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Algebraic K –theory over the infinite dihedral group:
an algebraic approach

JAMES F DAVIS

QAYUM KHAN

ANDREW RANICKI

Two types of Nil-groups arise in the codimension 1 splitting obstruction theory
for homotopy equivalences of finite CW–complexes: the Farrell–Bass Nil-groups
in the nonseparating case when the fundamental group is an HNN extension and
the Waldhausen Nil-groups in the separating case when the fundamental group is
an amalgamated free product. We obtain a general Nil-Nil theorem in algebraic
K–theory relating the two types of Nil-groups.

The infinite dihedral group is a free product and has an index 2 subgroup which is
an HNN extension, so both cases arise if the fundamental group surjects onto the
infinite dihedral group. The Nil-Nil theorem implies that the two types of the reducedfNil –groups arising from such a fundamental group are isomorphic. There is also
a topological application: in the finite-index case of an amalgamated free product,
a homotopy equivalence of finite CW–complexes is semisplit along a separating
subcomplex.

19D35; 57R19

Introduction

The infinite dihedral group is both a free product and an extension of the infinite cyclic
group Z by the cyclic group Z2 of order 2

D1 D Z2 �Z2 D Z Ì Z2

with Z2 acting on Z by �1. A group G is said to be over D1 if it is equipped with
an epimorphism pW G ! D1 . We study the algebraic K–theory of RŒG�, for any
ring R and any group G over D1 . Such a group G inherits from D1 an injective
amalgamated free product structure G D G1 �H G2 with H an index 2 subgroup
of G1 and G2 . Furthermore, there is a canonical index 2 subgroup xG � G with an
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injective HNN structure xG DH Ì˛ Z for an automorphism ˛W H !H . The various
groups fit into a commutative braid of short exact sequences:

Z ''

''
xG DH Ì˛ Z

88 88

%%
�

%%

D1 D Z2 �Z2

�

"" ""
H DG1\G2

99

99

&& 88G DG1 �H G2

p
88 88

�ıp
99 99

Z2

The algebraic K–theory decomposition theorems of Waldhausen for injective amalga-
mated free products and HNN extensions give

K�.RŒG�/DK�.RŒH �!RŒG1��RŒG2�/(1)

˚fNil��1.RŒH �IRŒG1�H �;RŒG2�H �/ ;

K�.RŒ xG�/DK�.1�˛W RŒH �!RŒH �/(2)

˚fNil��1.RŒH �; ˛/˚fNil��1.RŒH �; ˛�1/ :

We establish isomorphisms

eNil�.RŒH �IRŒG1�H �;RŒG2�H �/ŠeNil�.RŒH �; ˛/ŠeNil�.RŒH �; ˛�1/ :

A homotopy equivalence f W M ! X of finite CW–complexes is split along a sub-
complex Y � X if it is a cellular map and the restriction f jW N D f �1.Y /! Y is
also a homotopy equivalence. The eNil�–groups arise as the obstruction groups to
splitting homotopy equivalences of finite CW–complexes for codimension 1 Y � X

with injective �1.Y / ! �1.X /, so that �1.X / is either an HNN extension or an
amalgamated free product (Farrell–Hsiang, Waldhausen) – see Section 4 for a brief
review of the codimension 1 splitting obstruction theory in the separating case of an
amalgamated free product. In this paper we introduce the considerably weaker notion
of a homotopy equivalence in the separating case being semisplit (Definition 4.4). By
way of geometric application we prove in Theorem 4.5 that there is no obstruction to
topological semisplitting in the finite-index case.

0.1 Algebraic semisplitting

The following is a special case of our main algebraic result (Theorems 1.1, 2.7) which
shows that there is no obstruction to algebraic semisplitting.
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Theorem 0.1 Let G be a group over D1 , with

H DG1\G2 �
xG DH Ì˛ Z�G DG1 �H G2 :

(1) For any ring R and n2Z the corresponding reduced Nil–groups are isomorphic:

eNiln.RŒH �IRŒG1�F �;RŒG2�H �/ŠeNiln.RŒH �; ˛/ŠeNiln.RŒH �; ˛�1/ :

(2) The inclusion � W RŒ xG�!RŒG� determines induction and transfer maps

�!W Kn.RŒ xG�/!Kn.RŒG�/ ; � !
W Kn.RŒG�/!Kn.RŒ xG�/ :

For all integers n 6 1, the eNiln.RŒH �; ˛/–eNiln.RŒH �IRŒG1�H �;RŒG2�H �/–
components of the maps �! and � ! in the decompositions (2) and (1) are isomor-
phisms.

Proof Part (i) is a special case of Theorem 0.4.

Part (ii) follows from Theorem 0.4, Lemma 3.20 and Proposition 3.23.

The nD 0 case will be discussed in more detail in Sections 0.2 and 3.1.

Remark 0.2 We do not seriously doubt that a more assiduous application of higher
K–theory would extend Theorem 0.1(2) to all n 2 Z (see also Davis, Quinn and
Reich [5]).

As an application of Theorem 0.1, we shall prove the following theorem. It shows
that the Farrell–Jones Isomorphism Conjecture in algebraic K–theory can be reduced
(up to dimension one) to the family of finite-by-cyclic groups, so that virtually cyclic
groups of infinite dihedral type need not be considered.

Theorem 0.3 Let � be any group, and let R be any ring. Then, for all integers n< 1,
the following induced map of equivariant homology groups, with coefficients in the
algebraic K–theory functor KR , is an isomorphism:

H�
n .Efbc�IKR/ �!H�

n .Evc�IKR/ :

Furthermore, this map is an epimorphism for nD 1.

This is a special case of a more general fibered version, Theorem 3.29. Theorem 0.3
has been proved for all degrees n by Davis, Quinn and Reich [5]; however our proof
here uses only algebraic topology, avoiding the use of controlled topology.
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The original reduced Nil–groups eNil�.R/DeNil�.R; id/ feature in the decompositions
of Bass [2] and Quillen [9]:

K�.RŒt �/DK�.R/˚fNil��1.R/

K�.RŒZ�/DK�.R/˚K��1.R/˚fNil��1.R/˚fNil��1.R/ :

In Section 3 we shall compute several examples which require Theorem 0.1:

K�.RŒZ2 �Z2�/D
K�.RŒZ2�/˚K�.RŒZ2�/

K�.R/
˚fNil��1.R/

K�.RŒZ2 �Z3�/D
K�.RŒZ2�/˚K�.RŒZ3�/

K�.R/
˚fNil��1.R/

1

Wh.G0 �Z2 �G0
G0 �Z2/D

Wh.G0 �Z2/˚Wh.G0 �Z2/

Wh.G0/
˚fNil0.ZŒG0�/

where G0 D Z2 �Z2 �Z. The point here is that eNil0.ZŒG0�/ is an infinite torsion
abelian group. This provides the first example 3.28 of a nonzero eNil –group in the
amalgamated product case and hence the first example of a nonzero obstruction to
splitting a homotopy equivalence in the separating case (A).

0.2 The Nil-Nil Theorem

We establish isomorphisms between two types of codimension 1 splitting obstruction
nilpotent class groups, for any ring R. The first type, for separated splitting, arises in
the decompositions of the algebraic K–theory of the R–coefficient group ring RŒG�

of a group G over D1 , with an epimorphism pW G!D1 onto the infinite dihedral
group D1 . The second type, for nonseparated splitting, arises from the ˛–twisted
polynomial ring RŒH �˛ Œt �, with H D ker.p/ and ˛W F ! F an automorphism such
that

xG D ker.� ıpW G! Z2/DH Ì˛ Z ;

where � W D1! Z2 is the unique epimorphism with infinite cyclic kernel. Note:

(A) D1 D Z2 � Z2 is the free product of two cyclic groups of order 2, whose
generators will be denoted t1; t2 .

(B) D1 D h t1; t2 j t
2
1
D 1 D t2

2
i contains the infinite cyclic group Z D hti as a

subgroup of index 2 with t D t1t2 . In fact there is a short exact sequence with a
split epimorphism

f1g // Z // D1
� // Z2

// f1g :

Algebraic & Geometric Topology, Volume 11 (2011)
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More generally, if G is a group over D1 , with an epimorphism pW G!D1 , then:

(A) G DG1 �H G2 is a free product with amalgamation of two groups

G1 D ker.p1W G! Z2/ ; G2 D ker.p2W G! Z2/�G

amalgamated over their common subgroup H D ker.p/DG1\G2 of index 2

in both G1 and G2 .

(B) G has a subgroup xG D ker.� ı pW G ! Z2/ of index 2 which is an HNN
extension xG DH Ì˛ Z where ˛W H !H is conjugation by an element t 2 xG

with p.t/D t1t2 2D1 .

The K–theory of type (A) For any ring S and S –bimodules B1;B2 , we write
the S –bimodule B1˝S B2 as B1B2 , and we suppress left-tensor products of maps
with the identities idB1

or idB2
. The exact category NIL.S IB1;B2/ has objects

being quadruples .P1;P2; �1; �2/ consisting of finitely generated (Dfinitely generated)
projective S –modules P1;P2 and S –module morphisms

�1W P1 �!B1P2 ; �2W P2 �!B2P1

such that �2�1W P1!B1B2P1 is nilpotent in the sense that

.�2 ı �1/
k
D 0 W P1 �! .B1B2/.B1B2/ � � � .B1B2/P1

for some k > 0. The morphisms are pairs .f1W P1 ! P 0
1
; f2W P2 ! P 0

2
/ such

that f2 ı �1 D �
0
1
ı f1 and f1 ı �2 D �

0
2
ı f2 . Recall the Waldhausen Nil–groups

Nil�.S IB1;B2/ WDK�.NIL.S IB1;B2//, and the reduced Nil–groups eNil� satisfy

Nil�.S IB1;B2/DK�.S/˚K�.S/˚eNil�.S IB1;B2/ :

An object .P1;P2; �1; �2/ in NIL.S IB1;B2/ is semisplit if the S –module isomor-
phism �2W P2!B2P1 is an isomorphism.

Let R be a ring which is an amalgamated free product

RDR1 �S R2

with Rk D S ˚Bk for S –bimodules Bk which are free S –modules, k D 1; 2. The
algebraic K–groups were shown by Waldhausen [24; 25; 26] to fit into a long exact
sequence

� � � !Kn.S/˚fNiln.S IB1;B2/!Kn.R1/˚Kn.R2/!Kn.R/

!Kn�1.S/˚fNiln�1.S IB1;B2/! � � �

with Kn.R/!eNiln�1.S IB1;B2/ a split surjection.
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For any ring R a based finitely generated free R–module chain complex C has a
torsion �.C /2K1.R/. The torsion of a chain equivalence f W C !D of based finitely
generated free R–module chain complexes is the torsion of the algebraic mapping cone

�.f /D �.C.f // 2K1.R/ :

By definition, the chain equivalence is simple if �.f /D 0 2K1.R/.

For RDR1 �S R2 the algebraic analogue of codimension 1 manifold transversality
shows that every based finitely generated free R–module chain complex C admits a
Mayer–Vietoris presentation

CW 0!R˝S D! .R˝R1
C1/˚ .R˝R2

C2/! C ! 0

with Ck a based finitely generated free Rk –module chain complex, D a based finitely
generated free S –module chain complex with Rk –module chain maps Rk˝S D!Ck ,
and �.C/ D 0 2 K1.R/. This was first proved in [24; 25]; see also Ranicki [18,
Remark 8.7; 19]. A contractible C splits if it is simple chain equivalent to a chain
complex (also denoted by C ) with a Mayer–Vietoris presentation C with D contractible,
in which case C1;C2 are also contractible and the torsion �.C / 2K1.R/ is such that

�.C /D�.R˝R1
C1/C�.R˝R2

C2/��.R˝S D/2 im.K1.R1/˚K1.R2/!K1.R// :

By the algebraic obstruction theory of [24] C splits if and only if

�.C /2 im.K1.R1/˚K1.R2/!K1.R//Dker.K1.R/!K0.S/˚eNil0.S IB1;B2// :

For any ring R the group ring RŒG� of an amalgamated free product of groups G D

G1 �H G2 is an amalgamated free product of rings

RŒG�DRŒG1��RŒH �RŒG2� :

If H !G1 , H !G2 are injective then the RŒH �–bimodules RŒG1�H �, RŒG2�H �

are free, and Waldhausen [26] decomposed the algebraic K–theory of RŒG� as

K�.RŒG�/DK�.RŒH �!RŒG1��RŒG2�/˚eNil��1.RŒF �IRŒG1�H �;RŒG2�H �/ :

In particular, there is defined a split monomorphism

�AW
eNil��1.RŒH �IRŒG1�H �;RŒG2�H �/ �!K�.RŒG�/ ;

which for � D 1 is given by

�AW
fNil0.RŒH �IRŒG1�H �;RŒG2�H �/ �!K1.RŒG�/ ;

ŒP1;P2; �1; �2� 7�!

�
RŒG�˝RŒH � .P1˚P2/;

�
1 �2

�1 1

��
:
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The K–theory of type (B) Given a ring R and an R–bimodule B, consider the
tensor algebra TR.B/ of B over R:

TR.B/ WDR˚B˚BB˚ � � � :

The Nil–groups Nil�.RIB/ are defined to be the algebraic K–groups K�.NIL.RIB//
of the exact category NIL.RIB/ with objects pairs .P; �/ with P a finitely generated
projective R–module and �W P!BP an R–module morphism, nilpotent in the sense
that for some k > 0, we have

�k
D 0W P �!BP �! � � � �!BkP :

The reduced Nil–groups eNil� are such that

Nil�.RIB/DK�.R/˚eNil�.RIB/ :

Waldhausen [26] proved that if B is finitely generated projective as a left R–module
and free as a right R–module, then

K�.TR.B//DK�.R/˚eNil��1.RIB/ :

There is a split monomorphism

�BW
eNil��1.RIB/ �!K�.TR.B//

which for � D 1 is given by

�BW
eNil0.RIB/ �!K1.TR.B// ; ŒP; �� 7�! ŒTR.B/P; 1� �� :

In particular, for BDR, we have

Nil�.RIR/D Nil�.R/ ; fNil�.RIR/D fNil�.R/ ;

TR.B/DRŒt � ; K�.RŒt �/DK�.R/˚fNil��1.R/ :

Relating the K–theory of types (A) and (B) Recall that a small category I is fil-
tered if:

� For any pair of objects ˛; ˛0 in I , there exist an object ˇ and morphisms ˛! ˇ

and ˛0! ˇ in I .

� For any pair of morphisms u; vW ˛ ! ˛0 in I , there exists an object ˇ and
morphism wW ˛0! ˇ such that w ıuD w ı v .

Note that any directed poset I is a filtered category. A filtered colimit is a colimit over
a filtered category.

Algebraic & Geometric Topology, Volume 11 (2011)
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Theorem 0.4 (The Nil-Nil Theorem) Let R be a ring. Let B1;B2 be R–bimodules.
Suppose that B2 D colim˛2I B˛

2
is a filtered colimit limit of R–bimodules such that

each B˛
2

is a finitely generated projective left R–module. Then, for all n 2Z, the Nil–
groups of the triple .RIB1;B2/ are related to the Nil–groups of the pair .RIB1B2/

by isomorphisms

Niln.RIB1;B2/Š Niln.RIB1B2/˚Kn.R/fNiln.RIB1;B2/Š fNiln.RIB1B2/ :

In particular, for nD 0 and B2 a finitely generated projective left R–module, there are
defined inverse isomorphisms

i�W Nil0.RIB1B2/˚K0.R/
Š
�! Nil0.RIB1;B2/ ;

.ŒP1; �12W P1!B1B2P1�; ŒP2�/ 7�!

�
P1;B2P1˚P2;

�
�12

0

�
; .1 0/

�
j�W Nil0.RIB1;B2/

Š
�! Nil0.RIB1B2/˚K0.R/ ;

ŒP1;P2; �1W P1!B1P2; �2W P2!B2P1� 7�! .ŒP1; �2 ı �1�; ŒP2�� ŒB2P1�/ :

The reduced versions are the inverse isomorphisms

i�W fNil0.RIB1B2/
Š
�! fNil0.RIB1;B2/ ; ŒP1; �12� 7�! ŒP1;B2P1; �12; 1�

j�W fNil0.RIB1;B2/
Š
�! fNil0.RIB1B2/ ; ŒP1;P2; �1; �2� 7�! ŒP1; �2 ı �1�

with i�.P1; �12/D .P1;B2P1; �12; 1/ semisplit.

Proof This follows immediately from Theorem 1.1 and Theorem 2.7.

Remark 0.5 Theorem 0.4 was already known to Pierre Vogel in 1990 [22].

1 Higher Nil–groups

In this section, we shall prove Theorem 0.4 for nonnegative degrees.

Quillen [17] defined the K–theory space KE WD �BQ.E/ of an exact category E.
The space BQ.E/ is the geometric realization of the simplicial set N�Q.E/, which is
the nerve of a certain category Q.E/ associated to E. The algebraic K–groups of E

are defined for � 2 Z as
K�.E/ WD ��.KE/

Algebraic & Geometric Topology, Volume 11 (2011)
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using a nonconnective delooping for �6 �1. In particular, the algebraic K–groups of
a ring R are the algebraic K–groups

K�.R/ WDK�.PROJ.R//

of the exact category PROJ.R/ of finitely generated projective R–modules. The
NIL–categories defined in the Introduction all have the structure of exact categories.

Theorem 1.1 Let B1 and B2 be bimodules over a ring R. Let j be the exact functor

j W NIL.RIB1;B2/ �! NIL.RIB1B2/ ; .P1;P2; �1; �2/ 7�! .P1; �2 ı �1/ :

(1) If B2 is finitely generated projective as a left R–module, then there is an exact
functor

i W NIL.RIB1B2/ �! NIL.RIB1;B2/ ; .P; �/ 7�! .P;B2P; �; 1/

such that i.P; �/D .P;B2P; �; 1/ is semisplit, j ı i D 1, and i� and j� induce
inverse isomorphisms on the reduced Nil-groups

eNil�.RIB1B2/ŠeNil�.RIB1;B2/ :

(2) If B2 D colim˛2I B˛
2

is a filtered colimit of bimodules each of which is finitely
generated projective as a left R–module, then there is a unique exact functor i

so that the following diagram commutes for all ˛ 2 I :

NIL.RIB1B2/ NIL.RIB1;B2/

NIL.RIB1B˛
2/ NIL.RIB1;B

˛
2/ :

-i

-i˛

6 6

Then j ı i D 1 and i� and j� induce inverse isomorphisms on the reduced
Nil-groups

eNil�.RIB1B2/ŠeNil�.RIB1;B2/ :

Proof (1) Note that there are split injections of exact categories

PROJ.R/�PROJ.R/! NIL.RIB1;B2/ ; .P1;P2/ 7�! .P1;P2; 0; 0/

PROJ.R/! NIL.RIB1B2/ ; .P / 7�! .P; 0/

which underlie the definition of the reduced Nil groups. Since both i and j take the
image of the split injection to the image of the other split injection, they induce maps
i� and j� on the reduced Nil groups. Since j ı i D 1, it follows that j� ı i� D 1.
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In preparation for the proof that i� ı j� D 1, consider the following objects of
NIL.RIB1;B2/:

x WD .P1;P2; �1; �2/

x0 WD

�
P1;B2P1˚P2;

�
0

�1

�
;
�
1 �2

��
x00 WD .P1;B2P1; �2 ı �1; 1/

a WD .0;P2; 0; 0/

a0 WD .0;B2P1; 0; 0/

with x00 semisplit. Note that .i ı j /.x/D x00 . Define morphisms

f WD

�
1;

�
0

1

��
W x �! x0

f 0 WD

�
1;
�
1 �2

��
W x0 �! x00

g WD

�
0;

�
��2

1

��
W a �! x0

g0 WD

�
0;
�
1 0

��
W x0 �! a0

h WD .0; �2/W a �! a0 :

There are exact sequences

0 ����! x˚ a

�
f g
0 1

�
����! x0˚ a

.g0 h /
����! a0 ����! 0

0 ����! a
g

����! x0
f 0

����! x00 ����! 0 :

Define exact functors F 0;F 00;G;G0W NIL.RIB1;B2/! NIL.RIB1;B2/ by

F 0.x/D x0 ; F 00.x/D x00 ; G.x/D a ; G0.x/D a0 :

Thus we have two exact sequences of exact functors

0 ����! 1˚G ����! F 0˚G ����! G0 ����! 0

0 ����! G ����! F 0 ����! F 00 ����! 0 :

Recall j ı i D 1, and note i ı j D F 00 . By Quillen’s Additivity Theorem [17, page 98,
Corollary 1], we obtain homotopies KF 0 ' 1CKG0 and KF 0 'KGCKF 00 . Then

Ki ıKj DKF 00 ' 1C .KG0�KG/ ;
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where the subtraction uses the loop space structure. Observe that both G and G0 send
NIL.RIB1;B2/ to the image of PROJ.R/�PROJ.R/. Thus i� ı j� D 1 as desired.

(2) It is straightforward to show that tensor product commutes with colimits over a
category. Moreover, for any object x D .P1;P2; �1W P1!B1P2; �2W P2!B2P1/,
since P2 is finitely generated, there exists ˛ 2 I such that �2 factors through a map
P2!B˛

2
P1 , and similarly for short exact sequences of nil-objects. We thus obtain

induced isomorphisms of exact categories:

colim
˛2I

NIL.RIB1B˛
2/ �! NIL.RIB1B2/

colim
˛2I

NIL.RIB1;B
˛
2/ �! NIL.RIB1;B2/ :

This justifies the existence and uniqueness of the functor i .

By Quillen’s colimit observation [17, Section 2, Equation (9), page 20], we obtain
induced weak homotopy equivalences of K–theory spaces:

colim
˛2I

K NIL.RIB1B˛
2/ �!K NIL.RIB1B2/

colim
˛2I

K NIL.RIB1;B
˛
2/ �!K NIL.RIB1;B2/ :

The remaining assertions of part (2) then follow from part (1).

Remark 1.2 The proof of Theorem 1.1 is best understood in terms of finite chain
complexes x D .P1;P2; �1; �2/ in the category NIL.RIB1;B2/, assuming that B2

is a finitely generated projective left R–module. Any such x represents a class

Œx�D

1X
rD0

.�1/r Œ.P1/r ; .P2/r ; �1; �2� 2 Nil0.RIB1;B2/ :

The key observation is that x determines a finite chain complex x0 D .P 0
1
;P 0

2
; �0

1
; �0

2
/

in NIL.RIB1;B2/ which is semisplit in the sense that �0
2
W P 0

2
! B2P 0

1
is a chain

equivalence, and such that

(3) Œx�D Œx0� 2eNil0.RIB1;B2/ :

Specifically, let P 0
1
D P1 , P 0

2
DM.�2/, the algebraic mapping cylinder of the chain

map �2W P2!B2P1 , and let

�01 D

0@ 0

0

�1

1A W P 01 D P1 �!B1P 02 DM.1B1
˝ �2/

�02 D
�
1 0 �2

�
W P 02 DM.�2/ �!B2P1 ;
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so that P 0
2
=P2 D C.�2/ is the algebraic mapping cone of �2 . Moreover, the proof

of (3) is sufficiently functorial to establish not only that the following maps of the
reduced nilpotent class groups are inverse isomorphisms:

i W fNil0.RIB1B2/ �! fNil0.RIB1;B2/ ; .P; �/ 7�! .P;B2P; �; 1/

j W fNil0.RIB1;B2/ �! fNil0.RIB1B2/ ; Œx� 7�! Œx0� ;

but also that there exist isomorphisms of eNiln for all higher dimensions n > 0, as
shown above. In order to prove Equation (3), note that x fits into the sequence

(4) 0 // x
.1;u/ // x0

.0;v/ // y // 0

y D .0;C.�2/; 0; 0/with

uD

0@0

0

1

1A W P2! P 02 DM.�2/

v D

�
1 0 0

0 1 0

�
W P 02 DM.�2/! C.�2/

Œy�D

1X
rD0

.�/r Œ0;.B2P1/r�1˚ .P2/r ; 0; 0�D 0 2 fNil0.RIB1;B2/ :and

The projection M.�2/!B2P1 defines a chain equivalence

x0 ' .P1;B2P1; �2 ı �1; 1/D ij .x/

Œx�D Œx0�� Œy�D ŒP1;B2P1; �2 ı �1; 1�D ij Œx� 2 fNil0.RIB1;B2/ :so that

Now suppose that x is a 0–dimensional chain complex in NIL.RIB1;B2/, that is, an
object as in the proof of Theorem 1.1. Let x0;x00; a; a0; f; f 0;g;g0; h be as defined
there. The exact sequence of (4) can be written as the short exact sequence of chain
complexes

a

g

��

a

�h
��

0 // x
f // x0

g0 // a0 // 0 :

The first exact sequence of the proof of Theorem 1.1 is now immediate:

0 // x˚ a

�
f g
0 1

�
// x0˚ a

.g0 h / // a0 // 0 :

The second exact sequence is self-evident:

0 // a
g // x0

f 0 // x00 // 0 :

Algebraic & Geometric Topology, Volume 11 (2011)



Algebraic K–theory over the infinite dihedral group: an algebraic approach 2403

2 Lower Nil–groups

2.1 Cone and suspension rings

Let us recall some additional structures on the tensor product of modules.

Originating from ideas of Karoubi and Villamayor [11], the following concept was
studied independently by S M Gersten [8] and J B Wagoner [23] in the construction of
the nonconnective K–theory spectrum of a ring.

Definition 2.1 (Gersten, Wagoner) The cone ring ƒZ is the subring of .!�!/–
matrices over Z such that each row and column have only a finite number of nonzero
entries. The suspension ring †Z is the quotient ring of ƒZ by the two-sided ideal of
matrices with only a finite number of nonzero entries. For each n 2N , define the rings

†nZ WD†Z˝Z � � � ˝Z†Z„ ƒ‚ …
n copies

with †0ZD Z :

For a ring R and for n 2N , define the ring †nR WD†nZ˝Z R.

Roughly speaking, the suspension should be regarded as the ring of “bounded modulo
compact operators.” Gersten and Wagoner showed that Ki.†

nR/ is naturally isomor-
phic to Ki�n.R/ for all i; n 2Z, in the sense of Quillen when the subscript is positive,
in the sense of Grothendieck when the subscript is zero, and in the sense of Bass when
the subscript is negative.

For an R–bimodule B, define the †nR–bimodule †nB WD†nZ˝Z B.

Lemma 2.2 Let R be a ring. Let B1;B2 be R–bimodules. Then, for each n 2 N ,
there is a natural isomorphism of †nR–bimodules:

tnW †
n.B1B2/�!†nB1˝†nR†

nB2 ; s˝.b1˝b2/ 7�! .s˝b1/˝.1†nZ˝b2/ :

Proof By transposition of the middle two factors, note that

†nB1˝†nR †
nB2 D .†

nZ˝Z B1/˝.†nZ˝ZR/ .†
nZ˝Z B2/

is isomorphic to

.†nZ˝†nZ†
nZ/˝Z .B1B2/D†

nZ˝Z .B1B2/D†
n.B1B2/ :
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2.2 Definition of lower Nil–groups

Definition 2.3 Let R be a ring. Let B be an R–bimodule. For all n 2N , define

Nil�n.RIB/ WD Nil0.†nRI†nB/fNil�n.RIB/ WD fNil0.†nRI†nB/ :

Definition 2.4 Let R be a ring. Let B1;B2 be R–bimodules. For all n 2N , define

Nil�n.RIB1;B2/ WD Nil0.†nRI†nB1; †
nB2/fNil�n.RIB1;B2/ WD fNil0.†nRI†nB1; †
nB2/ :

The next two theorems follow from the definitions and [26, Theorems 1,3].

Theorem 2.5 (Waldhausen) Let R be a ring and B be an R–bimodule. Consider
the tensor ring

TR.B/ WDR˚B˚B2
˚B3

˚ � � � :

Suppose B is finitely generated projective as a left R–module and free as a right
R–module. Then, for all n 2N , there is a split monomorphism

�BW
eNil�n.RIB/ �!K1�n.TR.B//

given for nD 0 by the map

�BW Nil0.RIB/ �!K1.TR.B// ; ŒP; �� 7�! Œ TR.B/P; 1� y� � ;

where y� is defined using � and multiplication in TR.B/.

Furthermore, there is a natural decomposition

K1�n.TR.B//DK1�n.R/˚eNil�n.RIB/ :

For example, the last assertion of the theorem follows from the equations

K1�n.TR.B//DK1.†
nTR.B//

DK1.T†nR.†
nB//

DK1.†
nR/˚fNil0.†nRI†nB/

DK1�n.R/˚fNil�n.RIB/ :
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Theorem 2.6 (Waldhausen) Let R;A1;A2 be rings. Let R!Ai be ring monomor-
phisms such that Ai DR˚Bi for R–bimodules Bi . Consider the pushout of rings

ADA1 �R A2

DR˚ .B1˚B2/˚ .B1B2˚B2B1/˚ .B1B2B1˚B2B1B2/˚ � � � :

Suppose each Bi is free as a right R–module. Then, for all n 2 N , there is a split
monomorphism

�AW
eNil�n.RIB1;B2/ �!K1�n.A/ ;

given for nD 0 by the map

Nil0.RIB1;B2/ �!K1.A/ ;

ŒP1;P2; �1; �2� 7�!

�
.AP1/˚ .AP2/;

�
1 y�2

y�1 1

��
;

where y�i is defined using �i and multiplication in Ai for i D 1; 2.

Furthermore, there is a natural Mayer–Vietoris type exact sequence:

� � �
@

����!K1�n.R/ ����!K1�n.A1/˚K1�n.A2/ ����!

K1�n.A/fNil�n.RIB1;B2/

@
����!K�n.R/ ����! � � �

2.3 The isomorphism for lower Nil–groups

Theorem 2.7 Let R be a ring. Let B1;B2 be R–bimodules. Suppose that B2 D

colim˛2I B˛
2

is a filtered colimit of R–bimodules B˛
2

, each of which is a finitely gen-
erated projective left R–module. Then, for all n 2N , there is an induced isomorphism

Nil�n.RIB1B2/˚K�n.R/ �! Nil�n.RIB1;B2/ :

Proof Let n 2N . By Lemma 2.2 and Theorem 1.1, there are induced isomorphisms

Nil�n.RIB1B2/˚K�n.R/D Nil0.†nRI†n.B1B2//˚K0†
n.R/

�! Nil0.†nRI†nB1˝†nR †
nB2/˚K0†

n.R/

�! Nil0.†nRI†nB1; †
nB2/D Nil�n.RIB1;B2/ :
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3 Applications

We indicate some applications of our main theorem 0.4. In Section 3.1 we prove
Theorem 0.1(ii), which describes the restrictions of the maps

�!W K�.RŒ xG�/!K�.RŒG�/ ; � !
W K�.RŒG�/!K�.RŒ xG�/

to the eNil –terms, with � W xG!G the inclusion of the canonical index 2 subgroup xG
for any group G over D1 . In Section 3.2 we give the first known example of a nonzero
Nil–group occurring in the K–theory of an integral group ring of an amalgamated free
product. In Section 3.3 we sharpen the Farrell–Jones Conjecture in K–theory, replacing
the family of virtually cyclic groups by the smaller family of finite-by-cyclic groups.
In Section 3.4 we compute the K�.RŒ��/ for the modular group � D PSL2.Z/.

3.1 Algebraic K –theory over D1

The overall goal here is to show that the abstract isomorphisms i� and j� coincide
with the restrictions of the induction and transfer maps �! and � ! in the group ring
setting.

3.1.1 Twisting We start by recalling the algebraic K–theory of twisted polynomial
rings.

Statement 3.1 Consider any (unital, associative) ring R and any ring automorphism
˛W R!R. Let t be an indeterminate over R such that

r t D t˛.r/ .r 2R/ :

For any R–module P , let tP WD ftx j x 2 Pg be the set with left R–module structure

txC ty D t.xCy/ ; r.tx/D t.˛.r/x/ 2 tP :

Further endow the left R–module tR with the R–bimodule structure

R� tR�R �! tR ; .q; t r; s/ 7�! t˛.q/rs :

The Nil–category of R with respect to ˛ is the exact category defined by

NIL.R; ˛/ WD NIL.RI tR/ :

The objects .P; �/ consist of any finitely generated projective R–module P and any
nilpotent morphism �W P ! tP D tRP . The Nil–groups are written

Nil�.R; ˛/ WD Nil�.RI tR/ ; fNil�.R; ˛/ WD fNil�.RI tR/ ;

so that Nil�.R; ˛/DK�.R/˚fNil�.R; ˛/ :
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Statement 3.2 The tensor algebra on tR is the ˛–twisted polynomial extension of R

TR.tR/DR˛ Œt �D

1X
kD0

tkR :

Given an R–module P there is induced an R˛ Œt �–module

R˛ Œt �˝R P D P˛ Œt �

whose elements are finite linear combinations
P1

jD0 tj xj (xj 2P ). Given R–modules
P;Q and an R–module morphism �W P ! tQ, define its extension as the R˛ Œt �–
module morphism

y�D t�W P˛ Œt � �!Q˛ Œt � ;

1X
jD0

tj xj 7�!

1X
jD0

tj�.xj / :

Statement 3.3 Bass [2], Farrell and Hsiang [6] and Quillen [9] give decompositions

Kn.R˛ Œt �/DKn.R/˚fNiln�1.R; ˛/

Kn.R˛�1 Œt�1�/DKn.R/˚fNiln�1.R; ˛
�1/

Kn.R˛ Œt; t
�1�/DKn.1�˛W R!R/˚fNiln�1.R; ˛/˚fNiln�1.R; ˛

�1/ :

In particular for nD 1, by Theorem 2.5, there are defined split monomorphisms

�C
B
W fNil0.R; ˛/ �!K1.R˛ Œt �/ ; ŒP; �� 7�! ŒP˛ Œt �; 1� t��

��B W
fNil0.R; ˛�1/ �!K1.R˛�1 Œt�1�/ ; ŒP; �� 7�!

�
P˛�1 Œt�1�; 1� t�1�

�
�B D

�
 C�C

B
 ���

B

�
W fNil0.R; ˛/˚fNil0.R; ˛�1/ �!K1.R˛ Œt; t

�1�/ ;

.ŒP1; �1�; ŒP2; �2�/ 7�!

�
.P1˚P2/˛ Œt; t

�1�;

�
1� t�1 0

0 1� t�1�2

��
:

These extend to all integers n 6 1 by the suspension isomorphisms of Section 2.

3.1.2 Scaling Next, consider the effect an inner automorphism on ˛ .

Statement 3.4 Suppose ˛; ˛0W R!R are automorphisms satisfying

˛0.r/D u˛.r/u�1
2R .r 2R/

for some unit u 2R, and that t 0 is an indeterminate over R satisfying

r t 0 D t 0˛0.r/ .r 2R/ :
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Denote the canonical inclusions

 CW R˛ Œt � �!R˛ Œt; t
�1� ;  �W R˛�1 Œt�1� �!R˛ Œt; t

�1� ;

 0CW R˛0 Œt
0� �!R˛0 Œt

0; t 0�1� ;  0�W R˛0�1 Œt 0�1� �!R˛0 Œt
0; t 0�1� :

Statement 3.5 The various polynomial rings are related by scaling isomorphisms

ˇCu W R˛ Œt � �!R˛0 Œt
0� ; t 7�! t 0u

ˇ�u W R˛�1 Œt�1� �!R˛0�1 Œt 0�1� ; t�1
7�! u�1t 0�1

ˇuW R˛ Œt; t
�1� �!R˛0 Œt

0; t 0�1� ; t 7�! t 0u

satisfying the equations

ˇu ı 
C
D  0C ıˇCu W R˛ Œt � �!R˛0 Œt

0; t 0�1�

ˇu ı 
�
D  0� ıˇ�u W R˛�1 Œt�1� �!R˛0 Œt

0; t 0�1� :

Statement 3.6 There are corresponding scaling isomorphisms of exact categories

ˇCu W NIL.R; ˛/ �! NIL.R; ˛0/ ; .P; �/ 7�! .P; t 0ut�1�W P ! t 0P /

ˇ�u W NIL.R; ˛�1/ �! NIL.R; ˛0�1/ ; .P; �/ 7�! .P; t 0�1ut�W P 0! t 0�1P 0/ ;

where we mean

.t 0ut�1�/.x/ WD t 0.uy/ with �.x/D ty

.t 0�1ut�/.x/ WD t 0�1.uy/ with �.x/D t�1y :

Statement 3.7 For all n61, the various scaling isomorphisms are related by equations

.ˇCu /� ı �
C

B
D � 0C

B
ıˇCu W

fNiln�1.R; ˛/ �!Kn.R˛0 Œt
0�/

.ˇ�u /� ı �
�
B D �

0�
B ıˇ

�
u W
fNiln�1.R; ˛

�1/ �!Kn.R˛0�1 Œt 0�1�/

.ˇu/� ı �B D �
0
B ı

�
ˇCu 0

0 ˇ�u

�
W fNiln�1.R; ˛/˚fNiln�1.R; ˛

�1/

�!Kn.R˛0 Œt
0; t 0�1�/ :

3.1.3 Group rings We now adapt these isomorphisms to the case of group rings
RŒG� of groups G over the infinite dihedral group D1 . In order to prove Lemma 3.20
and Proposition 3.23, the overall idea is to transform information about the product t2t1
arising from the transposition B2˝B1 into information about the product t�1

2
t�1
1

arising in the second eNil –summand of the twisted Bass decomposition. We continue
to discuss the ingredients in a sequence of statements.
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Statement 3.8 Let F be a group, and let ˛W F!F be an automorphism. Recall that
the injective HNN extension F Ì˛ Z is the set F �Z with group multiplication

.x; n/.y;m/ WD .˛m.x/y;mC n/ 2 F Ì˛ Z :

Then, for any ring R, writing t D .1F ; 1/ and .x; n/D tnx 2 F Ì˛ Z, we have

RŒF Ì˛ Z�DRŒF �˛ Œt; t
�1� :

Statement 3.9 Consider any group G DG1 �F G2 over D1 , where

F DG1\G2 �
xG D F Ì˛ ZD F Ì˛0 Z � G DG1 �F G2 :

Fix elements t1 2G1�F , t2 2G2�F , and define elements

t WD t1t2 2 xG ; t 0 WD t2t1 2 xG ; u WD .t 0/�1t�1
2 F :

Define the automorphisms

˛1W F �! F ; x 7�! .t1/
�1xt1

˛2W F �! F ; x 7�! .t2/
�1xt2

˛ WD ˛2 ı˛1W F �! F ; x 7�! t�1xt

˛0 WD ˛1 ı˛2W F �! F ; x 7�! t 0�1xt 0

such that

xt D t˛.x/ ; xt 0 D t 0˛0.x/ ; ˛0.x/D u˛�1.x/u�1 .x 2 F / :

In particular, note ˛0 and ˛�1 (not ˛ ) are related by inner automorphism by u.

Statement 3.10 Denote the canonical inclusions

 CW R˛ Œt � �!R˛ Œt; t
�1� ;  �W R˛�1 Œt�1� �!R˛ Œt; t

�1�

 0CW R˛0 Œt
0� �!R˛0 Œt

0; t 0�1� ;  0�W R˛0�1 Œt 0�1� �!R˛0 Œt
0; t 0�1� :

The inclusion RŒF �!RŒG� extends to ring monomorphisms

� W RŒF �˛ Œt; t
�1� �!RŒG� ; � 0W RŒF �˛0 Œt

0; t 0�1� �!RŒG�

such that
im.�/D im.� 0/DRŒ xG��RŒG�DRŒG1��RŒF �RŒG2� :

Furthermore, the inclusion RŒF �!RŒG� extends to ring monomorphisms

� D � ı CW RŒF �˛ Œt � �!RŒG� ; �0 D � 0 ı 0CW RŒF �˛0 Œt
0� �!RŒG� :
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Statement 3.11 By Statement 3.5, there are defined scaling isomorphisms of rings

ˇCu W RŒF �˛�1 Œt�1� �!RŒF �˛0 Œt
0� ; t�1

7�! t 0u

ˇ�u W RŒF �˛ Œt � �!RŒF �˛0�1 Œt 0�1� ; t 7�! u�1t 0�1

ˇuW RŒF �˛ Œt; t
�1� �!RŒF �˛0 Œt

0; t 0�1� ; t 7�! u�1t 0�1

which satisfy the equations

ˇu ı 
�
D  0C ıˇCu W RŒF �˛�1 Œt�1� �!RŒF �˛0 Œt

0; t 0�1�

ˇu ı 
C
D  0� ıˇ�u W RŒF �˛ Œt � �!RŒF �˛0 Œt

0; t 0�1�

� D � 0 ıˇuW RŒF �˛ Œt; t
�1� �!RŒG� :

Statement 3.12 By Statement 3.6, there are scaling isomorphisms of exact categories

ˇCu W NIL.RŒF �; ˛�1/ �! NIL.RŒF �; ˛0/ .P; �/ 7�! .P; t 0ut�/ ;

ˇ�u W NIL.RŒF �; ˛/ �! NIL.RŒF �; ˛0�1/ ; .P; �/ 7�! .P; t 0�1ut�1�/ :

Statement 3.13 By Statement 3.7, for all n 6 1, the various scaling isomorphisms
are related by

.ˇCu /� ı �
�
B D �

0C

B
ıˇCu W

fNil��1.RŒF �; ˛
�1/ �!K�.RŒF �˛0 Œt

0�/

.ˇ�u /� ı �
C

B
D � 0�B ıˇ

�
u W
fNil��1.RŒF �; ˛/ �!K�.RŒF �˛0�1 Œt 0�1�/

.ˇu/� ı �B D �
0
B ı

�
0 ˇCu
ˇ�u 0

�
W fNil��1.RŒF �; ˛/˚fNil��1.RŒF �; ˛

�1/

�!K�.RŒF �˛0 Œt
0; t 0�1�/ :

3.1.4 Transposition Next, we study the effect of transposition of the bimodules B1

and B2 in order to relate ˛ and ˛0 . In particular, there is no mention of ˛�1 in this
section.

Statement 3.14 The RŒF �–bimodules

B1 DRŒG1�F �D t1RŒF � ; B2 DRŒG2�F �D t2RŒF �

are free left and right RŒF �–modules of rank one. The RŒF �–bimodule isomorphisms

B1˝RŒF � B2 �! tRŒF � ; t1x1˝ t2x2 7�! t˛2.x1/x2

B2˝RŒF � B1 �! t 0RŒF � ; t2x2˝ t1x1 7�! t 0˛1.x2/x1

shall be used to make the identifications

B1˝RŒF � B2 D tRŒF � ; NIL.RŒF �IB1˝RŒF � B2/D NIL.RŒF �; ˛/ ;

B2˝RŒF � B1 D t 0RŒF � ; NIL.RŒF �IB2˝RŒF � B1/D NIL.RŒF �; ˛0/ :
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Statement 3.15 Theorem 0.4 gives inverse isomorphisms

i�W fNil�.RŒF �; ˛/ �! fNil�.RŒF �IB1;B2/

j�W fNil�.RŒF �IB1;B2/ �! fNil�.RŒF �; ˛/

which for � D 0 are given by

i�W fNil0.RŒF �; ˛/ �! fNil0.RŒF �IB1;B2/ ; ŒP; �� 7�! ŒP; t2P; �; 1�

j�W fNil0.RŒF �IB1;B2/ �! fNil0.RŒF �; ˛/ ; ŒP1;P2; �1; �2� 7�! ŒP1; �2 ı �1� :

Statement 3.16 Similarly, there are defined inverse isomorphisms

i 0�W
fNil�.RŒF �; ˛0/ �! fNil�.RŒF �IB2;B1/

j 0�W
fNil�.RŒF �IB2;B1/ �! fNil�.RŒF �; ˛0/

which for � D 0 are given by

i 0�W
fNil0.RŒF �; ˛0/ �! fNil0.RŒF �IB2;B1/ ; ŒP 0; �0� 7�! ŒP 0; t1P 0; �0; 1�

j 0�W
fNil0.RŒF �IB2;B1/ �! fNil0.RŒF �; ˛0/ ; ŒP2;P1; �2; �1� 7�! ŒP2; �1 ı �2� :

Statement 3.17 The transposition isomorphism of exact categories

�AW NIL.RŒF �IB1;B2/ �! NIL.RŒF �IB2;B1/ ;

.P1;P2; �1; �2/ 7�! .P2;P1; �2; �1/

induces isomorphisms

�AW Nil�.RŒF �IB1;B2/ Š Nil�.RŒF �IB2;B1/

�AW fNil�.RŒF �IB1;B2/Š fNil�.RŒF �IB2;B1/ :

Note, by Theorem 0.4, the composites

�B WD j 0� ı �A ı i�W fNil�.RŒF �; ˛/ �! fNil�.RŒF �; ˛0/

� 0B WD j� ı �
�1
A ı i 0�W

fNil�.RŒF �; ˛0/ �! fNil�.RŒF �; ˛/

are inverse isomorphisms, which for � D 0 are given by

�BW fNil0.RŒF �; ˛/ �! fNil0.RŒF �; ˛0/ ; ŒP; �� 7�! Œt2P; t2��

� 0BW
fNil0.RŒF �; ˛0/ �! fNil0.RŒF �; ˛/ ; ŒP 0; �0� 7�! Œt1P 0; t1�

0� :

Furthermore, note that the various transpositions are related by the equation

�A ı i� D i 0� ı �BW
eNil�.RŒF �; ˛/ �!eNil�.RŒF �IB2;B1/ :
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Statement 3.18 Recall from Theorem 2.6 that there is a split monomorphism

�AW
eNiln�1.RŒF �IB1;B2/ �!Kn.RŒG�/

such that the nD 1 case is given by

�AW
fNil0.RŒF �IB1;B2/ �!K1.RŒG�/ ;

ŒP1;P2; �1; �2� 7�!

�
P1ŒG�˚P2ŒG�;

�
1 t2�2

t1�1 1

��
:

Elementary row and column operations produce an equivalent representative:�
1 �t2�2

0 1

��
1 t2�2

t1�1 1

��
1 0

��1 1

�
D

�
1� t�2�1 0

0 1

�
:

Thus the nD 1 case satisfies the equations (similarly for the second equality)

�AŒP1;P2; �1; �2�D ŒP1ŒG�; 1� t�2�1�D
�
P2ŒG�; 1� t 0�1�2

�
:

Therefore for all n 6 1, the split monomorphism � 0
A

, associated to the amalgamated
free product G DG2 �F G1 , satisfies the equation

�A D �
0
A ı �AW

eNiln�1.RŒF �IB1;B2/ �!Kn.RŒG�/ :

3.1.5 Induction We analyze the effect of induction maps on eNil –summands.

Statement 3.19 Recall from Theorem 0.4 the isomorphism

i�W fNil��1.RŒF �; ˛/D fNil��1.RŒF �IB1˝RŒF � B2/ �! fNil��1.RŒF �IB1;B2/ ;

ŒP; �� 7�! ŒP; t2P; �; 1� :

Let .P; �/ be an object in the exact category NIL.RŒF �; ˛/. By Statement 3.18, note

�Ai�ŒP; ��D �AŒP; t2P; �; 1�D ŒP ŒG�; 1� t��D �!�
C

B
ŒP; �� :

Thus, for all n 6 1, we obtain the key equality

�A ı i� D �! ı �
C

B
WeNiln�1.RŒF �; ˛/ �!Kn.RŒG�/ :
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Lemma 3.20 Let n 6 1 be an integer. The split monomorphisms �A; �
0
A
; �C

B
; � 0C

B
are

related by a commutative diagram

fNiln�1.RŒF �; ˛/
//

�
C

B //

�B Š

��

i�

Š

$$

Kn.RŒF �˛ Œt �/

�!

��

 
C

!

��fNiln�1.RŒF �IB1;B2/
((

�A

((
Š�A

��

Kn.RŒF �˛ Œt; t
�1�/

�!

ww
Š .ˇu/!

��

Kn.RŒG�/

fNiln�1.RŒF �IB2;B1/

66

� 0
A

66

Kn.RŒF �˛0 Œt
0; t 0�1�/

� 0
!

gg

fNiln�1.RŒF �; ˛
0/ //

�
0C

B //

i0�

Š

::

Kn.RŒF �˛0 Œt
0�/

�0
!

[[

 
0C

!

OO

Proof Commutativity of the various parts follow from the following implications:

� Statement 3.10 gives �! D �! ı 
C

!
and �0

!
D � 0

!
ı 0C

!
.

� Statement 3.11 gives �! D �
0
!
ı .ˇu/! .

� Statement 3.17 gives �A ı i� D i 0� ı �B .

� Statement 3.18 gives �A D �
0
A
ı �A .

� Statement 3.19 gives �A ı i� D �! ı �
C

B
and � 0

A
ı i 0� D �

0
!
ı � 0C

B
.

Observe the action of G= xG on Kn.RŒG�/ is inner, hence is trivial. However, the action
of C2 D G= xG on Kn.RŒ xG�/ is outer, induced by, say c1W

xG ! xG , y 7! t1y.t1/
�1 .

(Note that c1 may not have order two.) This C2 –action on Kn.RŒ xG�/ is nontrivial, as
follows.
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Proposition 3.21 Let n� 1 be an integer. The induced map �! is such that there is a
commutative diagram

eNiln�1.RŒF �; ˛/˚eNiln�1.RŒF �; ˛
�1/ Kn.RŒ xG�/

eNiln�1.RŒF �IB1;B2/ Kn.RŒG�/ :

?

. i� �
�1
A

i0�ˇ
C
u /

-�B

?

�!

-�A

Furthermore, there is a C2 –action on the upper left hand corner which interchanges the
two Nil–summands, and all maps are C2 –equivariant. Here, the action of C2 DG= xG

on the upper right is given by .c1/! , and the C2 –action on each lower corner is trivial.

Proof First, we check commutativity of the square on each Nil–summand:
� Lemma 3.20 gives �A ı i�D �! ı�

C

B
D �! ı 

C

!
ı�C

B
D �! ı�Bj

eNiln�1.RŒF �; ˛/.
� Statements 3.13 and 3.11 give �Aı�

�1
A
ıi 0�ıˇ

C
u D�

0
A
ı i 0� ıˇ

C
u D�

0
!
ı� 0C

B
ıˇCu D

�! ı .ˇu/
�1
!
ı 0C

!
ı .ˇCu /! ı �

�
B
D �! ı 

�
!
ı ��

B
D �! ı �Bj

fNiln�1.RŒF �; ˛
�1/.

Next, define the involution �
0 "�
"�1
� 0

�
on eNiln�1.RŒF �; ˛/˚eNiln�1.RŒF �; ˛

�1/ by

" WD .˛�1
1 /! ıˇ

C
u W NIL.RŒF �; ˛�1/ �! NIL.RŒF �; ˛/ :

Here, the automorphism ˛�1
1
W F!F was defined in Statement 3.9 by x 7! t1x.t1/

�1

and is the restriction of c1 . It remains to show �B and . i� �
�1
A�

i0�ˇ
C
u / are C2 –equivariant,

that is,

.c1/! ı 
���B D  

C�C
B
ı "(5)

��1
A� i 0�ˇ

C
u D i� ı " :(6)

Observe that the induced ring automorphism .c1/!W RŒF �˛ Œt; t
�1� ! RŒF �˛ Œt; t

�1�

restricts to a ring isomorphism

.c1/
C

!
W RŒF �˛�1 Œt�1� �!RŒF �˛ Œt � ; x 7�! ˛�1

1 .x/ ; t�1
7�! t ˛�1

1 .u/ :

Then .c1/! ı 
� D  C ı .c1/

C

!
. So (5) follows from the commutative square

.c1/
C

!
ı ��B D �

C

B
ı .˛�1

1 /!ˇ
C
u W

eNiln�1.RŒF �; ˛
�1/ �!Kn.RŒF �˛ Œt �/ ;

which can be verified by formulas for nD 1 and extends to n< 1 by variation of R.
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Observe that (6) follows from the existence of an exact natural transformation

T W ��1
A ı i 0! i ı .˛�1

1 /!W NIL.RŒF �; ˛0/ �! NIL.RŒF �I t1RŒF �; t2RŒF �/

defined on objects .P; �W P ! t 0P D t2t1P / by the rule

T.P;�/ WD .1; �/W .t1P;P; 1; �/ �! .t1P; t 0P; t1�; 1/ :

A key observation from Statement 3.9 is the isomorphism RŒF �˝c1
P ! t1P sending

x˝p 7! ˛1.x/p .

3.1.6 Transfer We analyze the effect of transfer maps on eNil –summands.

Statement 3.22 Given an RŒG�–module M , let M ! be the abelian group M with
RŒ xG�–action the restriction of the RŒG�–action. The transfer functor of exact categories

� !
W PROJ.RŒG�/ �! PROJ.RŒ xG�/ ; M 7�!M !

induces the transfer maps in algebraic K–theory

� !
W K�.RŒG�/ �!K�.RŒ xG�/ :

The exact functors of Theorem 0.4 combine to give an exact functor�
j

j 0

�
W NIL.RŒF �IB1;B2/ �! NIL.RŒF �; ˛/�NIL.RŒF �; ˛0/;

ŒP1;P2; �1; �2� 7�!
�
ŒP1; �2 ı �1�; ŒP2; �1 ı �2�

�
inducing a map between reduced Nil–groups�

j�
j 0�

�
WeNil�.RŒF �IB1;B2/ �!eNil�.RŒF �; ˛/˚eNil�.RŒF �; ˛0/ :

Proposition 3.23 Let n 6 1 be an integer. The transfer map � ! restricts to the
isomorphism j� in a commutative diagram

fNiln�1.RŒF �IB1;B2/�
j�

.ˇ
C
u /
�1j 0�

�
��

// �A // Kn.RŒG�/

� !

��fNiln�1.RŒF �; ˛/˚fNiln�1.RŒF �; ˛
�1/ //

. C�C
B
ˇu 

���
B
/
// Kn.RŒ xG�/ :
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Proof Using the suspension isomorphisms of Section 2, we may assume n D 1.
Let .P1;P2; �1; �2/ be an object in NIL.RŒF �IB1;B2/. Define an RŒG�–module
automorphism

f WD

�
1 t2�2

t1�1 1

�
W P1ŒG�˚P2ŒG� �! P1ŒG�˚P2ŒG� :

By Theorem 2.6, we have Œf �D �AŒP1;P2; �1; �2� 2K1.RŒG�/. Note the transfer is

� !.f /D

0BB@
1 t2�2 0 0

t1�1 1 0 0

0 0 1 t1�1

0 0 t2�2 1

1CCA
as an RŒ xG�–module automorphism of P1Œ xG�˚ t1P2Œ xG�˚P2Œ xG�˚ t1P1Œ xG�. Further-
more, elementary row and column operations produce a diagonal representation:0BB@

1 �t2�2 0 0

0 1 0 0

0 0 1 �t1�1

0 0 0 1

1CCA � !.f /

0BB@
1 0 0 0

�t1�1 1 0 0

0 0 1 0

0 0 �t2�2 1

1CCAD
0BB@

1� t 0�2�1 0 0 0

0 1 0 0

0 0 1� t�1�2 0

0 0 0 1

1CCA :

So � !Œf �D Œ1� t 0�2�1�C Œ1� t�1�2�. Thus we obtain a commutative diagram

fNil0.RŒF �IB1;B2/�
j�
j 0�

�
��

// �A // K1.RŒG�/

� !

��fNil0.RŒF �; ˛/˚fNil0.RŒF �; ˛0/ //
. C�C

B
 0C�

0C

B
/

// K1.RŒ xG�/ :

Finally, by Statement 3.13 and Statement 3.11, note

 0C ı � 0C
B
ıˇCu D  

0C
ıˇCu ı �

�
B D ˇu ı 

�
ı ��B :

3.2 Waldhausen Nil

Examples of bimodules originate from group rings of amalgamated product of groups.

Definition 3.24 A subgroup H of a group G is almost-normal if jH WH\xHx�1j<1

for every x 2G . In other words, H is commensurate with all its conjugates. Equiva-
lently, H is an almost-normal subgroup of G if every .H;H /–double coset HxH

is both a union of finitely many left cosets gH and a union of finitely many right
cosets Hg .
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Remark 3.25 Almost-normal subgroups arise in the Shimura theory of automorphic
functions, with .G;H / called a Hecke pair. Here are two sufficient conditions for a
subgroup H � G to be almost-normal: if H is a finite-index subgroup of G , or if
H is a normal subgroup of G . Examples of almost-normal subgroups are given by
Kreig [12, page 9].

Here is our reduction for a certain class of group rings, specializing the General
Algebraic Semi-splitting of Theorem 0.4.

Corollary 3.26 Let R be a ring. Let G D G1 �F G2 be an injective amalgamated
product of groups over a subgroup F of G1 and G2 . Suppose F is an almost-normal
subgroup of G2 . Then, for all n 2 Z, there is an isomorphism of abelian groups

j�WeNiln.RŒF �IRŒG1�F �;RŒG2�F �/�!eNiln.RŒF �IRŒG1�F �˝RŒF �RŒG2�F �/ :

Proof Consider the set J WD .FnG2=F /�F of nontrivial double cosets. Let I be
the poset of all finite subsets of J , partially ordered by inclusion. Note, as RŒF �–
bimodules,

RŒG2�F �D colim
I2I

RŒI � where RŒI � WD
M

FgF2I

RŒFgF � :

Since F is an almost-normal subgroup of G2 , each RŒF �–bimodule RŒI � is a finitely
generated free (hence projective) left RŒF �–module. Observe that I is a filtered poset:
if I; I 0 2 I then I [ I 0 2 I . Therefore we are done by Theorem 0.4.

The case of G DD1 D Z2 �Z2 has a particularly simple form.

Corollary 3.27 Let R be a ring and n 2 Z. There are natural isomorphisms:

(1) eNiln.RIR;R/ŠeNiln.R/.

(2) Kn.RŒD1�/Š .Kn.RŒZ2�/˚Kn.RŒZ2�//=Kn.R/ ˚ eNiln�1.R/.

Proof Part (i) follows from Corollary 3.26 with F D 1 and Gi D Z2 . Then Part (ii)
follows from Waldhausen’s exact sequence 2.6, where the group retraction Z2! 1

induces a splitting of the map Kn.R/!Kn.RŒZ2�/�Kn.RŒZ2�/.

Example 3.28 Consider the group GDG0�D1 where G0DZ2�Z2�Z. Since G

surjects onto the infinite dihedral group, there is an amalgamated product decomposition

G D .G0 �Z2/�G0
.G0 �Z2/
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with the corresponding index 2 subgroup

xG DG0 �Z :

Corollary 3.27(1) gives an isomorphism

eNil�1.ZŒG0�IZŒG0�;ZŒG0�/ŠeNil�1.ZŒG0�/ :

On the other hand, Bass showed that the latter group is an infinitely generated abelian
group of exponent a power of two [2, XII, 10.6]. Hence, by Waldhausen’s algebraic
K–theory decomposition result, Wh.G/ is infinitely generated due to Nil elements.
Now construct a codimension 1, finite CW–pair .X;Y / with �1X D G realizing
the above amalgamated product decomposition – for example, let Y !Z be a map
of connected CW–complexes inducing the first factor inclusion G0 ! G0 �Z2 on
the fundamental group and let X be the double mapping cylinder of Z Y ! Z .
Next construct a homotopy equivalence f W M !X of finite CW–complexes whose
torsion �.f / 2Wh.G/ is a nonzero Nil element. Then f is nonsplittable along Y

by Waldhausen [24] (see Theorem 4.3). This is the first explicit example of a nonzero
Waldhausen eNil group and a nonsplittable homotopy equivalence in the two-sided case.

3.3 Farrell–Jones Conjecture

The Farrell–Jones Conjecture asserts the family of virtually cyclic subgroups is a
“generating” family for Kn.RŒG�/. In this section we apply our main theorem to show
the Farrell–Jones Conjecture holds up to dimension one if and only if the smaller family
of finite-by-cyclic subgroups is a generating family for Kn.RŒG�/ up to dimension one.

Let Or G be the orbit category of a group G ; objects are G–sets G=H where H is
a subgroup of G and morphisms are G–maps. Davis and Lück [4] defined a functor
KRW Or G! Spectra with the key property �nKR.G=H /DKn.RŒH �/. The utility
of such a functor is that it allows the definition of an equivariant homology theory,
indeed for a G –CW–complex X , one defines

H G
n .X IKR/ WD �n.mapG.�;X /C ^Or G KR.�//

(see [4, Sections 4, 7] for basic properties). Note that the “coefficients” of the homology
theory are given by H G

n .G=H IKR/DKn.RŒH �/.

A family F of subgroups of G is a nonempty set of subgroups closed under conjugation
and taking subgroups. For such a family, EFG is the classifying space for G –actions
with isotropy in F . It is characterized up to G –homotopy type as a G –CW–complex so
that .EFG/H is contractible for subgroups H 2F and is empty for subgroups H 62F .
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Four relevant families are fin � fbc � vc � all, the families of finite subgroups,
finite-by-cyclic, virtually cyclic subgroups and all subgroups respectively. Here

fbc WD fin[fH <G jH Š F Ì Z with F finiteg

vc WD fH <G j 9 cyclic C <H with finite indexg :

The Farrell–Jones Conjecture in K–theory for the group G [7; 4] asserts an isomor-
phism

H G
n .EvcGIKR/ �!H G

n .EallGIKR/DKn.RŒG�/ :

We now state a more general version, the Fibered Farrell–Jones Conjecture. Let
'W �!G be a group homomorphism. If F is a family of subgroups of G , define the
family of subgroups

'�F WD fH < � j '.H / 2 Fg :
The Fibered Farrell–Jones Conjecture in K–theory for the group G asserts, for every
ring R and homomorphism 'W �!G , the following induced map is an isomorphism:

H�
n .E'�vc.G/�IKR/ �!H�

n .E'�all.G/�IKR/DKn.RŒ��/ :

The following theorem was proved for all n in [5] using controlled topology. We give
a proof below up to dimension one using only algebraic topology.

Theorem 3.29 Let 'W � ! G be an homomorphism of groups. Let R be any ring.
The inclusion-induced map

H�
n .E'�fbc.G/�IKR/ �!H�

n .E'�vc.G/�IKR/

is an isomorphism for all integers n< 1 and an epimorphism for nD 1.

Hence we propose a sharpening of the Farrell–Jones Conjecture in algebraic K–theory.

Conjecture 3.30 Let G be a discrete group, and let R be a ring. Let n be an integer.

(1) There is an isomorphism

H G
n .EfbcGIKR/ �!H G

n .EallGIKR/DKn.RŒG�/ :

(2) For any homomorphism 'W �!G of groups, there is an isomorphism

H�
n .E'�fbc.G/�IKR/ �!H�

n .Eall�IKR/DKn.RŒ��/ :

The proof of Theorem 3.29 will require three auxiliary results, some of which we quote
from other sources. The first is a variant of Theorem A:10 of Farrell–Jones [7], whose
proof is identical to the proof of Theorem A:10.
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Transitivity Principle Let F � G be families of subgroups of a group � . Let
EW Or� ! Spectra be a functor. Let N 2 Z [ f1g. If for all H 2 G � F , the
assembly map

H H
n .EF jH H IE/ �!H H

n .EallH IE/

is an isomorphism for n<N and an epimorphism if nDN , then the map

H�
n .EF�IE/ �!H�

n .EallH IE/

is an isomorphism for n<N and an epimorphism if nDN .

Of course, we apply this principle to the families fbc � vc. The second auxiliary
result is a well-known lemma (see Scott and Wall [21, Theorem 5.12]), but we offer an
alternative proof.

Lemma 3.31 Let G be a virtually cyclic group. Then either

(1) G is finite.

(2) G maps onto Z; hence G D F Ì˛ Z with F finite.

(3) G maps onto D1 ; hence G DG1 �F G2 with jGi W F j D 2 and F finite.

Proof Assume G is an infinite virtually cyclic group. The intersection of the con-
jugates of a finite index, infinite cyclic subgroup is a normal, finite index, infinite
cyclic subgroup C . Let Q be the finite quotient group. Embed C as a subgroup of
index jQj in an infinite cyclic group C 0 . There exists a unique ZŒQ�–module structure
on C 0 such that C is a ZŒQ�–submodule. Observe that the image of the obstruction
cocycle under the map H 2.QIC /!H 2.QIC 0/ is trivial. Hence G embeds as a finite
index subgroup of a semidirect product G0 D C 0 Ì Q. Note G0 maps epimorphically
to Z (if Q acts trivially) or to D1 (if Q acts nontrivially). In either case, G maps
epimorphically to a subgroup of finite index in D1 , which must be either infinite
cyclic or infinite dihedral.

In order to see how the reduced Nil–groups relate to equivariant homology (and hence
to the Farrell–Jones Conjecture), we need [5, Lemma 3.1], the third auxiliary result.

Lemma 3.32 (Davis–Quinn–Reich) Let G be a group of the form G1 �F G2 with
jGi W F j D 2, and let fac be the smallest family of subgroups of G containing G1

and G2 . Let xG be a group of the form F Ì˛ Z, and let fac be the smallest family of
subgroups of xG containing F . (Note that F need not be finite.)
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(1) The following exact sequences are split, and hence short exact:

H G
n .EfacGIKR/

fA
���!H G

n .EallGIKR/
�A
���!H G

n .EallG;EfacGIKR/

H
xG

n .Efac
xGIKR/

fB
���!H

xG
n .Eall

xGIKR/
�B
���!H

xG
n .Eall

xG;Efac
xGIKR/ :

Here fA; �A and fB; �B are inclusion-induced maps.

(2) The maps

�A ı �AW
fNiln�1.RŒF �IRŒG1�F �;RŒG2�F �/

Š
�! H G

n .EallG;EfacGIKR/

�B ı �BW
fNiln�1.RŒF �; ˛/˚fNiln�1.RŒF �; ˛

�1/
Š
�! H

xG
n .Eall

xG;Efac
xGIKR/

are isomorphisms where �A and �B are Waldhausen’s split injections.

The statement of Lemma 3.1 of [5] does not explicitly identify the isomorphisms in
Part (2) above, but the identification follows from the last paragraph of the proof.

It is not difficult to compute H G
n .EfacGIKR/ and H

xG
n .Efac

xGIKR/ in terms of
a Wang sequence and a Mayer–Vietoris sequence respectively. An example is in
Section 3.4.

Next, we further assume xG � G with jG W xGj D 2. In this case, C2 D G= xG acts
on Kn.R xG/ D H

xG
n .Eall

xGIKR/ by conjugation. By [5, Remark 3.21], there is a
C2 –action on H

xG
n .Eall

xG;Efac
xGIKR/ so that �B and �!! below are C2 –equivariant.

Lemma 3.33 Let n � 1 be an integer. There is a commutative diagram of C2 –
equivariant homomorphisms

eNiln�1.RŒF �; ˛/˚eNiln�1.RŒF �; ˛
�1/ H

xG
n .Eall

xG;Efac
xGIKR/

eNiln�1.RŒF �IB1;B2/ H G
n .EallG;EfacGIKR/ :

?

. i� �
�1
A

i0�ˇ
C
u /

-�Bı�B

?

�!!

-�Aı�A

Here, the C2 DG= xG –action on the upper left-hand corner is given in Proposition 3.21,
on the upper right it is given by [5, Remark 3.21], and on each lower corner it is trivial.

Proof This follows from Proposition 3.21 and the C2 –equivariance of �B .
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Recall that if C2 D f1;T g and if M is a ZŒC2�–module then the coinvariant group
MC2
DH0.C2IM / is the quotient group of M modulo the subgroup fm�T m jm2M g.

Lemma 3.34 Let n� 1 be an integer. There is an induction-induced isomorphism�
H
xG

n .Eall
xG;Efac

xGIKR/
�
C2
�!H G

n .EfacG[sub xGG;EfacGIKR/ :

Proof Recall G= xG D C2 . Since fac D fac\ xG , by [5, Lemma 4.1(i)] there is a
identification of ZŒC2�–modules

H
xG

n .Eall
xG;Efac

xGIK/D �n.K=Kfac/.G= xG/ :

The C2 –coinvariants can be interpreted as a C2 –homology group:

.�n.K=Kfac/.C2//C2
DH

C2

0
.EC2I�n.K=Kfac/.C2// :

By Lemma 3.32(2) and Lemma 3.33, the coefficient ZŒC2�–module is induced from a
Z–module. By the Atiyah–Hirzebruch spectral sequence (which collapses at E2 ), note

H
C2

0
.EC2I�n.K=Kfac/.C2//DH C2

n .EC2I .K=Kfac/.C2// :

Therefore, by [5, Lemma 4.6, Lemma 4.4, Lemma 4.1], we conclude

H C2
n .EC2I .K=Kfac/.C2//DH G

n .Esub xGGIK=Kfac/

DH G
n .EfacG[sub xGGIK=Kfac/

DH G
n .EfacG[sub xGG;EfacGIK/ :

The identifications in the above proof are extracted from the proof of [5, Theorem 1.5].

Proof of Theorem 3.29 Let 'W � ! G be a homomorphism of groups. Using the
Transitivity Principle applied to the families '�fbc� '�vc, it suffices to show that

H H
n .EallH;E'�fbcjH H IKR/D 0

for all n� 1 and for all H 2 '�vc�'�fbc. To identify the family '�fbcjH we will
use two facts, the proofs of which are left to the reader.

� If qW A!B is a group epimorphism with finite kernel, then fbcAD q�fbcB .
(The key step is to show that an epimorphic image of a finite-by-cyclic group is
finite-by-cyclic.)

� If qW A!BDG1�F G2 is a group epimorphism, then ADq�1G1�q�1F q�1G2

and facAD q�facB .
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Let 'jW H ! '.H / denote the restriction of ' to H . By the definition of both sides,

'�fbcjH D 'j�.fbc'.H // :

Since H 2 '�vc�'�fbc, we have '.H / 2 vc� fbc. So, by Lemma 3.31, there is an
epimorphism pW '.H /!D1 D Z2 �1 Z2 with finite kernel. By the first fact above

'j�.fbc'.H //D 'j�.p�.fbcD1// :

Next, write xHq WD .p ı'j/�1.Z/. Note

'j�.p�.fbcD1//D .p ı'j/
�.fbcD1/

D .p ı'j/�.facD1[ subZ/

D .p ı'j/�.facD1/[ .p ı'j/
�.subZ/

D facH [ sub xH ;

where the last equality uses the second fact above. Thus it suffices to prove, for any
group H mapping epimorphically to D1 and for all n� 1, that

H H
n .EallH;EfacH[sub xH IKR/D 0

where xH is the inverse image of the maximal infinite cyclic subgroup of D1 .

Consider the composite�
H
xH

n .Eall
xH ;Efac

xH IKR/
�
H= xH

˛
��!H H

n .EfacH[sub xH H;EfacH IKR/

ˇ
��!H H

n .EallH;EfacH IKR/ :

The map ˛ exists and is an isomorphism by Lemma 3.34. Apply C2 –covariants to
the commutative diagram in the statement of Lemma 3.33. In this diagram of C2 –
coinvariants, the top and bottom are isomorphisms by Lemma 3.32(2) and the left map
is an isomorphism by Proposition 3.21 and Theorem 0.4. Hence the right-hand map,
which is ˇ ı˛ , is an isomorphism for all n� 1. It follows that ˇ is an isomorphism
for all n� 1. So, by the exact sequence of a triple, we obtain

H H
n .EallH;EfacH[sub xH H IKR/D 0

for all n� 1 as desired.

3.4 K –theory of the modular group

Let � D Z2 � Z3 D PSL2.Z/. The following theorem follows from applying our
main theorem and the recent proof by Bartels, Lück and Reich [1] of the Farrell–Jones
conjecture in K–theory for word hyperbolic groups.

Algebraic & Geometric Topology, Volume 11 (2011)



2424 James F Davis, Qayum Khan and Andrew Ranicki

The Cayley graph for Z2 �Z3 with respect to the generating set given by the nonzero
elements of Z2 and Z3 has the quasi-isometry type of the usual Bass–Serre tree for
the amalgamated product (Figure 1). This is an infinite tree with alternating vertices

� �

� �

� � �

� �

� �

Figure 1: Bass–Serre tree for PSL2.Z/

of valence two and three. The group � acts on the tree, with the generator of order
two acting by reflection through an valence two vertex and the generator of order three
acting by rotation through an adjoining vertex of valence three.

Any geodesic triangle in the Bass–Serre tree has the property that the union of two sides
is the union of all three sides. It follows that the Bass–Serre graph is ı–hyperbolic
for any ı > 0, the Cayley graph is ı–hyperbolic for some ı > 0, and hence � is a
hyperbolic group.

Theorem 3.35 For any ring R and integer n,

Kn.RŒ��/D .Kn.RŒZ2�/˚Kn.RŒZ3�//=Kn.R/

˚

M
MC

fNiln�1.R/˚fNiln�1.R/˚
M
MD

fNiln�1.R/ ;

where MC and MD are the set of conjugacy classes of maximal infinite cyclic
subgroups and maximal infinite dihedral subgroups, respectively. Moreover, all virtually
cyclic subgroups of � are cyclic or infinite dihedral.

Proof By Lemma 3.32, the exact sequence of .Eall�;Efin�/ is short exact and split:

H�
n .Efin�IKR/!H�

n .Eall�IKR/!H�
n .Eall�;Efin�IKR/ :

Then, by the Farrell–Jones Conjecture [1] for word hyperbolic groups, we obtain

Kn.RŒ��/DH�
n .Efin�IKR/˚H�

n .Eall�;Efin�IKR/

DH�
n .Efin�IKR/˚H�

n .Evc�;Efin�IKR/ :
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Observe Efin� is constructed as a pushout of � –spaces

� t� ����! �=Z2 t�=Z3??y ??y
� �D1 ����! Efin� :

Then Efin� is the Bass–Serre tree for � D Z2 �Z3 . Note that H�
� .�=H IKR/ D

K�.RŒH �/. The pushout gives, after canceling a Kn.R/ term, a split long exact
sequence

� � � !Kn.R/!Kn.RŒZ2�/˚Kn.RŒZ3�/!H�
n .Efin�IKR/!Kn�1.R/! � � � :

H�
n .Efin�IKR/D .Kn.RŒZ2�/˚Kn.RŒZ3�//=Kn.R/ :Hence

Next, for a word hyperbolic group G ,

H G
n .EvcG;EfinGIK/Š

M
ŒV �2M.G/

H V
n .EvcV;EfinV IK/ ;

where M.G/ is the set of conjugacy classes of maximal virtually cyclic subgroups
of G (see Lück 16, Theorem 8.11 and Juan-Pineda and Leary [10]). The geometric
interpretation of this result is that EvcG is obtained by coning off each geodesic in the
tree EfinG ; then apply excision.

The Kurosh subgroup theorem implies that a subgroup of Z2 �Z3 is a free product
of Z2 ’s, Z3 ’s, and Z’s. Note that Z2 � Z3 D ha; b j a2 D 1 D b3i, Z3 � Z3 D

hc; d j c3 D 1 D d3i, and Z2 �Z2 �Z2 D he; f;g j e
2 D f 2 D g2 D 1i have free

subgroups of rank 2, for example hab; ab2i, hcd; cd2i, and hef; fgi. On the other
hand, the free group F2 rank 2 is not a virtually cyclic group since its first Betti number
ˇ1.F2/D rank H1.F2/D 2, while for a virtually cyclic group V , transferring to the
cyclic subgroup C � V of finite index shows that ˇ1.V / is 0 or 1. Subgroups of
virtually cyclic groups are also virtually cyclic. Therefore all virtually cyclic subgroups
of � are cyclic or infinite dihedral.

By the fundamental theorem of K–theory and Waldhausen’s Theorem 3.32,

H Z
n .EvcZ;EfinZIKR/D fNiln�1.R/˚fNiln�1.R/

H D1
n .EvcD1;EfinD1IKR/D fNiln�1.RIR;R/ :

Finally, by Corollary 3.27(1), we obtain exactly one type of Nil-group:

eNiln�1.RIR;R/ŠeNiln�1.R/ :
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Remark 3.36 The sets MC and MD are countably infinite. This can be shown by
parameterizing these subsets either: combinatorially (using that elements in � are
words in a; b; b2 ), geometrically (maximal virtually cyclic subgroups correspond to
stabilizers of geodesics in the Bass–Serre tree Efin� , where the geodesic may or may
not be invariant under an element of order 2), or number theoretically (using solutions
to Pell’s equation and Gauss’ theory of binary quadratic forms [20]).

Let us give an overview and history of some related work. The Farrell–Jones Conjecture
and the classification of virtually cyclic groups 3.31 focused attention on the algebraic
K–theory of groups mapping to the infinite dihedral group. Several years ago James
Davis and Bogdan Vajiac outlined a unpublished proof of Theorem 0.1 when n 6 0

using controlled topology and hyperbolic geometry. Lafont and Ortiz [13] proved that
eNiln.ZŒF �IZŒV1�F �;ZŒV2�F �/D0 if and only if eNiln.ZŒF �; ˛/D0 for any virtually
cyclic group V with an epimorphism V !D1 and nD 0; 1. More recently, Lafont
and Ortiz [15] have studied the more general case of the K–theory Kn.RŒG1 �F G2�/

of an injective amalgam, where F;G1;G2 are finite groups. Finally, we mentioned
the paper [5], which was written in parallel with this one; it an alternate proof of
Theorem 0.1. Also, [5] provides several auxiliary results used in Section 3.3 of this
paper. The Nil-Nil isomorphism of Theorem 0.1 has been used in a geometrically
motivated computation of Lafont and Ortiz [14, Section 6.4].

4 Codimension 1 splitting and semisplitting

We shall now give a topological interpretation of the Nil-Nil Theorem 1.1, proving in
Theorem 4.5 that every homotopy equivalence of finite CW–complexes f W M !X D

X1 [Y X2 with X1;X2;Y connected and �1.Y /! �1.X / injective is “semisplit”
along Y � X , assuming that �1.Y / is of finite index in �1.X2/. Indeed, the proof
of Theorem 1.1 is motivated by the codimension 1 splitting obstruction theory of
Waldhausen [24], and the subsequent algebraic K–theory decomposition theorems
of Waldhausen [25; 26]. The papers [24; 25] developed both an algebraic splitting
obstruction theory for chain complexes over injective generalized free products, and
a geometric codimension 1 splitting obstruction theory; the geometric splitting ob-
struction is the algebraic splitting obstruction of the cellular chain complex. There
are parallel theories for the separating type (A) (amalgamated free product) and the
nonseparating type (B) (HNN extension). We first briefly outline the theory, mainly for
type (A).

The cellular chain complex of the universal cover zX of a connected CW–complex X is
a based free ZŒ�1.X /�–module chain complex C. zX / such that H�. zX /DH�.C. zX //.
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The kernel ZŒ�1.X /�–modules of a map f W M !X are defined by

K�.M / WDH�C1. zf W �M ! zX /

with �M WD f � zX the pullback cover of M and zf W �M ! zX a �1.X /–equivariant lift
of f . For a cellular map f of CW–complexes let

K.M / WD C. zf W C. �M /! C. zX //�C1

be the algebraic mapping cone of the induced ZŒ�1.X /�–module chain map zf , with
homology ZŒ�1.X /�–modules

H�.K.M //DK�.M /DH�C1. zf W �M ! zX / :

For n > 1 the map f W M ! X is n–connected if and only if f�W �1.M /Š �1.X /

and Kr .M /D 0 for r < n, in which case the Hurewicz map is an isomorphism:

�nC1.f /D �nC1. zf /!Kn.M /DHnC1. zf / :

By the theorem of J H C Whitehead, f W M !X is a homotopy equivalence if and only
if f�W �1.M /Š �1.X / and K�.M /D 0 (if and only if K.M / is chain contractible).

Decompose the boundary of the .nC1/–disk as a union of upper and lower n–disks:

@DnC1
D Sn

DDn
C[Sn�1 Dn

� :

Given a CW–complex M and a cellular map �W Dn
C!M define a new CW–complex

M 0
D .M [@� Dn

�/[�[1 DnC1

by attaching an n–cell and an .nC1/–cell, with

@� D �jW Sn�1
!M ; � [ 1W Sn

DDn
C[Sn�1 Dn

�!M [@� Dn
� :

The inclusion M �M 0 is a homotopy equivalence called an elementary expansion. The
cellular based free ZŒ�1.M /�–module chain complexes fit into a short exact sequence

0! C. �M /! C. �M 0/! C. �M 0; �M /! 0

C. �M 0; �M /W � � � // 0 // ZŒ�1.M /�
1 // ZŒ�1.M /� // 0 // � � �with

concentrated in dimensions n; nC 1. For a commutative diagram of cellular maps

Dn
C

� //

��

M

f

��
DnC1

ı� // X ;
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the map f extends to a cellular map

f 0 D .f [ ı�jDn
�
/[ ı�W M 0

D .M [@� Dn
�/[�[1 DnC1

!X

which is also called an elementary expansion, and there is defined a short exact sequence
of based free ZŒ�1.X /�–module chain complexes

0! K.M /! K.M 0/! C. �M 0; �M /! 0 :

Recall the Whitehead group of a group G is defined by

Wh.G/ WDK1.ZŒG�/=f˙g j g 2Gg :

Suppose the CW–complexes M;M 0;X are finite. The Whitehead torsion of a homo-
topy equivalence f W M !X is

�.f /D �.K.M // 2Wh.�1.X // :

Homotopy equivalences f W M !X and f 0W M 0!X are simple-homotopic if

�.f /D �.f 0/ 2Wh.�1.X // :

This is equivalent to being able to obtain f 0 from f by a finite sequence of elementary
expansions and subdivisions and their formal inverses. For details, see Cohen’s book [3].

A 2–sided codimension 1 pair .X;Y �X / is a pair of spaces such that the inclusion
Y D Y �f0g �X extends to an open embedding Y �R�X . We say that a homotopy
equivalence f W M !X splits along Y �X if the restrictions f jW N Df �1.Y /!Y ,
f jW M �N !X �Y are also homotopy equivalences.

In dealing with maps f W M !X and 2–sided codimension 1 pairs .X;Y / we shall
assume that f is cellular and that both .X;Y / and .M;N D f �1.Y // are a 2–sided
codimension 1 CW–pair.

A 2–sided codimension 1 CW–pair .X;Y / is �1 –injective if X;Y are connected and
�1.Y /! �1.X / is injective. As usual, there are two cases, according as to whether
Y separates X or not:

(A) The separating case: X �Y is disconnected, so

X DX1[Y X2

with X1;X2 connected. By the Seifert–van Kampen theorem

�1.X /D �1.X1/��1.Y / �1.X2/

is the amalgamated free product determined by the injections ik W �1.Y / !

�1.Xk/ (k D 1; 2).
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(B) The nonseparating case: X �Y is connected, so

X DX1=fy � ty j y 2 Y g

for a connected space X1 (a deformation retract of X �Y ) which contains two
disjoint copies Y t tY �X1 of Y . By the Seifert–van Kampen theorem,

�1.X /D �1.X1/�i1;i2
ftg

is the HNN extension determined by the injections i1; i2W �1.Y /! �1.X1/,
with i1.y/t D t i2.y/ (y 2 �1.Y /).

Remark 4.1 Let zX be the universal cover of X , and let xX WD zX=�1.Y /, so that for
both types (A) and (B), . xX ;Y / is a �1 –injective 2–sided codimension 1 pair of the
separating type (A), with xX D xX� [Y

xXC for connected subspaces xX�; xXC � xX
such that

�1. xX /D �1. xX
�/D �1. xX

C/D �1.Y / :

Moreover for type (B), when i1; i2 are isomorphisms, the HNN extension simplifies to

1 ����! �1.Y / ����! �1.X /D �1.Y /Ì˛ Z ����! Z ����! 1

with automorphism ˛D .i1/
�1i2 of �1.Y /, studied originally by Farrell and Hsiang [6].

From now on, we shall only consider the separating case (A) of X DX1[Y X2 . Write

�1.X /DG ; �1.X1/DG1 ; �1.X2/DG2 ; �1.Y /DH ;

ik W ZŒH �! ZŒGk �D ZŒH �˚Bk ; Bk D ZŒGk �H � ;

with Bk free as both a right and a left ZŒH �–module, and

ZŒG�D ZŒG1��ZŒH �ZŒG2�D ZŒH �˚B1˚B2˚B1B2˚B2B1˚ � � � :

Use the injections ik W H !Gk to define covers

xX1 D
zX1=H � xX

� ; xX2 D
zX2=H � xX

C

such that xX1\
xX2 D Y and

zX D

� [
g1G12G=G1

g1
zX1

�
[�S

hH2G=H h zY
� � [

g2G22G=G2

g2
zX2

�
xX D

� [
g1G12G=G1

g1
xX1

�
[�S

hH2G=H hY
� � [

g2G22G=G2

g2
xX2

�
with zXk the universal cover of Xk , and zY the universal cover of Y .
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Let .f;g/W .M;N /! .X;Y / be a map of separating �1 –injective codimension 1

finite CW–pairs. This gives an exact sequence of based free ZŒH �–module chain
complexes

(7) 0 ����! K.N / ����! K. SM / ����! K. SM�;N /˚K. SMC;N / ����! 0

inducing a long exact sequence of homology modules

� � � // Kr .N / // Kr . SM / // Kr . SM
C;N /˚Kr . SM

�;N /

// Kr�1.N / // � � � :

Note that f W M!X is a homotopy equivalence if and only if f�W �1.M /!�1.X / is
an isomorphism and K. SM / is contractible. The map of pairs .f;g/W .M;N /! .X;Y /

is a split homotopy equivalence if and only if any two of the chain complexes in (7)
are contractible, in which case the third chain complex is also contractible.

Suppose f W M !X is a homotopy equivalence. Then

K�. SM /DK�.M /D 0 ; K�.N /DK�C1. SM
�;N /˚K�C1. SM

C;N / :

We obtain an exact sequence of ZŒH �–module chain complexes

0! K. SM1;N /! K. SM�;N /
�1
��! K. SM�; SM1/DB1˝ZŒH � K. SM

C;N /! 0

0! K. SM2;N /! K. SMC;N /
�2
��! K. SMC; SM2/DB2˝ZŒH � K. SM

�;N /! 0 :

The pair .�1; �2/ of intertwined chain maps is chain homotopy nilpotent, in the sense
that the following chain map is a ZŒG�–module chain equivalence:�

1 �2

�1 1

�
W ZŒG�˝ZŒH � .K. SM

�;N /˚K. SMC;N //

�! ZŒG�˝ZŒH � .K. SM
�;N /˚K. SMC;N // :

Definition 4.2 Let x D .P1;P2; �1; �2/ be an object of NIL.ZŒH �IB1;B2/.

(1) Let x0 D .P 0
1
;P 0

2
; �0

1
; �0

2
/ be another object. We say x and x0 are equivalent if

ŒP1�D ŒP
0
1� ; ŒP2�D ŒP

0
2� 2

zK0.ZŒH �/ ; Œx�D Œx0� 2eNil0.ZŒH �IB1;B2/ ;

or equivalently,

Œx0�� Œx� 2K0.Z/˚K0.Z/� Nil0.ZŒH �IB1;B2/

DK0.ZŒH �/˚K0.ZŒH �/˚fNil0.ZŒH �IB1;B2/

with K0.Z/˚K0.Z/ the subgroup generated by .ZŒH �; 0; 0/ and .0;ZŒH �; 0; 0/.
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(2) Let kD 1 or 2. Let yk 2 ker.�k/ generate a direct summand hyki�Pk . Define
an object x0 in NIL.ZŒH �IB1;B2/ by

x0 D .P 01;P
0
2; �
0
1; �
0
2/D

(
.P1=hy1i;P2; Œ�1�; Œ�2�/ if k D 1;

.P1;P2=hy2i; Œ�1�; Œ�2�/ if k D 2;

with an exact sequence in NIL.ZŒH �IB1;B2/8<: 0 // .ZŒH �; 0; 0; 0/
.y1;0/ // x // x0 // 0

0 // .0;ZŒH �; 0; 0/
.0;y2/ // x // x0 // 0 :

Thus x0 is equivalent to x , obtained by the algebraic cell-exchange which kills
yk 2 P1˚P2 .

It can be shown that two objects x and x0 in NIL.ZŒH �IB1;B2/ are equivalent if and
only if x0 can be obtained from x by a finite sequence of isomorphisms, algebraic
cell-exchanges, and their formal inverses.

Geometric cell-exchanges (called surgeries in [24]) determine algebraic cell-exchanges.
In the highly connected case, algebraic and geometric cell-exchanges occur in tandem:

Theorem 4.3 [24] Let .f;g/W .M;N /!.X;Y / be a map of separating �1–injective
codimension 1 finite CW–pairs, with f W M ! X a homotopy equivalence. Write
X D X1 [Y X2 with induced amalgam �1.X / D G D G1 �H G2 of fundamental
groups.

(i) Let k D 1; 2. Suppose for some n > 0 that we are given a map

.�; @�/W .DnC1;Sn/ �! .Mk ;N /

and a null-homotopy of pairs

.�; @�/W .f jMk
ı�;g ı @�/ ' .�;�/W .DnC1;Sn/ �! .Xk ;Y / :

Assume they represent an element in ker.�k/ (with �D� if k D 1; �DC if k D 2):

yk D Œ�; � � 2 im.KnC1. SMk ;N /!KnC1. SM
�;N //

D ker.�k W KnC1. SM
�;N /!Bk ˝ZŒH �KnC1. SM

��;N //�Kn.N / :

The map .f;g/ extends to the map of codimension 1 pairs

.f 0;g0/ WD ..f [f jMk
ı�/[ �;g[ @�/W

.M 0;N 0/ WD ..M [@� DnC1/[�[1 DnC2;N [@� DnC1/ �! .X;Y /
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where the new .nC2/–cell has attaching map

� [ 1W @DnC2
DDnC1

[Sn DnC1
�! M [@� DnC1 :

The homological effect on .f;g/ of this geometric cell-exchange is no change in(
Kr . SM

0�;N 0/DKr .M
�;N / for r ¤ nC 1; nC 2 ;

Kr . SM
0��;N 0/DKr .M

��;N / for all r 2 Z;

except there is a five-term exact sequence

0 ����! KnC2. SM
�;N / ����! KnC2. SM

0�;N 0/ ����! ZŒH �

yk
����! KnC1. SM

�;N / ����! KnC1. SM
0�;N 0/ ����! 0 :

The inclusion hW M�M 0 is a simple homotopy equivalence with .f;g/'.f 0h;g0hjN /.

(ii) Suppose for some n > 2 that Kr .N /D 0 for all r ¤ n. Then

Kr . SM
�;N /D 0DKr . SM

C;N / for all r ¤ nC 1 ;

and Kn.N / is a stably finitely generated free ZŒH �–module. Moreover, we may define
an object x in NIL.ZŒH �IB1;B2/ by

x WD .KnC1. SM
�;N /;KnC1. SM

C;N /; �1; �2/

whose underlying modules satisfy

ŒKnC1. SM
�;N /�C ŒKnC1. SM

C;N /�D ŒKn.N /�D 0 2 zK0.ZŒH �/ ;

ŒZŒGk �˝ZŒH �KnC1. SM
�;N /�D 0 2 zK0.ZŒGk �/ .k D 1; 2/ :

If .f 0;g0/W .M 0;N 0/! .X;Y / is obtained from .f;g/ by a geometric cell-exchange
killing an element yk 2 KnC1. SM

�;N / ..k; �/ D .1;�/ or .2;C// which gener-
ates a direct summand hyki � KnC1. SM

�;N /, then the corresponding object in
NIL.ZŒH �IB1;B2/

x0 WD .KnC1. SM
0�;N 0/;KnC1. SM

0C;N 0/; �01; �
0
2/

is obtained from x by an algebraic cell-exchange. Since �nC1. SMk ;N /DKnC1. SMk ;N /

by the relative Hurewicz theorem, there is a one-one correspondence between algebraic
and geometric cell-exchanges killing elements yk generating direct summands hyki.

(iii) For any n > 2 it is possible to modify the given .f;g/ by a finite sequence of
geometric cell-exchanges and their formal inverses to obtain a pair (also denoted by
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.f;g/) such that Kr .N /D 0 for all r ¤ n as in (ii), and hence a canonical equivalence
class of nilpotent objects x D .P1;P2; �1; �2/ in NIL.ZŒH �IB1;B2/ such that

ŒP1�C ŒP2�D 0 2 zK0.ZŒH �/ ; ŒZŒGk �˝ZŒH � Pk �D 0 2 zK0.ZŒGk �/

with P1 WDKnC1. SM
�;N /, P2 WDKnC1. SM

C;N /. Any x0 in the equivalence class
of x is realized by a map .f 0;g0/W .M 0;N 0/! .X;Y / with f 0 simple-homotopic to f .
The splitting obstruction of f is the image of the Whitehead torsion �.f / 2Wh.G/,
namely,

@.�.f //D .ŒP1�; Œx�/D .ŒP1�; ŒP1;P2; �1; �2�/

2 ker. zK0.ZŒH �/! zK0.ZŒG1�/˚ zK0.ZŒG2�//˚fNil0.ZŒH �IB1;B2/ :

Thus f is simply homotopic to a split homotopy equivalence if and only if @.�.f //D 0,
if and only if x is equivalent to 0.

(iv) The Whitehead group of G DG1 �H G2 fits into an exact sequence

Wh.H / ����! Wh.G1/˚Wh.G2/ ����! Wh.G/
@

����! zK0.ZŒH �/˚fNil0.ZŒH �IB1;B2/ ����! zK0.ZŒG1�/˚ zK0.ZŒG2�/ :

Furthermore, the homomorphism

@W Wh.G/ �! zK0.ZŒH �/˚eNil0.ZŒH �IB1;B2/ ; �.f / 7�! .ŒP1�; ŒP1;P2; �1; �2�/

satisfies that proj2 ı @W Wh.G/!eNil0.ZŒH �IB1;B2/ is an epimorphism split by

�WeNil0.ZŒH �IB1;B2/ �! Wh.G/ ; ŒP1;P2; �1; �2� 7�!

�
1 �2

�1 1

�
:

Definition 4.4 Let .X;Y / be a separating �1 –injective codimension 1 finite CW–pair.
A homotopy equivalence f W M !X from a finite CW–complex M is semisplit along
Y � X if f is simple homotopic to a map (also denoted by f ) such that for the
corresponding map of pairs .f;g/W .M;N /! .X;Y / the relative homology kernel
ZŒH �–modules

K�. SM2;N /DH�C1.. �M2; zN /! . zX2; zY //

vanish, which is equivalent to the induced ZŒH �–module morphisms

�2W K�. SM
C;N / �!K�. SM

C; SM2/D ZŒG2�H �˝ZŒH �K�. SM
�;N / ;

being isomorphisms. Equivalently, f is semisplit along Y if there is a semisplit object
x D .P1;P2; �1; �2/ in the canonical equivalence class of Theorem 4.3, that is, with
�2W P2!B1P1 a ZŒH �–module isomorphism.

In particular, a split homotopy equivalence f of separating pairs is semisplit.
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Theorem 4.5 Let .X;Y / be a separating �1 –injective codimension 1 finite CW–
pair, with X D X1 [Y X2 . Suppose that H D �1.Y / is a finite-index subgroup of
G2D�1.X2/. Every homotopy equivalence f W M!X with M a finite CW–complex
is simple-homotopic to a homotopy equivalence which is semisplit along Y .

Proof Let x D .P1;P2; �1; �2/ represent the canonical equivalence class of objects
in NIL.ZŒH �IB1;B2/ associated to f in Theorem 4.3(ii). Since H is of finite index
in G2 , as in the proof of Theorem 1.1, we can define a semisplit object

x00 WD .P1;B2P1; �2 ı �1; 1/

satisfying

Œx00�� Œx�D Œ0;B2P1; 0; 0�� Œ0;P2; 0; 0� 2 Nil0.ZŒH �IB1;B2/ :

By Theorem 4.3(iii), the direct sum

B2P1˚P1 D .ZŒG2�H �˝ZŒH � P1/˚P1 D ZŒG2�˝ZŒH � P1

is a stably finitely generated free ZŒG2�–module. Since ZŒG2� is a finitely generated
free ZŒH �–module, B2P1˚P1 is a stably finitely generated free ZŒH �–module. So

ŒB2P1�� ŒP2�D ŒB2P1�C ŒP1�D ŒZŒG2�˝ZŒH � P1�D 0 2 zK0.ZŒH �/ :

So x is equivalent to x00 . Thus, by Theorem 4.3(iii), there is a homotopy equivalence
f 00 W M 00!X simple-homotopic to f realizing x00 ; note it is semisplit.
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