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Abstract We classify, up to homeomorphism, all closed manifolds having the
homotopy type of a connected sum of two copies of real projective n-space.

1 Statement of results

Let Pn = Pn(R) be real projective n-space. López de Medrano [15] and Wall [19,20]
classified, up to PL homeomorphism, all closed PL manifolds homotopy equivalent
to Pn when n > 4. This was extended to the topological category by Kirby and
Siebenmann [14, p. 331]. Four-dimensional surgery [11] extends the homeomorphism
classification to dimension 4.

Cappell [3,5,6] discovered that the situation for connected sums is much more
complicated. In particular, he showed [4] that there are closed manifolds homotopy
equivalent to P4k+1#P4k+1 which are not non-trivial connected sums. Recent com-
putations of the unitary nilpotent group for the integers by Connolly and Ranicki
[9], Connolly and Davis [7], and Banagl and Ranicki [1] show that there are similar
examples in dimension 4k (see [13] for an analysis when k = 1).
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948 J. Brookman et al.

In this paper we classify up to homeomorphism all closed manifolds homotopy
equivalent to Pn#Pn . Any such manifold has Sn−1 × S1 as a twofold cover; equiva-
lently we classify free involutions on Sn−1 × S1 inducing a non-trivial map on H1.

This paper was prompted by a question of Lück [16, Sequence (4.10), Theorem
4.11]—what does the group automorphism Z2∗Z2 → Z2∗Z2 given by interchanging
the Z2’s induce in L-theory? We give a complete answer to Lück’s question and apply
the answer to the classify the above manifolds.

By the positive solution to Kneser’s conjecture (see [12]) any closed 3-manifold
homotopy equivalent to P3#P3 is homeomorphic to Q3#R3 where Q3 and R3 are
closed 3-manifolds homotopy equivalent to P3. The spherical space form conjecture
in dimension 3 would imply that Q3 and R3 are homeomorphic to P3. Hence, conjec-
turally, any closed 3-manifold homotopy equivalent to P3#P3 is standard. Henceforth
we assume n > 3. Note that the fundamental group of P4#P4 is small in the sense of
Freedman and Quinn [11], so that surgery theory applies.

Let Īn (respectively J̄n) be the set of homeomorphism classes of closed manifolds
homotopy equivalent to Pn (respectively Pn#Pn). For n even, let In = Īn and Jn = J̄n .
For n odd, let In (respectively Jn) be the set of oriented homeomorphism classes of
closed oriented manifolds homotopy equivalent to Pn (respectively Pn#Pn). The set
In was computed in [14, Sect. 16 Annex 3]; we review the computation in Sect. 2.

Let R be a ring with involution. Let A and B be (R, R)-bimodules with involution.
(The case of interest is R = Z, and then A and B are just abelian groups with an auto-
morphism of order 2.) Cappell [5] defined unitary nilpotent groups UNiln(R; A, B),
abelian groups with the following properties.

• They satisfy periodicity UNiln(R; A, B) ∼= UNiln+4(R; A, B) and semiperiodic-
ity UNiln(R; A, B) ∼= UNiln+2(R; A−, B−), where A− is the original bimodule
but with the involution a �→ ā replaced by a �→ −ā.

• They obstruct splitting: given a homotopy equivalence h : X → Pn#Pn for any
n > 4, there is an element split(h) ∈ UNiln+1(Z;Zε,Zε) which vanishes if and
only if h is splittable.1 Here ε = (−1)n+1. Conversely all obstructions are realized.
Note that to define the element split(h) one needs to choose an orientation for
Pn#Pn , that is, a generator for the infinite cyclic group Hn(Pn#Pn;Zw) wherew
is the orientation character.

• There is a split injection i : UNiln(Z;Zε,Zε)→ Ln(Z[Zε2 ∗ Z
ε
2]).

The groups UNiln(Z;Z,Z) have been completely computed (see, for example,
[7]). The groups UNil0(Z;Z,Z) and UNil1(Z;Z,Z) vanish. As abelian groups UNil2
(Z;Z,Z) ∼= ⊕∞Z2 and UNil3(Z;Z,Z) ∼= ⊕∞Z2 ⊕∞ Z4.

The “switch map” sw : Pn#Pn → Pn#Pn interchanges the two summands.
We also use the same notation to denote the induced involution on Z2∗Z2, on Ln(Z[Zε2∗
Z
ε
2]), and on UNiln(Z;Zε,Zε). The semiperiodicity mentioned above is equivariant

with respect to the switch map.
The following theorem, proved in Sects. 3 and 4 is the main technical result of this

paper.

1 h is splittable if it is homotopic to a map f , transverse to S, which induces a homotopy equivalence
f −1(S)→ S, where S is the codimension one sphere defining the connected sum.
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Manifolds homotopy equivalent to Pn#Pn 949

Theorem 1 1. The map sw : UNil2(Z;Z,Z)→ UNil2(Z;Z,Z) is the identity.
2. Connolly and Davis [7] give a Z-module isomorphism

( j1 j2 ) : tZ4[t]
{2p(t2)− 2p(t) : p(t) ∈ tZ4[t]} × tZ2[t] → UNil3(Z;Z,Z).

Let π : tZ4[t]
{2p(t2)−2p(t)} → tZ2[t] be the quotient map π [tp] = [tp]. Then using the

above coordinates ( j1 j2 ) for UNil3(Z;Z,Z), the switch map is sw = (
1 0
π 1

)
.

Thus the switch map sw : UNil3(Z;Z,Z) → UNil3(Z;Z,Z) is the identity on
all elements which are multiples of two, as well as on some elements which are not
multiples of two, but is non-trivial on some elements of order two.

Given homotopy equivalences h1 : X1 → Pn and h2 : X2 → Pn and an element
ϑ ∈ UNiln+1(Z;Zε,Zε), Wall realization [20, Theorems 10.4 and 10.5] produces a
normal bordism

(g; h1#h2, h) : (W ; X1#X2, X)→ Pn#Pn × ([0, 1]; {0}, {1})

with h : X → Pn#Pn a homotopy equivalence and with the rel ∂ surgery obstruction
of g the image of ϑ in the L-group

σ∗(g) = i(ϑ) ∈ i(UNiln+1(Z;Zε,Zε)) ⊂ Ln+1(Z[Zε2 ∗ Z
ε
2])

Section 2 proves the following theorem.

Theorem 2 Let n > 3 and ε = (−1)n+1. There is a bijection from the set

(unordered pairs from the set In)×
(
UNiln+1(Z;Zε,Zε)/ sw

)→ Jn

defined by

({[h1 : X1 → Pn], [h2 : X2 → Pn]}, [ϑ]) �→ [X ],

where the homotopy equivalence h : X → Pn#Pn is produced by Wall realization as
above.

Moreover if [ϑ] 	= 0, then [X ] is not represented by the connected sum of manifolds
with fundamental group Z2.

For n 	≡ 3 (mod 4), In → Īn and Jn → J̄n are bijective, while for n ≡ 3 (mod 4),
In → Īn and Jn → J̄n are at most 2-to-1.

Theorem 1 computes UNiln(Z;Z,Z)/ sw for n = 2, 3; the low-dimensional man-
ifolds to keep in mind are P5#P5 and P4#P4, respectively. A precise description of
the maps In → Īn and Jn → J̄n is given at the end of Sect. 2.

The computation of the switch map on UNil should be considered as the main
result of this paper. We now indicate the difficulty. For a ring with involution R, define
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950 J. Brookman et al.

N Ln(R) to be the kernel of the augmentation map Ln(R[t])→ Ln(R) given by send-
ing t to 0. The papers [1,7,9] proceed to compute N Ln(R), and hence UNiln(Z;Z,Z)
since Connolly and Ranicki [9, Definition 13, Theorem A] define a map

r : UNiln(R; R, R)→ N Ln(R)

and show it is an isomorphism. However the induced switch map on N Ln(R) is not
apparent and the inverse map r−1 is not explicit.

Here is how to get around the difficulty. Cappell [5] defined a split injection
i : UNiln(Z;Z,Z)→ Ln(Z[Z2 ∗Z2])which commutes with the switch map induced
by the ring automorphism of Z[Z2∗Z2] given by switching factors. We give an explicit
formula for F = i ◦ r−1. Then for x in a certain generating set of N Ln(Z), we find y
such that sw F(x) = F(y), and thereby deduce that sw(r−1(x)) = r−1(y).

2 The structure set of Pn# Pn

In this section we compute the structure set of Pn#Pn and reduce the homeomorphism
classification to the structure set of Pn#Pn modulo the Z2-action given by the switch
map. The material in the section is a standard application of the surgery machine.

The structure set S(M) of a closed topological manifold M is defined to be
the set of equivalence classes of “s-triangulations,” simple homotopy equivalences
h : X → M where X is a closed topological manifold. Two such s-triangulations
h1 : X1 → M and h2 : X2 → M are equivalent if there is a homeomorphism
f : X1 → X2 so that h2 ◦ f and h1 are homotopic.

For a space M having the homotopy type of a finite CW complex, let hAut(M) be
the group of homotopy classes of simple self-homotopy equivalences M → M . The
following lemma is standard and its proof is trivial.

Lemma 3 hAut(M) acts on S(M) by post-composition. The forgetful map

S(M)/ hAut(M)→ closed manifolds simple homotopy equivalent to M

homeomorphism

[h : X → M] �→ [X ]

is a bijection of sets.

Recall the fundamental group of Pn#Pn for n > 2 is isomorphic to both the infinite
dihedral group,

D∞ = Z � Z2 = 〈t, a | ata = t−1, a2 = 1〉

and to the free product (letting t = ba)

Z2 ∗ Z2 = 〈a, b | a2 = 1 = b2〉,
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Manifolds homotopy equivalent to Pn#Pn 951

which has [18, Theorem 6.4] Whitehead torsion group Wh(Z2)⊕Wh(Z2) = 0. Thus
for M = Pn#Pn or Pn we can drop the word “simple” in the definition of S(M)
and hAut(M).

We next review the computations of S(Pn), In , and Īn . Write n = 4m + � > 3 for
unique m ≥ 0 and 0 < � ≤ 4. Recall that [14, p. 331] the topological structure set
S(Pn) is in bijection with the set

⊕

0<k≤2m+[�/4]
Z2 ⊕

{
Z if � = 3

0 if � 	= 3.

The Z2 summands (normal invariants) arise as the surgery obstructions of degree
one normal maps which are the transverse restrictions to P2k of the given homotopy
equivalence to Pn . The map from Z to the structure set is given by Wall realization
Z ∼= L̃n+1(Z[Z2])→ S(Pn) and the splitting map from the structure set to Z is the
Browder-Livesay desuspension invariant of a free Z2-action on S4m+3 to an action on
some embedded S4m+2.

It is (almost) elementary to show that any self-homotopy equivalence of Pn which
does not reverse orientation is homotopic to the identity. Thus for n even, hAut(Pn)=∗
and for n odd, hAut(Pn) = Z2. This acts trivially on the normal invariant, but for n =
4m + 3 acts by multiplication by −1 on the Z-summand, since reversing orientation
reverses the sign of any signature invariant. The following theorem summarizes the
discussion.

Theorem 4 Let n = 4m + � > 3 where m ≥ 0 and 0 < � ≤ 4. There are bijections

� : S(Pn) −→
⊕

0<k≤2m+[�/4]
Z2 ⊕

{
Z if � = 3

0 else.

In −→ S(Pn)

Īn −→ S(Pn)

�−1(z) ∼ �−1(−z)

Identify

Pn#Pn = Sn−1 × S1

(w, z) ∼ (−w, z̄)

The sphere defining the connected sum is Sn−1 × {±i}/ ∼. Following Cappell [4,
Proof 3], define self-homeomorphisms γ1, γ2, γ3 of Pn#Pn by:

• γ1[w, z] = [w,−z], which interchanges the two summands of Pn#Pn ; also called
the switch map sw,

• γ2[(w1, w2, . . . , wn), z] = [(w1, w2, . . . , wn−1,−wn), z], which reflects through
Pn−1#Pn−1, and
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952 J. Brookman et al.

• γ3[w, z] =
{
[τ(z2)(w), z] if Im z ≥ 0

[τ(z̄2)(w), z] if Im z ≤ 0
,

which Dehn twists along the connecting cylinder via the isotopy τ : S1 → SO(n)
generating π1(SO(n)) ∼= Z2.

When n is even, γ2 is isotopic to the identity via

[(w1 cos(π t)− w2 sin(π t), w1 sin(π t)+ w2 cos(π t), . . . ,−wn), z)].

Lemma 5 ([4, Proof 3], see also [13]) hAut(Pn#Pn) = 〈γ1, γ2, γ3〉. For n even,
hAut(Pn#Pn) = 〈γ1, γ3〉.

In particular, all elements of hAut(Pn#Pn) are splittable.

Corollary 6 ([4, Lemma 2]) If an s-triangulation h : X → Pn#Pn is not splittable,
then X is not a connected sum of manifolds with fundamental group Z2.

Lemma 7 Let Ssplit(Pn#Pn) be the subset of S(Pn#Pn) given by splittable homotopy
equivalences. Let n > 3 and ε = (−1)n+1.

1. Cappell’s nilpotent normal cobordism construction gives a bijection

nncc : S(Pn#Pn)→ Ssplit(P
n#Pn)× UNiln+1(Z;Zε,Zε)

h �→ (− split(h) · h, split(h)),

where · refers to the action of the L-group on the structure set.
2. The above bijection is equivariant with to the action of hAut(Pn#Pn) on the struc-

ture and split structure sets given by post-composition and on UNiln+1
(Z;Zε,Zε) given by the switch map if the homotopy automorphism represents
the non-trivial element of Out(Z2 ∗ Z2) and by the identity otherwise.

3. Connected sum gives a bijection # : S(Pn)× S(Pn)→ Ssplit(Pn#Pn).

Proof 1. The action of the L-group on the structure set is given by Wall realization,
see [20, Theorems 10.4 and 10.5].

For n > 5, the nilpotent normal cobordism construction is given in [6, Sects. II.1,
III.2] (see also [3, Theorem 3]). In [3, Theorem 1] the map split : S(Pn#Pn) →
UNiln+1(Z;Zε,Zε) is denoted by χh . By [3, Theorem 2], split(− split(h) · h) =
− split(h)+ split(h) = 0, so the first component of nncc is indeed splittable.

In dimension n = 5, since the submanifold S4 of P5#P5 defining the connected sum
is simply-connected, the bijection nncc exists by the modification in [6, Theorem 5,
Sect. V.2] of the 4-manifold stable surgery in [10, Theorems 4.1, 5.1]. Alternatively,
proceed analogous to the n = 4 case below.

In dimension n = 4, we prove the existence of the bijection nncc by the following
indirect method. For h ∈ S(P4#P4) one can, following Cappell, define the obstruc-
tion split(h) ∈ UNil5(Z;Z−,Z−). Since the fundamental group D∞ = Z � Z2
is small, by Wall realization and plus construction [11, Theorems 11.3A, 11.1A],
there exists a topological normal bordism H from h to another homotopy equiva-
lence h′ = − split(h) · h with surgery obstruction σ∗(H) = i(− split(h)), where
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Manifolds homotopy equivalent to Pn#Pn 953

i : UNil5(Z;Z−,Z−) ↪→ L5(Z[Z−2 ∗ Z
−
2 ]). Furthermore split(h′) = 0 as before.

It remains to show that h′ is splittable. We accomplish this by periodicity. (See [20,
Theorem 9.9]).

Let Z be a closed, simply-connected 4k-manifold with signature σ(Z).

split(h′ × idZ ) = σ(Z) split(h′) = 0.

Taking Z = P2(C) and using [21, Proof of Theorem 1], one sees that h′ is Z-homology
splittable, i.e. h′ is homotopic to a map whose restriction to the transverse inverse
image �3 of the connecting S3 in P4#P4 is a Z-homology equivalence. But then h′
is necessarily (topologically) splittable, by the “neck exchange” trick of Jahren and
Kwasik [13, Proof of Theorem 2]–essentially due to the fact [11, Corollary 9.3C] that
the homology 3-sphere � bounds a contractible 4-manifold 
.

2. Let h : M → Pn#Pn represent an element of the structure set.
By Lemma 5, every element of hAut(Pn#Pn) can be represented by a map γ

which is the identity on the codimension one sphere S defining the connected sum
and which sends the complement Pn#Pn − S to itself (possibly interchanging the
two components). It is then clear that split(γ ◦ h) = γ∗ split(h) where γ∗ is either the
switch map or the identity.

Wall realization provides a normal bordism H from h to h′ ∈ Ssplit(Pn#Pn) with
surgery obstruction σ∗(H) = −i(split(h)) ∈ Ln+1(Z[Zε2∗Zε2]). Then (γ×id[0,1])◦H
is a normal bordism from γ ◦ h to γ ◦ h′ and, since γ is a homotopy equivalence
preserving the orientation character, the surgery obstruction satisfies

σ∗((γ × id[0,1]) ◦ H) = γ∗(σ∗(H)) = i(− split(γ ◦ h)).

It follows that

γ ◦ (− split(h) · h) = γ ◦ h′

= − split(γ ◦ h) · (γ ◦ h).

In other words, the first component of the map nncc is also equivariant with respect
to the action of hAut(Pn#Pn).

3. Observe that the connected sum operation

# : S(Pn)× S(Pn)→ Ssplit(P
n#Pn)

on topological structure sets is surjective. For n > 4 this uses the affirmative solution
to the Poincaré conjecture for homotopy spheres of dimension n − 1 > 3, and for
n = 4 this uses the Jahren and Kwasik neck exchange trick, replacing a homotopy
sphere �3 by a genuine S3.

To show injectivity of # for all n > 3, suppose that h1#h2 is s-bordant to h′1#h′2
via H , where each hi , h′i ∈ S(Pn). By taking the inverse image of the connecting
Sn−1 under a homeomorphism, we may assume that H is a homotopy. Then we have a
relative splitting problem of the (n + 1)-dimensional homotopy equivalence H along
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954 J. Brookman et al.

Sn−1×[0, 1], which is already split along its boundary Sn−1×{0, 1}. The relative form
of the nilpotent normal cobordism construction in particular provides an s-bordism H ′
from h1#h2 to h′1#h′2, which splits as a boundary connected sum H ′ = H ′1�H ′2 along
Sn−1 × [0, 1]. Hence hi , h′i represent the same element in S(Pn) for all i = 1, 2. ��
Proof of Theorem 2 Lemmas 3 and 5 show that to compute J̄n , the set of homeo-
morphism classes of closed manifolds homotopy equivalent to Pn#Pn , one needs to
compute the action of γ1, γ2, γ3 on S(Pn#Pn). In terms of the bijection of Lemma 7,

S(Pn#Pn)↔ S(Pn)× S(Pn)× UNiln+1(Z;Zε,Zε),

γ1 · (h1, h2, x) = (h2, h1, sw x). (More on sw x later in this paper.)
Note that post-composition with γ3 acts via the identity on Ssplit(Pn#Pn) since

such a structure can be represented by a connected sum h1#h2 : M1#M2 → Pn#Pn

and γ3 ◦ h1#h2 = h1#h2 ◦ γ where γ is the homeomorphism given by a Dehn twist in
the domain. Also, γ3 acts trivially on UNiln+1(Z;Zε,Zε) since it induces the identity
on the fundamental group. Thus γ3 acts trivially on S(Pn#Pn) by Lemma 7, parts (1)
and (2).

Now assume that n is odd. Post-composition by reflection through Pn−1 acts on
S(Pn) by multiplication by h �→ �−1(−�(h)) according to Theorem 4. Lemma 7
then shows that γ2 · (h1, h2, x) �→ (�−1(−�(h1)),�

−1(−�(h2)), x).
Theorem 2 follows. ��
The proof shows a bit more. It shows that the quotient function S(Pn#Pn)/

〈sw〉 → Jn is a bijection. It allows us to be more precise about the map Jn →
J̄n when n ≡ 3 (mod 4). Using the notation of Theorems 4 and 2, the elements
({�−1(y),�−1(z)}, ϑ) ∈ Jn and ({�−1(−y),�−1(−z)}, ϑ) ∈ Jn map to the same
element of J̄n . This is the only way a pair of elements in Jn can have the same image
in J̄n .

3 Switch action on UNil2(Z; Z, Z)

Theorem 8 The switch map sw operates as the identity on UNil2(Z;Z,Z).
Lemma 9 Let r : UNiln(Z;Z,Z)→ N Ln(Z) be the Connolly–Ranicki isomorphism
and i : UNiln(Z;Z,Z) → Ln(Z[D∞]) be the injection defined by Cappell. Let
F : N Ln(Z)→ Ln(Z[D∞]) be the map F = i ◦r−1. Then F is given by the formula:

F[(E, χ)] = [(Z[D∞] ⊗Z[t] E, a ⊗ χ)]

where “a” is the left Z[D∞]-module endomorphism of Z[D∞] defined by right
multiplication by a ∈ D∞.

Proof It is easy to verify

G : N Ln(Z)→ Ln(Z[D∞])
[(E, χ)] �→ [(Z[D∞] ⊗Z[t] E, a ⊗ χ)]
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Manifolds homotopy equivalent to Pn#Pn 955

is a well-defined homomorphism. Here (E, χ) is a quadratic Poincaré complex over
Z[t] in the sense of Ranicki [17].

We need to show G ◦ r = i . We first check first this on UNil2(Z;Z,Z). Let
x = [(P, Q, ρ1a, ρ2b, µ1a, µ2b)] ∈ UNil2(Z;Z,Z) (see [5] for the definition of the
UNil groups). From Connolly–Ranicki,

r(x) =
[(

P[t] ⊕ Q[t],
(
ρ1 1
−1 ρ2t

)
,
( µ1
µ2t

))]
.

Then

G(r(x)) = [(
Z[D∞] ⊗Z[t] (P ⊕ Q),

( ρ1a a
−a ρ2b

)
,
( µ1a
µ2b

))]

=
[(

Z[D∞] ⊗Z[t] (P ⊕ Q),
(
ρ1a 1
−1 ρ2b

)
,
( µ1a
µ2b

))]

= i(x).

where the second equality is seen by pulling back along the isomorphism
(

a 0
0 1

)
and

the last equality is the definition of i(x) (see [5]).
To deal with the odd-dimensional case, in order to appeal to Connolly–Ranicki we

use the fact that all of the maps G, R, and i can be defined for any ring R, not just
Z and are functorial with respect to maps of rings. Therefore the standard Shaneson
splitting argument of Connolly and Ranicki [9, Proposition 19] implies that G ◦ r = i
on UNil3(Z;Z,Z) also. ��
Remark 10 The map F has a geometric interpretation which led us to the formula
of the previous lemma. A homotopy equivalence Xn → Pn#Pn can be considered
both as a one-sided splitting problem by splitting along Pn−1#Pn−1 and a two-sided
splitting problem by splitting along Sn−1. The passage from the one-sided splitting
obstruction to the two-sided splitting obstruction coincides with the map F . More
precisely F is the composite

N Ln(Z) −→ Ln(Z[t]) −→ Ln(Z[t, t−1]) aqk−1

−−−→ L Nn(Z→ Z
−
2 ∗ Z

−
2 )

∂−→ Ln(Z[Z2 ∗ Z2]).

The first map is an inclusion, and the second is induced by an inclusion of rings (note
we have the trivial involution t �→ t).

The group L Nn(Z → Z
−
2 ∗ Z

−
2 ) is defined in [20, Chap. 11] as the obstruction

group for one-sided splitting and sits in the exact sequence

· · · → Ln+1(Z[Z−2 ∗ Z
−
2 ])→ Ln+2(Z[Z] → Z[Z2 ∗ Z2])

→ L Nn(Z→ Z
−
2 ∗ Z

−
2 )→ · · ·

where the first map is a transfer map corresponding to the line bundle of the “twofold
cover” BZ → B D∞. This L N -group is identified algebraically in [17, Sect. 7.6,
pp. 691–695] as a relative term in the exact sequence. That is, each element of L Nn is
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represented by a pair consisting of a quadratic Poincaré complex of dimension n over
Z[Z−2 ∗ Z

−
2 ] and a quadratic pair of dimension n + 2 over Z[Z] → Z[Z2 ∗ Z2] with

algebraic boundary the transfer pair of the complex.
The map ∂ is defined in [17, Sect. 7.2, p. 565] as the boundary map in the transfer

sequence; it forgets the quadratic pair. Geometrically it corresponds to a transversal
restriction of a one-sided splitting problem to a degree one normal map.

The map aqk is an isomorphism. It was defined geometrically by Wall (see
[20, Theorem 12.9]) as the Z2-equivariant defect for handle exchanges in the middle
dimension of a certain regular twofold cover. The map aqk was dubbed the anti-
quadratic kernel by Ranicki [17, Sect. 7.6, pp. 698–699] and was given an algebraic
definition.

Actually for us, aqk−1 is the relevant map and is somewhat easier to define. How-
ever, we will omit the definition here, and refer to [17, Proof 7.6.3, p. 702] for the
formula

(∂ ◦ aqk−1) [(E, χ)] = [
(Z[D∞] ⊗Z[t] E, a ⊗ χ)] .

A careful reading of [17, Sect. 7.6, pp. 737–745] shows that ∂ takes the one-sided
splitting obstruction to the image of the two-sided splitting obstruction and that the
composite map F above satisfies F ◦ r = i . ��
Proof of Theorem 8 Recall [7, Theorem 4.6(2)] (see also [8]) that the map L2(Z[t])→
L2(F2[t]) is an isomorphism and the latter is detected by restriction of the Arf invariant
for the characteristic two field F2(t)—first map to L2(F2(t)) and then by the Arf
invariant to the idempotent quotient F2(t)/{ f 2 − f | f ∈ F2(t)}. So it suffices to
compute the switch map sw on the values of the inverse map

tF2[t]
{ f 2 − f | f ∈ F2[t]} → N L2(Z)

defined by

[tp] �→ [Ptp,1] =
[
Z[t]2, ( 0 1−1 0

)
,
( tp

1

)]
.

Write t = ba, which generates the infinite cyclic subgroup Z of index two in D∞.
Recall the definition of F : N L2(Z)→ L2(Z[D∞]) in Lemma 9.

Then F[Ptp,1] is represented by the quadratic form:

(
Z[D∞]2,

(
0 a−a 0

)
,
(

p(t)b
a

))
.

Note

sw F[Ptp,1] = sw
[
Z[D∞]2,

(
0 a−a 0

)
,
(

p(t)b
a

)]

= sw
{(

b 0
0 a

)∗ [Z[D∞]2,
(

0 a−a 0

)
,
(

p(t)b
a

)]
}
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= sw[Z[D∞]2,
(

b 0
0 a

) (
0 a−a 0

) (
b 0
0 a

)
,
(

bp(t)bb
aaa

)]
= sw

[
Z[D∞]2,

(
0 b−b 0

)
,
(

bp(t)
a

)]

=
[
Z[D∞]2,

(
0 a−a 0

)
,
(

ap(t−1)
b

)]

=
[
Z[D∞]2,

(
0 a−a 0

)
,
(

p(t)a
ta

)]

= F[Pp,t ].

Therefore sw[Ptp,1] = [Pp,t ] by injectivity of F . But both [Pp,t ] and [Ptp,1] have the
same Arf invariant [tp]. ��

4 Switch action on UNil3(Z; Z, Z)

We compute the switch action on UNil3(Z;Z,Z) in a similar way to what we did for
UNil2(Z;Z,Z); we use [7] to find generators, use Lemma 9 to compute the switch
map on the generators, and use the obstruction theory of [7] to express the result in
terms of the original generators.

Connolly and Davis [7] give a Z-module isomorphism

( j1 j2 ) : tZ4[t]
{2p(t2)− 2p(t) : p(t) ∈ tZ4[t]} × tZ2[t] → UNil3(Z;Z,Z).

Theorem 11 Let π : tZ4[t]
{2p(t2)−2p(t)} → tZ2[t] be the quotient map π [tp] = [tp].

Then using the above coordinates ( j1 j2 ) for UNil3(Z;Z,Z), the switch map is sw =(
1 0
π 1

)
.

Corollary 12 x ∈ UNil3(Z;Z,Z) is fixed by the switch map if x is divisible by two.

Example 13 Consider the Poincaré (−1)-quadratic complex (C, ψ) of dimension one
over Z[D∞] defined by the data:

• C1 = Z[D∞] ⊕ Z[D∞] = C0 and d := (
2 0
0 2

)
,

• ψ0 =
(

2a 1
1 b

) : C0 → C1 and ψ1 =
(−2a 0
−2 −b

) : C0 → C0.

Observe it is the image of a certain (−1)-quadratic nilcomplex of dimension one over
the triple (Z;Z,Z), see [2, Definition 11.11], under the natural group monomorphism
UNil3(Z;Z,Z) → L3(Z[D∞]) of cobordism classes. Moreover from the proof of
Lemma 17, its cobordism class [(C, ψ)] is also the image of an order 4 element
[Nt,1] = j1[t] of tZ4[t]/{2p(t2)− 2p(t)}. Then

sw[Nt,1] = sw( j1[t] ⊕ 0) = j1[t] ⊕ j2[t] = [N1,t ].

In particular sw[(C, ψ)] 	= ±[(C, ψ)], hence [(C, ψ)] ∈ L3(Z[D∞]) is the image of
a non-zero element of UNil3(Z;Z,Z) which is not fixed by the switch map.
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The actual computation of Connolly–Davis was of the group L̃(Z[t], 2), the Witt
group of quadratic linking forms on Z[t]-modules with exponent 2 which become
Witt trivial under the map t → 0. Recall that these are defined to be triples (M, b, q)
where

• M is a Z[t]-module isomorphic to F2[t]k for some k;
• b : M × M → Q[t]/Z[t] is a nonsingular symmetric linking form;
• q : M × M → Q[t]/2Z[t] is a quadratic refinement of b (so that in particular
[q(x)] = b(x, x) ∈ Q[t]/Z[t]).

This group was shown to be isomorphic to UNil3(Z;Z,Z) via the composite
isomorphism

UNil3(Z;Z,Z)
∼=−→ N L3(Z)

∼=←− N L0(Z, 〈2〉)
∼=←− L̃(Z[t], 2).

Here the first isomorphism was from Connolly and Ranicki [9], the second from a
localization exact sequence, and the third by a devissage argument.

The maps j1 and j2 were defined in terms of certain basic linking forms, so it is
sufficient for us to compute the effect of the switch map on those:

Definition 14 ([7, Definition 1.6]) For p, g ∈ Z[t] where either p(0) = 0 or q(0) =
0, define [Np,g] ∈ L̃(Z[t], 2) by the (+1)-quadratic linking form

Np,g =
(

Z2[t]2,
(

p/2 1/2
1/2 0

)
,

(
p/2
g

))
.

Then j1[tp] = [Ntp,1
]

and j2[tp] = [N1,tp
]− [Nt,p

]
.

Lemma 15 Let s : L̃(Z[t], 2)→ N L3(Z) be the isomorphism mentioned above.

1. s[Ntp,g] is represented by the (−1)-quadratic one-dimensional Poincaré complex
in N L3(Z):

C0 = Z[t]2 2 ��

(
p(t)t 1

1 2g(t)

)

��

(−p(t)t −1
−1 −2g(t)

)����

������

Z[t]2 = C1

0

��
C1 = Z[t]2

2
��
Z[t]2 = C0

2. F(s[Ntp,g]) is represented by the (−1)-quadratic one-dimensional Poincaré com-
plex in L3(Z[D∞]):

C0 = Z[D∞]2 2 ��

(
p(t)b a

a 2g(t)a

)

��

(−p(t)b −a
−a −2g(t)a

)����

������

Z[D∞]2 = C1

0

��
C1 = Z[D∞]2 2

��
Z[D∞]2 = C0
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Proof The isomorphism L̃(Z[t], 2) ∼= N L0(Z, 〈2〉) is the obvious map [(M, b, q)] →
[(M, b, q)].

Ranicki [17, Propostion 3.4.1] showed that N L0(Z, 〈2〉) can equivalently be
described as cobordism classes of 〈2〉-acyclic one-dimensional (−1)-quadratic
Poincaré complexes over Z[t]. The boundary map N L0(Z, 〈2〉)→ N L3(Z) in the lo-
calization exact sequence is then given by the map [(C, ψ)] → [(C, ψ)]. The content
of the first part of the lemma is thus to find the one-dimensional Poincaré complexes
corresponding to the linking forms Ntp,g . It follows immediately by applying the cor-
respondence from [17], recalled below in Definition 16, that Ntp,g corresponds to the
quadratic Poincaré complex claimed.

The second part is then an immediate consequence of Lemma 9. (Recall that
p(t)ta = p(t)baa = p(t)b.) ��

Definition 16 ([17, Proof 3.4.1]) Let R be a ring with involution, and let S be a central
multiplicative subset of R which is invariant under the involution. Let (C, ψ) be a S-
acyclic one-dimensional (−1)-quadratic Poincaré complex over R, so that (C, ψ)
consists of:

• a monomorphism d : C1 → C0 of finitely generated free R-modules such that
idS−1 R ⊗R d is an isomorphism,

• a morphism ψ0 : C0 → C1 such that ψ∗0 : C1 → C0 induces an isomorphism
Cok(d∗)→ Cok(d), and

• a morphism ψ1 : C0 → C0 such that ψ1 + ψ∗1 = −d ◦ ψ0.

The nonsingular (+1)-quadratic linking form (M, b, q) over (R, S) associated to
the resolution (C, ψ) consists of:

• the S-torsion R-module M := Cok(d∗) of homological dimension one,
• the sesquilinear map b : M × M → S−1 R/R, with adjoint an isomorphism, well

defined for all representatives x, y ∈ C1 by b(x, y) := 1
s 〈y, ψ0(z)〉 where z ∈ C0

is uniquely determined by the formula d∗(z) = sx for any given s ∈ S such that
s[x] = 0 ∈ M , and

• the quadratic map q : M → S−1 R/{r + r̄ | r ∈ R}, well defined for all x denoted
as above by q(x) := 1

s 〈z, ψ1(z)〉.

We are now in a position to compute the switch involution on the generators of
L̃(Z[t], 2).

Lemma 17 For all polynomials p, g ∈ Z[t], the involution sw is given by

sw[Ntp,g] = [Np,tg].

Proof Denote the Poincaré complex over Z[D∞] of Lemma 15(2) by
[

p(t)b a
a 2g(t)a

]
.

Similar to the proof of Theorem 8, note that
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sw
[

p(t)b a
a 2g(t)a

]
= sw

{(
b 0
0 a

)∗ [ p(t)b a
a 2g(t)a

]}

= sw
{(

b 0
0 a

) [
p(t)b a

a 2g(t)a

] (
b 0
0 a

)}

= sw
[

bp(t) b
b 2ag(t)

]

=
[

ap(t−1) a
a 2bg(t−1)

]

=
[

p(t)a a
a 2g(t)baa

]

This is precisely F(s[Np,tg]). Hence sw F(s[Ntp,g]) = F(s[Np,tg]), so by injectivity
of F and s, sw[Ntp,g] = [Np,tg]. ��
Proof of Theorem 11 Let p, p′ ∈ Z[t] be polynomials. Recall from [7, p. 1072] that
j1[tp] := [Ntp,1], and that j2[tp′] := [N1,tp′ ] − [Nt,p′ ]. Note by Lemma 17 that:

sw( j1[tp]) = sw([Ntp,1])
= [Np,t ]
= ([Np,t ] − [N1,tp] + [Nt,p])⊕ j2[tp]

sw( j2[tp′]) = sw([N1,tp′ ] − [Nt,p′ ])
= [Nt,p′ ] − [N1,tp′ ]
= 0⊕ j2[tp′].

It remains to show [Nt,p] + [Np,t ] = [N1,tp] + [Ntp,1].
Recall

Nt,p ⊕Np,t =
(

F2[t]4,
(

t/2 1/2 0 0
1/2 0 0 0
0 0 p/2 1/2
0 0 1/2 0

)

,

(
t/2
p

p/2
t

))

N1,tp ⊕Ntp,1 =
(

F2[t]4,
( 1/2 1/2 0 0

1/2 0 0 0
0 0 tp/2 1/2
0 0 1/2 0

)

,

(
1/2
tp

tp/2
1

))

.

For a polynomial p ∈ F2[t], define polynomials pev, pod ∈ F2[t] by the equation
p = p2

ev + tp2
od. Label the basis of F2[t]8 as {e1, e2, . . . , e8} and let

v0 = pev · e4 + e6 + tpod · e8

v1 = e2 + pod · e4 + pev · e8.

Then S := span {v0, v1} is a sublagrangian of the (+1)-quadratic linking form (Nt,p⊕
Np,t )− (N1,tp ⊕Ntp,1) of exponent 2 over (Z, 〈2〉). Note

S⊥ = span {pod · e1 + e3 + pev · e5, e4, pev · e1 + tpod · e5 + e7, e8, v0, v1} .

Then (Nt,p ⊕ Np,t ) − (N1,tp ⊕ Ntp,1) is Witt equivalent to the sublagrangian
construction:
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(S⊥/S, b̄, q̄) =
(

F2[t]4,
( 0 1/2 0 0

1/2 0 0 0
0 0 0 1/2
0 0 1/2 0

)

,

( p
t

tp
1

))

.

Lemma 4.3(2) and (6) of [7] show that this admits a lagrangian. Alternatively, note that
the above is an even quadratic linking form so represents an element of L̃ev(Z[t], 2),
the Witt group of even quadratic linking forms (M, b, q) on Z[t]-modules with ex-
ponent 2. Here (M, b, q) is even if b(x, x) ∈ Z[t] for all x ∈ M . By an easy
change of coordinates, one sees that L̃ev(Z[t], 2) ∼= N L0(F2) which is isomorphic
to tF2[t]/{ f 2 − f | f ∈ F2[t]} via the Arf invariant of the function field F2(t). On
the other hand, the Arf invariant of the above form is trivial, hence the form is Witt
trivial. ��

The above proof is complete, but the last part of the proof was unmotivated. The
motivation is the obstruction theory of Connolly–Davis. There is a short exact sequence
of Z-modules, which first appeared in [9, Theorem 25],

0→ L̃ev(Z[t], 2)→ L̃(Z[t], 2)
B−→ tZ2[t] ⊕ tZ2[t] → 0.

See [7, Definition 6.1] for the definition of B and [7, Lemma 5.7(1), Example 6.2] for
exactness.

Consider B as a “characteristic number”—a certain combination of quadratic
values of the Wu classes [7, Eq. 5.(4)] v0, v1—which is the obstruction [7, Sect. 6,
Proof 1.7 Line 3] for a quadratic linking form to Witt equivalent to even form. If the
quadratic linking form is even, the Arf invariant over the characteristic two field F2(t)
can then be applied.

Corollary 18 The switch map on the invariant B is: B ◦ sw = (
1 0
1 1

) ◦ B.

Proof Recall from [7, Eqs. (13),(14)] that:

B1 ◦ j1 = π, B1 ◦ j2 = 0
B2 ◦ j1 = 0, B2 ◦ j2 = id .

Then for any polynomials p, p′ ∈ Z[t] note

(B ◦ sw)( j1[tp] + j2[tp′]) =
(

B1
B2

) (
j1[tp] + j2[tp] + j2[tp′]) =

( [tp]
[tp] + [tp′]

)
.

��
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