomorphism such that ker.wn/D Zn if n

is odd, and wn.�n/ D f1g if n is even. By Remark 1.1, there is a group isomor-
phism �n�1 �Zn�1 �n�1! �n . By Cappell [12], this decomposition defines a split
monomorphism

�W UNilhnC1.RIB;B
0/!Lh

nC1.ZŒ�n�; wn/;

RD ZŒZn�1�; B D B0 D ZŒ�n�1�Zn�1�:

Here R is a ring with involution given by xaD a�1 for all a 2 Zn�1 � �n�1 . Also B
and B0 are R–bimodules with involution xb D .�1/nb�1 for all b 2 �n�1�Zn�1 .

Lemma 6.1 (Cappell) The action of the abelian group Lh
nC1

.ZŒ�n�; wn/ on the set
STOP. xX ; @ xX / restricts to a free action of UNilhnC1.RIB;B

0/ on STOP. xX ; @ xX /.

Proof Cappell’s splitting theorem (see [11, Theorem 6; 13]) applies only to a closed
manifold X with �n D �1.X /, if X admits a splitting X D X1 [Y X2 consistent
with the decomposition �n Š �n�1 �Zn�1 �n�1 . As stated, it does not apply to xX ,
since @ xX is nonempty. But xX does split along a closed submanifold

xX DX1[Y X2; where Y WD fŒt1; : : : ; tn� 2 T n
j t1 D˙

1
4
g=C2:
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Here X1 (and X2 ) is defined similarly in xX but with t1 2 Œ�
1
4
; 1

4
� (respectively,

t1 2 Œ
1
4
; 3

4
�). The fundamental groups of X1;X2;Y are the groups appearing in

Remark 1.1 with f .a1; : : : ; an/ D a1 , So, by Theorem 6.2, we are done. Again,
the key point is @Y D¿.

Lemma 6.2 The group UNiln.ZIZ";Z"/ is a summand of UNiln.RIB;B0/ if
"D .�1/n . Furthermore, UNil4kC2.ZIZ;Z/ and UNil4kC3.ZIZ;Z/ are nonzero.

Proof The first claim is immediate from the split epimorphism

"W �n! �1 D C2 �C2

of Remark 1.1, which induces a split epimorphism

UNiln.RIB;B0/! UNiln.ZIZ";Z"/:

The second claim has been known for many years; see Cappell [10] or [20]. But for the
reader’s convenience, here is a very easy proof. Farrell (see [25]) extended Cappell’s
homomorphism � , mentioned above, to a homomorphism

�0W UNil2k.RIR;R/!L2k.R/

for any ring with involution R. But the nonzero element of L2.Z/ is the class of the
rank-two .�1/–quadratic form with Arf invariant 1. This element is �0.Œ��/, where
Œ�� 2 UNil2.ZIZ;Z/ is the class of the unilform, � D .P; �; �;P 0; �0; �0/, where

P D Ze; P 0 D Zf; �D 0; �0 D 0; �.e/D �0.f /D 1 .mod 2/:

Finally a quick proof that UNil4kC3.ZIZ;Z/ has an element of order 4 can be found
in [15, Corollary 1.9]. It uses almost no machinery.

Proof of Theorem 6.1 By Lemmas 6.2, 6.1 and 3.1, there is an element ŒM; f � ¤

ŒRn; id� in S iso
TOP.R

n; �n/. By Lemma 3.2, we conclude that .M; �n/ is not equivariantly
homeomorphic to .Rn; �n/.

6.1 Free action of UNil on the structure set of a pair

Our purpose here is to show that our Lemma 6.1 is a formal consequence of the
L–theoretic exact sequence of Cappell, appearing in [12; 13].

Let X be a compact, connected topological manifold of dimension n � 6. Let Y a
connected, separating, codimension-one submanifold of X without boundary (that
is, @Y D ¿). Assume the induced map �1.Y / ! �1.X / of groups is injective.
Furthermore, assume the induced map �1.@X /! �1.X / of groupoids is injective.
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Write X DX1[Y X2 for the induced decomposition of manifolds. Write GDG1�F G2

for the induced injective amalgam of fundamental groups, where F WD �1.Y /. Finally,
write H WD �1.@X / as the fundamental groupoid of the boundary.

For simplicity of notation, we shall suppress all the orientation characters. Further-
more, to avoid K–theoretic difficulties, we assume throughout this subsection that the
projective class group for the codimension-one submanifold Y vanishes,

zK0.ZŒF �/D 0:

Theorem 6.2 On the structure set Sh
TOP.X; @X / of the pair, Wall’s action of the

group Lh
nC1

.G/ restricts to a free action of Cappell’s subgroup,

UNilhnC1 WD UNilhnC1.ZŒF �IZŒG1�F �;ZŒG2�F �/:

Thus we slightly generalize the case of @X D ¿ of Cappell [11, Theorem 2]. Our
proof relies only on his algebraic results [12, Theorems 2 and 5; 13].

Theorem 6.3 (Cappell) There is a homomorphism

�W UNilh� �!Lh
�.G/

whose composite with a map of Wall (see [53, Theorem 9.6]) is an isomorphism

UNilh�
�
�!Lh

�.G/ �!Lh
�

0BB@
F //

��

G1

��
G2

// G

1CCA :
Furthermore, there is an exact sequence

� � �!UNilh
�C1˚Lh

�.F /!Lh
�.G1/˚Lh

�.G2/!Lh
�.G/

�
s
@

�
���!UNilh�˚Lh

��1.F /!� � �

such that s ı �D id. In particular, � is split injective with a preferred left inverse.

Write all as the family of all subgroups of G . Write fac as the family of subgroups
of G conjugate into either G1 or G2 .

Theorem 6.3 implies the following composite map is an isomorphism:

�W UNilh�
�
�!Lh

�.G/DH G
� .EallGIL

h/
h
�!H G

� .EallG;EfacGIL
h/

This implies a relative version; recall H D �1.@X /. Consider the homomorphism

j W Lh
�.G/ �!Lh

�.G;H /:
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Write the fundamental groupoid H DH1 t � � � tHm as the disjoint union of its vertex
groups Hi . The associated G –set is defined by

G=H WDG=H1 t � � � tG=Hm:

Observe, since Y \ @X D¿, for each i that Hi �G1 or Hi �G2 ; hence Hi 2 fac.
Therefore there is a canonical G –map G=H !EfacG .

Corollary 6.1 There is a split short exact sequence

0 �!H G
� .EfacG;G=H IL

h/
Afac
���!Lh

�.G;H /
s0

�! UNilh� �! 0:

The preferred right inverse for s0 is the composite j ı �.

Proof There is a long exact sequence of the triple,

� � � !H G
� .EfacG;G=H IL

h/!H G
� .EallG;G=H IL

h/

k
�!H G

� .EallG;EfacGIL
h/! � � � :

So, by the above discussion, we may define a homomorphism

s0W Lh
�.G;H /DH G

� .EallG;G=H IL
h/

k
�!H�.EallG;EfacGIL

h/
��1

���! UNilh� :

That is, s0 WD ��1 ı k . Note hD k ı j . Recall � D h ı �. Then

s0 ı .j ı �/D .��1
ı k/ ı .j ı �/D ��1

ı .h ı �/D ��1
ı� D id :

Therefore, k has right inverse j ı � ı��1 , and the above exact sequence splits.

Now we are ready to prove the main theorem of this subsection.

Proof of Theorem 6.2 Ranicki defined algebraic structure groups Sh
�.X; @X /, a

homomorphism Lh
�.G;H /! Sh

�.X; @X /, and a pointed bijection

Sh
TOP.X; @X /

�
�! Sh

nC1.X; @X /

such that it is equivariant with respect to the actions of Lh
nC1

.G;H / (see [43]). Also
observe, from Remark 4.3, that there is a monomorphism

Sh
nC1.X; @X /� Sper;h

nC1
.X; @X /:
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Write W as the composite homomorphism Lh
nC1

.G;H /! Sper;h
nC1

.X; @X /, which is
compatible with Wall’s action of Lh

nC1
.G;H / on the structure set Sh

TOP.X; @X /. Thus
it suffices to show that the following composite is a monomorphism:

UNilhnC1

�
�!Lh

nC1.G/
j
�!Lh

nC1.G;H /
W
�! Sper;h

nC1
.X; @X /

By definition of the algebraic structure groups, there is an exact sequence

HnC1.X; @X IL/
A
�!Lh

nC1.G;H /
W
�! Sper;h

nC1
.X; @X /:

Also, using Theorem B.1, there is a commutative diagram of assembly maps:

H G
nC1

. zX ;G �H
f@X ILh/

D

��

// H G
nC1

.EfacG;G=H IL
h/

Afac

��

HnC1.X; @X IL/
A // Lh

nC1
.G;H /

Then, by Corollary 6.1, note

Ker.W /D Im.A/� Im.Afac/D Ker.s0/ and Im.j ı �/\Ker.s0/D 0:

So W ı j ı � is a monomorphism. Therefore UNilhnC1 acts freely on Sh
TOP.X; @X /.

Appendix A: From equivariance to isovariance

We want to prove that the forgetful map  W S iso
TOP.T

n;C2/!STOP.T
n;C2/ is bijective

when n � 4. It seems best to approach this from a general study of isovariance. It
shall be immediate from Theorem A.1 below that  is bijective. The assumption of a
discrete singular set in our Theorem A.1 is key.

Let G be a finite group. For any G –spaces X and Y , write ŒX;Y �G and ŒX;Y �iso
G

for
the set of G –equivariant and G –isovariant homotopy classes of maps, respectively.

Let X be a G –space with a fixed point p . The homotopy link of p in X , denoted tpX ,
and the homotopy tangent space of X at p , denoted tpX , are defined by

tpX WD Holink.X;p/D f� W Œ0; 1�!X j ��1.p/D f0gg;

tpX WD tpX [f�pg:

Here �p denotes the constant path at p , and tpX has the compact-open topology. This
is the metric topology of uniform convergence if X is a metric space.
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There is a G –subspace X.p/ �X and isovariant evaluation map e1 defined by

X.p/ WD .X �X G/[fpg; e1W tpX.p/ �!X; � 7�! �.1/:

Let U be a neighborhood of p in X . If U is homeomorphic to Rn , then

(11) e1 restricts to a homotopy equivalence tpU 'Rn
�f0g:

If U is G –invariant and p is an isolated fixed point, then the inclusion �W tpU ! tpX

is an isovariant homotopy equivalence.

An action of a group G on a set X is semifree if the action is free away from the fixed
set, that is, the action of G on X �X G is a free action.

Lemma A.1 Let X and Y be metric spaces on which G acts semifreely and isomet-
rically. Assume q is an isolated fixed point of Y . The rule f 7! f jX�X G gives a
bijection between isovariant and equivariant homotopy classes,

ŒX; tqY �iso
G Š ŒX �X G ; tqY �G :

Proof Let f W X �X G! tqY be a G –map. We first show f is G –homotopic to an
extendible map, f 0 . (Here f 0 is extendible, if limx!x0

f 0.x/D �q for any x0 2X G .)
This will prove that the restriction map is a surjection. We assume X and Y have
metrics, dX and dY , bounded by 1. Write dt for the induced metric on tqY .

For x 2X �X G , set kxk WD dX .x;X
G/. For � 2 tqY , set k�k WD dt .�; �q/. If, for

all x 2 X �X G ; kf .x/k � kxk, then f is obviously extendible. In .X �X G/� I ,
the subset .X �X G/� 0 is disjoint from the closed subset

B WD f.x; t/ 2 .X �X G/� I j dY .f .x/.t/; q/� kxkg:

Consider the continuous map

�W X �X G
�! .0; 1�; x 7�! d�..x; 0/;B/;

where d� denotes the product metric on .X �X G/� I . Observe

�.x/D d�..x; 0/; .x; �.x///:

If 0� t <�.x/ then .x; t/ 62B . Therefore dY .f .x/.t/; q/� kxk for all t 2 Œ0; �.x/�.

Define f 0W X �X G! tqY as the map whose adjoint is

Af 0 WDA ıˆW .X �X G/� I �! Y; where ˆ.x; t/ WD .x; t ��.x//:
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By construction, kf 0.x/k � kxk for all x 2 X �X G . So f 0 is extendible. But a
G –homotopy, fs; 0� s � 1, from f to f 0 is defined by

Afs WDAf ıˆsW .X�X G/�I �!Y; where ˆs.x; t/ WD .x; t �.s�.x/C.1�s///:

Note that if f is extendible, then each fs is extendible too.

The same simple argument shows that if f W .X �X G/� I ! tqY , is a homotopy
between two extendible G–homotopy equivalences, then f 0 supplies an extendible
homotopy. One merely changes the definition of B to

B WD f.x; t/ 2 .X �X G/� I j dY .f .x; s/.t/; q/� kxk for some s 2 Œ0; 1�g:

This proves that ŒX �X G ; tqY �G Š ŒX; tqY �iso
G

, as required.

Because our argument employs a somewhat unusual form of Poincaré duality, namely
(13), we spend some space introducing it here.

Lemma A.2 Let .X;A/ be a compact Hausdorff G –pair satisfying this condition:

(12) There exists a G–homotopy hW X � I ! X and there exists a G–
neighborhood N of A so that

8x 2X; h.x; 0/D x; 8a 2A; h.a; t/D a; 8n 2N; h.n; 1/ 2A:

Assume that X �A is an m–dimensional manifold with boundary, and that the action
of G on X �A is free.

Then for any left ZG –module B , there is an isomorphism

(13) H�G.X �A; @.X �A/IB/ŠH G
m��.X;AIB/:

Notation For any G–pair .X;A/, the groups H G
� .X;AIB/ and H�

G
.X;AIB/ de-

note the homology of the complexes C.X;A/˝ZG B and HomZG.C.X;A/;B/.

Proof of Lemma A.2 Let h and N be as in (12). Let f W X ! X be the function
x 7! h.x; 1/. Note f .X /DA. Consider the collection

U WD fG–open U in X jA� U �N g:

For each U 2 U , write fU W C.X;U /!C.X;A/ for the chain map induced by f and
iU W C.X;A/! C.X;U / for the chain map induced by the inclusion A� U .

Since X �A is a noncompact m–manifold with boundary, Poincaré duality takes the
form of an isomorphism

P W H�G.X �A; @.X �A/IB/ �!H
G;lf
m�� .X �AIB/;
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where the right-hand group is the homology of the complex C lf .X �A/˝ZG B . We
identify the complex C lf .X �A/ of locally finite chains with the inverse limit

C lf .X �A/D lim
U2U

C.X;U /:

The systems of maps given by fU and iU then define maps

C.X;A/
iU
�! lim

U2U
C.X;U /D C lf .X �A/

fU
��! C.X;A/:

We will prove below that iU and fU are chain homotopy inverse over ZG . Therefore
the required isomorphism is the composite

.iU ˝ idB/
�1
� ıP W H�G.X �A; @.X �A/IB/ �!H G

m��.X;AIB/:

We now show iU and fU are chain homotopy inverse to one another. First note that
the map fU ı iU W C.X;A/! C.X;A/ equals the chain map f# induced by f . So the
homotopy h induces a ZG –chain homotopy: idC.X ;A/ 'G .fU ı iU /.

Finally, we show that there exists a ZG–chain homotopy idC lf .X�A/ 'G .iU ı fU /.
Choose a sequence .n 7! On/ of open, G–invariant neighborhoods of A in X

such that ClX .OnC1/ � On � N and A D
T1

nD1 On . Define an order preserving
function, T W U ! U by setting T .U / D On where n is the first integer for which
h.ClX .On/� I/ � U . Write jU W C.X;T .U //! C.X;U / for the map induced by
the inclusion T .U /�U . Then for each U , the homotopy h induces a chain homotopy

hU W jU 'G .iU ıfT .U //W C.X;T .U // �! C.X;U /:

But note that

lim
U2U

jU D idC lf .X�A/; lim
U2U

iU D iU ; lim
U2U

fT .U / D fU :

Therefore limU2U hU provides the desired chain homotopy.

Recall that a map f W .X;A/ ! .Y;B/ is strict if f �1.B/ D A. A homotopy
equivalence between the pairs .X;A/ and .Y;B/ is strict if there are corresponding
homotopies .X � I;A� I/! .Y;B/ and .Y � I;B � I/! .X;A/ that are strict.

Definition A.1 Let X be a G–space, and let A a closed G–subset of X . We call
a pair .U; h/ a tamed neighborhood if it consists of a G–invariant neighborhood U

of A in X and a strict G –map hW .U � I;U �f0g[A� I/! .X;A/ that restricts to
the inclusion on U � f1g and the projection on A� I . We say A is tame in X if A

has a tamed neighborhood .U; h/ in X . It follows that .X;A/ satisfies (12).
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Remark A.1 Note that if ADfpg is an isolated fixed point with tamed neighborhood
.U; h/, then U G D fpg and the adjoint of hW U � I ! X is an isovariant map
�pW U ! tpX . Furthermore, it follows from Quinn [40, Proposition 3.6 or 2.6] that
if X is assumed to be a G–manifold and V is any neighborhood of p , then there
exists a tamed neighborhood .U; h/ of p with U � V .

Lemma A.3 Let U m be a compact semifree G –manifold with G –collared boundary.
Assume U G is tame in U . Let V n be a G–manifold, and q an isolated fixed point
of V . Let f W U ! tqV be a G–map such that f j@U is isovariant. If .U;U G/ is
1–connected and m� nC 1, then f is G –homotopic rel @U to an isovariant map.

Proof There exists a G –map F W U �U G! tqV extending the G –map

f j@.U�U G/W @.U �U G/! tqV;

since, using Lemma A.2, the obstructions lie in the groups

H i
G.U �U G ; @.U �U G/I�i�1.t

qV //ŠH G
m�i.U;U

G
I�i�1.t

qV //:

If i < n then the coefficient group is zero, by (11). If i � n then the homology group
is zero, because .U;U G/ is a 1–connected pair and m� i �m�n� 1. Therefore, by
Lemma A.1, there is an isovariant map f 0W U ! tqV such that f 0j@U is isovariantly
homotopic to f j@U . But since @U has a G –collar in U , the isovariant G –homotopy
extension property applies, and we can choose f 0 so that f 0j@U D f j@U . Finally
since tqV is G –contractible, the maps f; f 0W U ! tqV are G –homotopic.

Let X be a G –manifold with boundary. Recall the singular set of X is

Xsing WD fx 2X j gx D x for some g ¤ 1 2Gg:

A neighborhood U of Xsing in X is a k –neighborhood if it is a G –invariant codimen-
sion zero submanifold with bicollared frontier in X , such that the pair .U;Xsing/ is
k –connected. We only use this concept for k D 0; 1.

Theorem A.1 Let X n and Y n be compact G–manifolds without boundary. As-
sume Xsing and Ysing are finite sets, and assume n� 4. Let f W X ! Y be a G–map
such that the restriction fsingW Xsing! Ysing is bijective.

(1) If f is 1–connected, then f is G –homotopic to an isovariant map.

(2) Suppose f D f0 is isovariant and 2–connected. If f0 is G–homotopic to an
isovariant map f1W X ! Y , then f0 is G –isovariantly homotopic to f1 .
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Proof of Theorem A.1(1) We argue in two major steps.

Step 1 We find 0–neighborhoods U;V of Xsing;Ysing such that U D f �1.V /.

It follows from Siebenmann’s thesis [47] that each neighborhood of Xsing contains
a 0–neighborhood if n D 4, and a 1–neighborhood if n � 5. By Remark A.1, we
can choose a 0–neighborhood V of Ysing in Y , so small that for each q 2 Ysing , the
component Vq containing q , admits the structure of a tamed neighborhood of q , say
.Vq; hq/. By [27] applied to .f � fsing/=G , we may assume f is transverse to @V .
Then N WD f �1.@V / is a bicollared codimension one G –submanifold of X . It is the
boundary and frontier of U WD f �1.V /, a G –neighborhood of f �1.Ysing/.

Our desire is that U be a 0–neighborhood. We plan to accomplish this by handle
exchanges along N realized through a homotopy of f .

Define the closures X0 WDClX .X �U / and Y0 WDClY .Y �V /. Note X0 is a manifold
with boundary N D @X0 . Also note X D U [N X0 and Y D V [@V Y0 .

We now recall the aforementioned notion of handle exchange along N .

Suppose we can find a map, i W .Dk ; @Dk/� f0g ! .X0;N / (or alternatively, a map,
i W .Dk ; @Dk/� f0g ! .U;N /), together with an extension of f ı i to a map

j W .Dk ; @Dk/� .I; f1g/ �! .Y0; @Y0/ .or to .V; @V //:

If k < n=2, we can, after a homotopy, thicken i to an equivariant embedding and an
equivariant extension still called i ; also, we can thicken j to a continuous G–map,
still called j :

i W G � .Dk ; @Dk/�Dn�k
�! .X0;N / .or to .U �U G ;N //;

j W G � .Dk ; @Dk/�Dn�k
� .I; f1g/ �! .Y0;N / .or to .V �V G ; @V //:

Now deform f by a G –homotopy, stationary off i.G�Int.Dk�Dm�k//, to a map f 0

so that f 0 is still transverse to N , but

f 0�1.V /D U [ i.G �Dk
�

1
2
Dm�k/

.or f 0�1.Y0/DX0[ i.G �Dk
�

1
2
Dm�k//:

Note this homotopy is rel @X . If q 2 Ysing , set Uq WD f
�1.Vq/ and Nq WDN \Uq .

Assume k D 1. This handle exchange process decreases the number of components
of N provided that i is chosen so that Im.i/=G meets two components of N=G . After
finitely many such handle exchanges then, we arrive at a map f 0 for which Nq is
connected for each q2Ysing . Therefore Uq is connected too. So U is a 0–neighborhood
of X G .
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Step 2 In this step we find a G –homotopy from f to a G –isovariant map.

From Step 1, we have f �1.Ysing/� U D f �1.V /. Now, we need only show how to
deform f jU rel @U equivariantly to a G –isovariant map, f 0W U ! Y .

But if q 2 Ysing and g 2G and gq¤ q , then we have Uq\Ugq D¿. Therefore, if we
choose one point q from each G –orbit in Ysing it is sufficient to show how to deform
f jUq

rel @Uq to a Gq –isovariant map f 0qW Uq ! Y . Here, Gq WD fg 2 G j gq D qg

denotes the isotropy group of q .

Fix q 2 Ysing . Let Y.q/ D .Y � Y G/ [ fqg. Recall f jUq
D e1 ı �q ı f jUq

, where
�qW Vq ! tqY.q/ , and e1W tqY.q/ ! Y is equivariant. By Lemma A.3, there is a
Gq –isovariant map FqW Uq! tqY.q/ for which .�q ıf jUq

/'Gq
Fq rel @Uq . Define

f 0q WD e1 ıFq . Then f 0q is Gq –isovariant and f jUq
'Gq

f 0q , as required.

Proof of Theorem A.1(2) The argument is entirely similar to that for the proof of
Theorem A.1(1). Realize the homotopy from f0 to f1 by a G –map

.F; f0 tf1/W X � .I; @I/ �! Y � .I; @I/:

Step 1 We find 1–neighborhoods U;V of Xsing � I;Ysing � I so that F�1.V /D U .

Choose a tamed neighborhood .W; h/ of Ysing in Y . Let Wq be the component of W

containing q , for each q 2 Ysing . Since dim.Y � I/� 5, by Siebenmann’s thesis [47]
again, we can choose a 1–neighborhood V of Ysing�I in W �I , such that V \.Y �@I/

is a 0–neighborhood of Ysing � @I in Y � @I .

Let @0V be the frontier of V in Y � I . Then @0V is a codimension 0–submanifold
of @V , and @@0V D @0V \ .Y � @I/.

Make F transverse to @0V after a homotopy which is isovariant on X � @I . Let
U D F�1.V / and let U0 D f

�1.@0V /; the frontier of U in X � I . Then @0U is
a manifold with boundary and @@0U � X � @I . Also .@0U; @@0U / is bicollared in
.X � I; @.X � I//.

Proceed as in the proof of Theorem A.1(1) to make U a 0–neighborhood of Xsing� I .
As before, we let Uq be the component of U containing .FG/�1.q � I/, and let
@0Uq D @0U \Uq .

We plan to make @0Uq simply connected for each q . We repeat the “innermost circles”
argument of Browder [9] doing handle exchanges along @0Uq using 2–handles to kill
off the finitely many generators of each �1.@0Uq/. We do one q at a time, choosing
one q from each G orbit of Ysing . In the end we get a new F W X � I ! Y � I

with its new U for which @0Uq is 1–connected for each q 2 Ysing . This implies that
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�1.X � I/ D �1.Uq/ � �1.X � I � Int.Uq//, and incl�W �1.Uq/ ! �1.X � I/ is
injective. But Vq is simply connected and therefore Uq is simply connected by the
diagram

�1.Uq/
.f jUq /� //

incl�
��

�1.Vq/D f1g

incl�
��

�1.X � I/
F�

Š
// �1.Y � I/:

Therefore U is a 1–neighborhood of Xsing � I in X � I , and U D F�1.V /.

Step 2 In this step we show f0 is isovariantly homotopic to f1 .

Let H D p1 ıF W X � I ! Y . Note H is a G –homotopy from f0 to f1 , with

H�1.Y G/� U �H�1.W /; H.Uq/�Wq for all q 2 Y G :

As in the proof of Theorem A.1(1), for each q 2 Y G , �q ıH jUq
W Uq ! tqY.q/ is

homotopic rel @Uq to an isovariant map, by Lemma A.3. Therefore F is homotopic
rel X �I � Int.U /, to an isovariant map H 0W X �I! Y , which serves as the required
isovariant homotopy from f0 to f1 .

Observe that we did note use any end theorems in the proof above.

Appendix B: Quinn–Ranicki D Davis–Lück in the case of free
actions

In this section we identify the Quinn–Ranicki assembly map with a map in equivariant
homology in the case of a group acting freely on a CW–complex, where all compo-
nents are simply connected. (The connected components may be permuted by the
group action.) For a connected CW–complex this follows from the characterization
of assembly maps due to Weiss and Williams [55], but in our case we must use the
equivariant characterization of assembly maps given in [23, Section 6]. Hambleton
and Pedersen generalized the work of Weiss and Williams in a different direction.
Unfortunately, Davis and Lück [23] did not connect the map in equivariant homology
with the Farrell–Jones conjecture. This was remedied by Hambleton and Pedersen
in [28, Corollary 10.2], which identified the stratified assembly map used in the original
formulation of the Farrell–Jones conjecture [26] with the map in equivariant homology
induced by EvcG ! EallG . Thus their work [28] applied to the contractible case,
while ours applies to the free case.
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Let HoSpectra be the homotopy category, given by formally inverting weak homotopy
equivalences. There is a localization functor HoW Spectra! HoSpectra sending
weak equivalences to isomorphisms, and this functor is initial with respect to all such
functors from Spectra. The functor Ho is a bijection on objects. Homotopy groups
�i W Spectra!Ab factor through the functor Ho. Let C be a category. A C–spectrum
is a functor from C to Spectra, a map of C–spectra is a natural transformation, and
a weak equivalence of C–spectra is a map of C–spectra E ! F which induces a
weak homotopy equivalence of spectra E.c/! F .c/ for all objects c in C . There is
a localization functor HoW C–Spectra! Ho C–Spectra. A key property is that if E

and F are C–spectra which become isomorphic in Ho C–Spectra, then there is a
C–spectrum G and weak equivalences E  G ! F .

For a groupoid G , let L.G/ be the corresponding L–spectrum, as in [23, Section 2].
This is a functor from the category of groupoids to the category of spectra which
satisfies the additional property that an equivalence F W G! G0 of groupoids induces a
weak equivalence L.F /W L.G/!L.G0/ of spectra.

Ranicki, motivated by the earlier geometric work of Quinn, defined the assembly
map [43, Chapter 14], a natural transformation of functors from Top to Spectra,

A.Z/W H .ZIL.1// �!L.…1Z/;

where …1Z is the fundamental groupoid of Z . When Z is a point, the assembly
map is a weak equivalence. The algebraic structure spectrum Sper.Z/ is defined to be
the homotopy cofiber of A.Z/. Its homotopy groups Sper

� .Z/ WD ��Sper.Z/ are the
algebraic structure groups used in Section 4; one can do this for pairs also.

Fix a group G . Consider the orbit category Or.G/ and the Or.G/–spectrum

LW Or.G/ �! Spectra; G=H 7�!L.G=H /;

where G=H is the groupoid associated to the G –set G=H . For a G –CW–complex X ,
consider the spectrum

H G.X IL/ WDmapG.�;X /C ^Or.G/L.�/:

Then, by definition, H G
� .X IL/D ��H

G.X IL/.

Write GCW for the category whose objects are G–CW–complexes and whose mor-
phisms are cellular G–maps. (Actually, for set-theoretic reasons we need to restrict
our G–CW–complexes to a fixed universe; for our purposes it will suffice to assume
that the underlying space of each CW–complex is embedded in R1 .) A .G;F/–CW–
complex is a G–CW–complex with isotropy in a family F . Let .G;F/CW be the
full subcategory of GCW whose objects are .G;F/–CW–complexes. Let Or.G;F/
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be the full subcategory of .G;F/CW whose objects are the discrete G –spaces G=H

with H 2 F . The symbol 1 will denote both the trivial group and the family of
subgroups of G consisting of the trivial group. Let sc.G; 1/CW be the full subcategory
of .G; 1/CW whose objects are free G –CW–complexes all of whose components are
simply connected.

Let X be a free G –CW–complex. Let …0X be the G –set of path components of X .
Here is the main theorem of this appendix.

Theorem B.1 There is a commutative diagram in Ho.G; 1/CW–Spectra:

H .X=GIL.1// //

��

L.…1.X=G//

��
H G.X IL/ // H G.…0X IL/

(1) The top map is the assembly map A.X=G/ and is a map of .G; 1/CW–Spectra.

(2) The bottom map is induced by the G–map X ! …0X and is a map of
.G; 1/CW–Spectra.

(3) The right map is the composite of the formal inverse of the weak equivalence
of .G; 1/CW –spectra L.…1.EG �G X // ! L.…1.X=G// and the map of
.G; 1/CW –spectra L.…1.EG�G X //!H G.…0X IL/ defined in Lemma B.1.
This map is a weak equivalence when restricted to sc.G; 1/CW–Spectra.

(4) The left map is an isomorphism in Ho.G; 1/CW–Spectra.

The proof of the theorem is quite formal and applies more generally. What is needed is
a functor from groupoids to spectra which takes equivalences of groupoids to weak
equivalences of spectra and an assembly map which is a weak equivalence when X is a
point. So, for example, our theorem applies equally well to K–theory. See Remark B.2
below for the modifications necessary for the L–theory nonorientable case.

Let G be a discrete group. Let S be a G–set. Define the action groupoid xS as the
category whose object set is S , and whose morphisms from s to t are triples .t;g; s/
such that t D gs , and whose composition law is .t;g; s/ı .s; f; r/D .t;gf; r/. Define
a functor

LG
W .G; 1/CW �! Spectra; X 7�!L.…1.EG �G X //:

The next lemma relates LG to the above functor LW Or.G/! Spectra.
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Lemma B.1 Let G be a discrete group.

(1) For a discrete G –set S , there is a homeomorphism of spectra

H G.S IL/ŠL. xS/;

natural in S .

(2) For a free G –CW–complex X , there is a map of groupoids

ˆ.X /W …1.EG �G X / �!…0X ;

which is an equivalence of groupoids when all the components of X are simply
connected. Furthermore, ˆ is natural in X ; that is, ˆ.�/ is a map of .G; 1/CW –
groupoids.

(3) There is a map of .G; 1/CW –spectra

ƒ.X /W LG.X / �!H G.…0X IL/;

whose restriction to sc.G; 1/CW is a weak equivalence.

Proof (1) The homeomorphism is given by

H G.S IL/ �!L. xS/;

Œ.f;x/ 2mapG.G=K;S/C ^L.G=K/n� 7�!L. xf /n.x/ 2L. xS/n:

If S is an orbit G=K , then the inverse is given by x 2 L.G=K/n 7! Œ.id;x/ 2
mapG.G=K;G=K/C ^L.G=K/n�. The case of a general G–set follows since both
H G.�IL/ and L.�/ convert disjoint unions to one-point unions of spectra.

(2) We first need some notation. For a subset A of a topological space Y , let …1.Y;A/

be the full subcategory of the fundamental groupoid …1Y whose objects are points in A.
If …0A!…0Y is onto, then there is an equivalence of groupoids …1Y !…1.Y;A/

whose definition depends on a choice of a path from y to a point in A for every y 2 Y .

Let pW EG�X!EG�G X be the quotient map. We will define ˆ.X / as a composite

…1.EG �G X /
‚.X /
����!…1.EG �G X;p.fe0g �X //

‰.X /
����!…0X :

We first define ‚.X / by making choices in the universal space EG . Choose a point
e0 2EG . For each e 2EG , choose a path �eW I !EG from e to e0 , choosing the
paths so that, for all g 2G and t 2 I , g.�e.t//D �ge.t/. This can be accomplished
by choosing a set-theoretic section sW BG!EG of the covering map, and defining
the remaining �e by equivariance. Then for p.e;x/ 2 EG �G X , define the path
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�p.e;x/.t/ WD p.�e.t/;x/. This path is independent of the choice of representative
of p.e;x/. These paths give the equivalence of groupoids ‚.X /, natural in X .

We now define ‰.X / using the fact that p is a covering map. On objects, define
‰.X /.p.e0;x// WD C.x/ 2 …0X , where C.x/ is the path component of x in X .
For a morphism represented by a path ˛W I !EG �G X with ˛.0/D p.e0;x/ and
˛.1/ D p.e0;y/, let z̨W I ! EG � X be the lift of ˛ starting at .e0;x/. Then
z̨.1/D .ge0;gy/ some g 2 G . Then define ‰.X /Œ˛� WD .C.x/;g;C.y//. We leave
the geometric details of verifying that this is a functor to the reader, but note that we
follow that convention that a path ˛ determines a morphism from ˛.1/ to ˛.0/ in the
fundamental groupoid.

Suppose all the components of X are simply connected. We now show that ‰.X / is
an equivalence of groupoids. Choose a base point for each component of X . Define a
functor …0X!…1.EG�G X;p.fe0g�X // on objects by sending C.x/ to p.e0;x/,
and on morphisms by sending .C.x/;g;C.y// to Œp ı z̨�, where z̨W I ! EG �X

is a path from .e0;x/ to .ge0;gy/. This z̨ is unique up to homotopy rel endpoints
since X is simply connected. This ends the proof of (2).

(3) Define ƒ.X / as the composite of L.ˆ.X // and the isomorphism from .1/.

Remark B.1 We next recast the axiomatic approach of [23, Section 6]. Our ter-
minology is self-consistent but does not precisely match that of [23]; in particular
we drop the adverb “weakly”. A functor E W .G;F/CW ! Spectra is homotopy
invariant if any homotopy equivalence induces a weak equivalence of spectra. A functor
E W .G;F/CW!Spectra is excisive if E.�/ and H G.�IE jOr.G;F// are isomorphic
objects in Ho.G;F/CW–Spectra. This is equivalent to the notion of weakly F –
excisive given in [23].1 By [23, Theorem 6.3(2)], a map T W E!F of excisive .G;F/–
CW-spectra is a weak equivalence if and only if T .G=H /W E.G=H /! F .G=H / is a
weak equivalence of spectra for all H 2 F . An excisive approximation of a homotopy
invariant functor E W .G;F/CW ! Spectra is a map T W E 0 ! E of .G;F/–CW-
spectra such that E 0 is excisive and T .G=H / is a weak equivalence for all orbits G=H

with H 2 F .

We next assert existence and uniqueness of excisive approximations. Theorem 6.3(2)
of [23] constructs a specific excisive approximation E% ! E which is functorial

1Indeed [23, Theorem 6.3(1,3)] implies that if E is weakly F –excisive in the sense of [23], then
there is a .G;F/–spectrum E% and weak equivalences E  E%!H G.�IE jOr.G;F// . Conversely,
if E.�/ and H G.�IE jOr.G;F// are isomorphic objects in Ho.G;F/CW–Spectra , then there are
weak equivalences E  F !H G.�IE jOr.G;F// for some .G;F/CW –spectrum F . But [23, Theo-
rem 6.3(1)] shows that H G.�IE jOr.G;F// is weakly F –excisive, and hence so is any weakly equivalent
.G;F/CW –spectrum.
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in E . Excisive approximations are unique in the sense that, given any two excisive
approximations T 0W E 0!E and T 00W E 00!E , there is an isomorphism S W E 0!E 00

in Ho.G;F/CW–Spectra such that T 0 D T 00 ıS . Indeed, to verify that S exists,
it suffices to compare any excisive approximation T 0W E 0! E is equivalent to the
functorial excisive approximation T %W E%!E . Consider the commutative diagram
in .G;F/CW–Spectra:

E 0% //

��

E 0

��
E% // E

Since the left and top maps are both weak equivalences, we obtain an isomorphism in
the homotopy category S WD .E 0 E 0%!E%/ with T 0 D T % ıS , as desired.

Proof of Theorem B.1 The theorem will be proven by concatenating three commuta-
tive squares. The first is a commutative diagram in Ho.1; 1/CW–Spectra, which we
will apply below in the case Z DX=G :

H .ZIL.1// //

��

L.…1Z/

��
.L1/%.Z/ // L1.Z/

The right map is the identity. The top map is the assembly map A.Z/. The left map
exists in the homotopy category (see end of Remark B.1) and is an isomorphism since
both horizontal maps are .1; 1/–excisive approximations of L.…1Z/DL1.Z/.

Next comes a commutative diagram in Ho.G; 1/CW–Spectra:

.L1/%.X=G/ // L1.X=G/

.LG/%.X / //

OO

LG.X /

OO

The right map is induced by the homotopy equivalence EG �G X !X=G , inducing
an equivalence of fundamental groupoids, hence a weak equivalence of spectra. The
left map exists and is an isomorphism, since the top map and the composite of the
bottom and right maps are .G; 1/–excisive approximations of LG.X /.
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Our final commutative diagram is in Ho.G; 1/CW–Spectra:

.LG/%.X / //

��

LG.X /

��
H G.X IL/ // H G.…0X IL/

The top map is the functorial excisive approximation of LG.X /. The bottom map is in-
duced by the G –map X!…0X and is an excisive approximation of H G.…0.�/IL/.
The right map is defined in Lemma B.1(3) and is an isomorphism when restricted to
Ho sc.G; 1/CW–Spectra. Functoriality gives a map

.LG/%.X /!H G.…0.�/IL/
%.X /;

and the bottom map is an excisive approximation implies H G.…0.�/IL/
%.X /!

H G.X IL/; define the left map as the composite. Since the left map is a map of
excisive functors and is a homotopy equivalence when X D G=1, the left map is an
isomorphism in Ho.G; 1/CW–Spectra.

Remark B.2 We next indicate the modifications needed for the statement and proof
of Theorem B.1 in the nonorientable case. A groupoid with orientation character Gw
is a groupoid G together with a functor wW G! f˙1g, where f˙1g is the category
with a single object and two morphisms fC1;�1g where �1 ı �1 D C1. A map
of groupoids with orientation character is a map of groupoids which preserves the
orientation character. Let GWOC denote the category of groupoids with orientation
character. There is an L–theory functor LW GWOC!Spectra. (The definition in [23]
can be easily modified to cover this case; see also [4].) Two maps F0;F1W Gw! G0w0

of groupoids with orientation character are equivalent if there is a natural transformation
which is orientation preserving in the sense that w0.F0.x/! F1.x// D C1 for all
objects x of G . A map F W Gw! G0w0 is an equivalence of groupoids with orientation
characters if there is a map F 0W G0w0! Gw so that both composites F ıF 0 and F 0 ıF

are equivalent to the respective identity. An equivalence of groupoids with orientation
characters gives an weak equivalence of L–spectra.

Now suppose G is a group with orientation character wW G ! f˙1g. Following
forthcoming work of Davis and Lindenstrauss, we discuss two related groupoids with
orientation character. First, if S is a G –set, give the action groupoid xS the orientation
character .t;g; s/ 7!w.g/. This gives a functor Or.G/!GWOC defined on objects
by G=H 7! .G=H /w and hence a functor

LW Or.G/ �! Spectra; G=H 7�!L..G=H /w/:
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Suppose �W yY !Y is a double cover. Define the fundamental groupoid with orientation
character …w

1
.Y /, as follows. The objects are the points of yY . A morphism from yy

to yy0 is a path ˛ from w.yy0/ to w.yy/. A morphism is assigned C1 if the unique lift
of ˛ starting at yy0 ends at yy ; otherwise assign the morphism �1.

Recall G is a group with orientation character w . Given a free G–CW–complex X ,
let wW EG �Ker.w/ X ! EG �G X be the corresponding double cover. Thus, for a
fixed .G; w/, there is a functor LG defined by

LG
W .G; 1/CW �! Spectra; X 7�!L.…w1 .EG �G X //:

Then, after modifying L, LG and xS as indicated above, the statement and proof
of Lemma B.1 remain valid. The same is true for Theorem B.1 after accounting for
Ranicki’s version of the assembly map in the nonorientable case [43, Appendix A].
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