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Introduction by the Organisers

The Mini-Workshop The Hauptvermutung for High-Dimensional Manifolds, organ-
ised by Erik Pedersen (Binghamton) and Andrew Ranicki (Edinburgh) was held
August 13th–18th, 2006. The meeting was attended by 17 participants, ranging
from graduate students to seasoned veterans.

The manifold Hauptvermutung is the conjecture that topological manifolds
have a unique combinatorial structure. This conjecture was disproved in 1969 by
Kirby and Siebenmann, who used a mixture of geometric and algebraic methods
to classify the combinatorial structures on manifolds of dimension > 4. How-
ever, there is some dissatisfaction in the community with the state of the lit-
erature on this topic. This has been voiced most forcefully by Novikov, who
has written “In particular, the final Kirby-Siebenmann classification of topolog-
ical multidimensional manifolds therefore is not proved yet in the literature.”
(http://front.math.ucdavis.edu/math-ph/0004012)

At this conference we discussed a number of questions concerning the Hauptver-
mutung and the structure theory of high-dimensional topological manifolds. These
are our conclusions:
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We found nothing fundamentally wrong with the original work of Kirby and
Siebenmann [4], which is solidly grounded in the literature. Their determination
of TOP/PL depends on Kirby’s paper on the Annulus Conjecture and his ‘torus
trick’. It was noted that Kirby’s paper is based on the well-documented work on
PL classification of homotopy tori (Hsiang and Shaneson, Wall) and Sullivan’s
identification of the PL normal invariants with [−, G/PL], but does not depend
on any other work of Sullivan, documented or undocumented. This classification
can be reduced to the Farrell Fibering Theorem [1], the calculation of πi(G/PL)
(Kervaire and Milnor [3]), and Wall’s non-simply connected surgery theory [7].

There are modern proofs determining the homotopy type of TOP/PL using
either the bounded surgery of Ferry and Pedersen [2] or a modification of the
definition of the structure set.

Sullivan’s determination of the homotopy type of G/PL, which is well-docu-
mented (for instance, in Madsen and Milgram [5]) is used to determine the ho-
motopy type of G/TOP and is fundamental to understanding the classification of
general topological manifolds.

The 4-fold periodicity of the topological surgery sequence established by Sieben-
mann [4, p.283] contains a minor error having to do with base points. This is an
easily corrected error, and the 4-fold periodicity is true whenever the manifold has
a boundary.

The equivalence of the algebraic and topological surgery exact sequence as es-
tablished by Ranicki [6] was confirmed.

Sullivan’s characteristic variety theorem, however it is understood, is not essen-
tial for the Kirby-Siebenmann triangulation of manifolds.

The following papers have been commissioned:

• W. Browder, “PL classification of homotopy tori”
• J. Davis, “On the product structure theorem”
• I. Hambleton, “PL classification of homotopy tori”
• M. Kreck, “A proof of Rohlin’s theorem”
• E.K. Pedersen, “Determining the homotopy type of TOP/PL using bound-

ed surgery”
• A. Ranicki, “Siebenmann’s periodicity theorem”
• M. Weiss, “Identifying the algebraic and geometric surgery sequences”

The Hauptvermutung website http://www.maths.ed.ac.uk/∼aar/haupt will re-
cord further developments.
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Abstracts

Topological transversality

Arthur Bartels

In this talk I gave Kirby and Siebenmann’s proof of

Theorem 1 (Topological Transversality Theorem). [1, p.85]
Let C and D be closed subsets of a (metrizable) TOP m-manifold Mm, and let
U and V be open neighborhoods of C and D respectively. Let ξn be a normal n-
microbundle to a closed subset X of a space Y .

Suppose f : Mm → Y is a continuous map TOP transverse to ξ on U at ν0.
Suppose m 6= 4 6= m − n, and either ∂M ⊂ C or m − 1 6= 4 6= m − 1 − n.
Then there exists a homotopy ft : M → Y , 0 6 t 6 1, of f0 = f fixing a
neighborhood of C ∪(M −V ) so that f1 is transverse to ξ on an open neighborhood
of C ∪ D at a microbundle ν equal ν0 near C. Furthermore, if Y is a metric
space with metric d, and ǫ : M → (0,∞) is continuous, then we can require that
d(ft(x), f(x)) < ǫ(x) for all x ∈ M and all t ∈ (0, 1].

using

Theorem 2 (Local Product Structure Theorem). [1, p.36]
Consider the following data : Mm a TOP manifold ; W an open neighborhood of
M × 0 in M ×Rs , s > 1 ; Σ a CAT structure on W ; C ⊂ M × 0 a closed subset
such that Σ is a product along Rs near C ; D another closed subset of M × 0 ;
V ⊂ W an open neighborhood of D − C.

Suppose that m > 6 or m > 5 and ∂M ⊂ C. Then there exists a concordance
rel (W −V )∪C from Σ to a CAT structure Σ′ on W so that Σ′ is a product along
Rs near D.

References
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Microbundles

Allegra E. Berliner and Stacy L. Hoehn

Given a topological manifold M , we can define what we mean by the “tangent
bundle” tM of M , even if M does not have a smooth structure. To do this, we use
microbundles, which were developed by Milnor in [3] and [4].

A topological n-microbundle X is a diagram of topological spaces and continuous

maps B
i
−→ E

j
−→ B with ji = idB. This diagram must satisfy a local triviality

condition; namely, for each b ∈ B, there must exist open neighborhoods U of b in
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B and V of i(b) in E, with i(U) ⊂ V and j(V ) ⊂ U , as well as a homeomorphism
h : V → U × Rn, that make the following diagram commute:

V
j|V //

h ##G
G

G
G

G
G

G
G

G U

U

i|U

OO

×0
// U × Rn

p1

OO

PL microbundles are defined analogously to the topological case, using the cate-
gory of polyhedra and PL maps instead of the category of topological spaces and
continuous maps. Since only the behavior of a microbundle near its zero section
i(B) matters, microbundles that agree in a neighborhood of i(B) are identified.
Thus, the fibres of microbundles are only “germs” of topological spaces.

To every vector bundle ζ with zero section i and projection j, there is a naturally
associated microbundle |ζ|. Less trivially, to every topological manifold M there
is an associated microbundle tM , called the tangent microbundle of M . This

microbundle is given by the diagram M
∆
−→ M × M

p1

−→ M , where ∆ is the
diagonal map and p1 is projection onto the first factor. It is shown in [3] that if
M is a smooth paracompact manifold with tangent vector bundle τ , |τ | ∼= tM .

There is a space BTOP that classifies topological microbundles over an ENR,
i.e. there is a one-to-one correspondence between stable isomorphism classes of
topological microbundles over an ENR X and homotopy classes of maps from X
to BTOP . The analogous classifying space for PL microbundles is BPL; note that
there is a forgetful map from BPL to BTOP . Given a topological manifold M ,
let t̂M : M → BTOP denote the map that classifies tM . The aim of this talk was
to show that a lift of t̂M to a map from M to BPL determines a PL structure on
M ×Rq for some q > 0 and that, conversely, a PL structure on M ×Rq determines
a lift of t̂M to a map from M to BPL. The proof of this correspondence is given
in Essay IV of [1].

We should note that Kister [2] showed that every microbundle over an ENR
admits a fibre bundle which is unique up to isomorphism. Therefore, we could
have worked with fibre bundles instead of microbundles. However, it is convenient
to work with microbundles directly instead of their associated fibre bundles since,
for example, the tangent microbundle is canonically defined while its associated
fibre bundle is only defined up to isomorphism.
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Topology in the 1960’s: Reminiscences and commentary

William Browder

By 1954 Pontryagin and Thom had established the inter relation of the theory
of smooth manifolds and homotopy theory, via the notion of transversality. Pon-
tryagin saw this relation as a tool for calculation in homotopy theory but it proved
of limited use, Thom’s calculation of the bordism ring on the other hand opened
a fruitful new direction for applying algebraic topology in the study of smooth
manifolds.

The discovery of the different smooth structures on S7 by Milnor in 1957, fol-
lowed by his introduction of the technique he called ‘surgery’, revealed a new world
of study in the possible classification of smooth manifolds. For the spheres, this
program was essentially finished by the paper of Kervaire and Milnor ‘Groups of
homotopy spheres’, which by its rearrangement of the standard phrase ‘homo-
topy groups of spheres’ signaled that information was now flowing in a different
direction, from algebraic topology to smooth manifold theory.

Smale’s h-cobordism theorem and higher dimensional Poincaré Conjecture so-
lidified the connection to manifold topology, and also highlighted the fact that
higher dimensional topology is easier than low dimensional. The earlier sphere
immersion theorem of Smale followed by the globalization to arbitrary smooth
manifolds by Hirsch, opened another route from homotopy to smooth topology,
which culminated in the famous ‘h-principle’ of Gromov.

What is today called PL topology (which had dominated research in geometric
topology in the 30’s), enjoyed a renaissance in the 50’s and 60’s, with the embed-
ding paper of Penrose-Whitehead-Zeeman, followed by the unknotting papers of
Zeeman, and the PL Poincaré conjecture and engulfing papers of Stallings.

Haefliger had continued the line of Whitney on smooth embedding theory, which
was used by Smale.

I began my work in algebraic topology, studying H-spaces and their homology.
In one of my early papers ‘Torsion in H-spaces’ I had proved a Poincaré duality
theorem for finite dimensional H-spaces.

At Berkeley in the summer of 1961, I attended a lecture series by Kervaire on
his work with Milnor on surgery.

H-space theory was pointed toward the question of comparing finite dimensional
H-spaces with Lie groups. On my return to Cornell that Fall I thought that an
interesting compromise might be to prove them homotopy equivalent to manifolds.

I set to work to try to adapt the methods of surgery to this problem. This turned
out to be rather successful, and the theorem I proved described the homotopy
type of smooth 1-connected manifolds of dimension greater than 4, in many cases
(except for the notorious Kervaire invariant problem in dimensions 4k + 2, then
called the Arf invariant).

At the same time, S.P.Novikov in Moscow, alerted to the work of Kervaire and
Milnor, saw the possibilities of this new technique to classify smooth 1-connected
manifolds, and produced his work on surgery on 1-connected manifolds.
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In the summer of 1962 I lectured on my theorem in Bonn and Aarhus (’Homo-
topy type of smooth manifolds’, Aarhus Topology Symposium 1962) and then I
went to the Stockholm ICM.

Though Novikov was not allowed to attend the Stockholm Congress, he sent a
short communication and one of the attending Russians asked me to read it for
him, which I did.

During an excursion to Russia to Moscow after the congress, I met Novikov for
the first time and we became good friends. In the following years we exchanged
reprints and preprints and in the spring of 1967, after much bureaucratic maneu-
vering, we succeeded in inviting to Novikov to visit Princeton for a few months.
More on that later.

My first year at Princeton in 1964, I gave a course on surgery theory and was
pleased with a good turnout of students, among them a number who became
my thesis students (George Cooke, Norman Levitt, Santiago Lopez de Medrano,
Dennis Sullivan and Jack Wagoner).

After my stay at the Institute for Advanced Study in 1963-4, I spent the spring
and summer at the Topology Symposium organized by Chris Zeeman in Cam-
bridge. There Moe Hirsch and I discovered we could use smoothing theory of PL
manifolds to extend surgery theory to PL manifolds, with the help of Milnor’s PL
microbundle theory.

Milnor had recently disproved the Hauptvermutung for complexes, leaving open
the possibility for manifolds.

When word of Novikov’s proof of the topological invariance of the rational
Pontryagin classes reached Princeton, and Milnor gave lectures giving the proof
using Siebenmann’s end theorem, instead of the more ad hoc and much more
involved argument of Novikov, the possibility of proving a Hauptvermutung using
PL surgery became visible.

The theses of two of my students converged to similar theorems on the Hauptver-
mutung for 1-connected PL manifolds with some strong restrictions on homology.
They came from substantially different points of view, Sullivan from the point of
view of analyzing maps into G/PL (or F/PL as it was called then) and Wagoner
using surgery in a cell by cell approach in a handlebody decomposition.

Sullivan as a junior faculty member at Princeton in 1966-7, gave a seminar on
geometric topology, and issued a set of notes based on it. By the spring of 1967, he
had analyzed completely the homotopy type of G/PL, (introducing the method
of localization of spaces), having first done the 2-primary case the previous year,
and in 1966 the odd primary case (where BO is the answer).

The concept of localization for abelian groups was classical and its application
to homotopy groups was introduced by Serre in his thesis and deepened in his
later papers and the thesis of John Moore. Sullivan suddenly shifted the focus and
localized the whole space!

This new viewpoint was an enormous step forward, and has become (together
with his notion of completion) a standard feature of modern homotopy theory.
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The construction of localization at a homology theory has been carried out and
extended by many authors (see Bousfield for a highly advanced version). The p
local homology version is easy to carry out for simply connected spaces using the
Postnikov system.

Sullivan’s analysis of 2-local G/PL was simple and direct, using the repre-
sentability of 2-local homology by manifolds, and showed (except for the one
nonzero k-invariant in dimension 4), it was a product of Eilenberg-MacLane spaces.
The odd primary case is more complicated, using the relation of bordism and K-
theory a la Conner-Floyd. This approach is exposed in satisfying detail in the
treatise of Madsen-Milgram.

At the heart of Sullivan’s attack on the Hauptvermutung, beyond the special
situations dealt with in his and Wagoner’s theses, is the so called ‘Characteristic
variety theorem’ which asserts that for any PL manifold M there exists a ”char-
acteristic variety” V → M such that the map of M into G/PL, (corresponding
to a homotopy equivalence to another M ′), is null homotopic if and only if the
composition V → G/PL splits, i.e. defines a surgery problem over V which is solv-
able. Examples of such are the collection of lower dimensional projective spaces
for the complex or quaternionic projective spaces, and the splitting would be as-
sured by Novikov’s theorem for homeomorphisms or his general technique of proof
(Novikov’s ‘torus trick’).

I do not know of an adequate account of the Characteristic Variety Theorem in
the published literature.

In Princeton in the spring of 1967, Novikov, set about learning this recent
work from Sullivan. He discovered a correction which needed to be made in the
statement of the Hauptvermutung theorem dealing with the conditions on the 4th
cohomology.

Novikov’s ‘torus trick’: Suppose we have a PL (or smooth) manifold W homeo-
morphic to M ×Rn, with M a PL (or smooth) closed manifold. We wish to show
that W is PL homeomorphic (or diffeomorphic) to some N × Rn, where N is a
PL (or smooth) closed manifold. (This implies the topological invariance of the
rational Pontryagin classes but is considerably stronger).

Consider M × T n−1 contained in M × Rn, where T n−1 is the product of n − 1
circles, and try to find a PL (or smooth) codimension 1 closed U in W which is
homotopy equivalent to M × T n−1, (which is a codimension 1 surgery problem).
Taking a cyclic covering of U we get U homotopy equivalent to M × T n−2, etc.
thereby unravelling U one dimension at a time to get our desired N .

Milnor in his lectures used Siebenmann’s thesis, which generalized to the non
simply connected case the theorem of Browder-Levine-Livesay. This made Novi-
kov’s proof much more accessible and transparent.

In 1969 Rob Kirby gave a lecture at the Institute for Advanced Study on his
theorem that if all homotopy tori were PL homeomorphic, then the Annulus Con-
jecture would be true. The Annulus Conjecture states that if we have an embedded
Sn−1 × [0, 1] in Rn, then it is isotopic to the standard embedding, all in the topo-
logical category, (equivalent to the statement that any homeomorphism of Rn is



2206 Oberwolfach Report 36/2006

stable in the sense of Brown and Gluck). While his exact hypothesis is untrue, his
method, based on his torus trick proved inordinately powerful and was in the end
successful.

Kirby’s torus trick: Let h : Rn → Rn be a homeomorphism. Immerse the
punctured torus T0 = T n − {point} into Rn. Then h pulls back the standard PL
(or smooth) structure to a new one on T0. The end of T0 with this structure is
still PL equivalent to Sn−1 ×R, (compare my paper ‘Structures on M ×R’), and
thus T0 compactifies to a PL manifold, homotopy equivalent to the torus T n. If
this new manifold is PL equivalent to T n, and since PL equivalences are stable,
there is a little commutative diagram that shows h is stable.

The problem of the PL classification of homotopy tori was solved by Hsiang-
Shaneson and Wall, and as Siebenmann had pointed out, one could change the
original immersion in Kirby’s argument at will, and in particular compose with
finite covers. While there are many different PL homotopy tori, after taking a 2n

fold cover they are all the same. This established the annulus conjecture for n > 4
(Kirby).

The application of these ideas to the general problem of existence and unique-
ness of PL structures was carried out by Kirby and Siebenmann in a number
of papers, as well as their 1977 Annals Study, (see also Lashof-Rothenberg for a
different approach).

Novikov has stated in a recent article that Kirby and Siebenmann’s work is not
fully proved in the literature, because it relies on earlier work of Sullivan which is
not complete in the literature.

There is no such dependence.
The proof of the Annulus Conjecture depends on a very well understood argu-

ment in surgery theory, and the fact that the torus T n splits after suspension into
the wedge product of spheres. It does not depend on any results of Sullivan, not
even his calculation of G/PL, but on earlier work of Kervaire-Milnor calculating
the homotopy groups, nor does it use Novikov’s topological invariance of Pontrya-
gin classes. It depends strongly on Wall’s non simply connected surgery theory,
Farrell’s fibering theorem (generalizing Browder-Levine), and surgery on PL man-
ifolds. The calculation of the relevant surgery obstruction group was carried out
by Shaneson and by Wall.

Though some earlier versions of the triangulation theory used more surgery
arguments, Kirby-Siebenmann on page 139 of their book say that the only use
they make of surgery theory is in the proof of the Annulus Conjecture. One can
confidently say that there are no surgery gaps in this work.

Novikov is therefore also mistaken in his assertion that the Lipschitz structure
argument to give an alternate proof of the topological invariance of Pontryagin
classes is circular because it uses the Annulus Conjecture. The proof of the latter
is independent of Novikov’s theorem, as we discussed above.
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Siebenmann’s periodicity mistake

Diarmuid J. Crowley

In the essay “Periodicity and Topological Surgery” [KS1][pp.277- 283], Sieben-
mann investigates the 4-fold periodicity in the topological surgery exact sequence
and concludes with:

Theorem 1 (Theorem C5). For any compact TOP manifold Xm, m > 5, the
Sullivan-Wall long exact structure sequence is a long exact sequence of abelian
groups, and it is canonically isomorphic to the one for I4 × Xm. In particular
STOP (X) ∼= STOP (I4 × X).

Unfortunately, Siebenmann made a minor mistake involving base points so that
the above statement is incorrect when the boundary of X is empty. A correct
formulation of topological periodicity is

Theorem 2 (Theorem C5′). For any compact TOP manifold Xm, m > 5, the
Sullivan-Wall long exact structure sequence is a long exact sequence of abelian
groups. There is a canonical sequence of split injective homomorphisms to the
sequence for I4 × X which are isomorphisms if X has non-empty boundary. If
X has no boundary, the homomorphisms fail to be isomorphisms at the normal
invariant set where the cokernel is Z, and possibly at the structure set where the
cokernel is Z or 0. In particular there is an exact sequence of abelian groups
0 → STOP (X) → STOP (I4 × X) → Z.

Siebenmann’s base point error is in no way deep. Once one is aware of it, one
sees that Siebenmann’s proof may be easily corrected to give a correct proof of
Theorem C5′. The base point mistake appears in the diagrams in Theorem C4
and in sections §6, §7, §8, §9, and §11. For example, in §6, Siebenmann claims that
there is an equivalence θ0,p : G/TOP ∼= L4p(0). However, G/TOP is a connected
space whereas π0(L4p(0)) = Z. To see the problem in the statement of Theorem
C4, suppose that the boundary of X is empty and follow the (correct) convention
that in this case Xrel ∂ is X with a disjoint base point added, X+. Now

[I4 ×Xrel ∂, G/TOP ] = [X+, Ω4(G/TOP )] = Z× [X+, G/TOP ] 6= [X+, G/TOP ]

but Theorem C4 claims equality here. In all cases the diagrams given are indeed
commutative, but not all the maps are equivalences as claimed. However, when
a map fails to be an equivalence, it is always a question of having an equivalence
from a space to the base point component of a multi-component space. Thus
Siebenmann’s proof can be repaired simply by adding notation for the base point
component of a space in the appropriate places.

We conclude with some remarks about the literature which followed and related
topics.

1). Siebenmann said of his own proof that it was “... a typical application of F.
Quinn’s semi-simplicial formulation of Wall’s surgery” [KS1][p. 277]. A correct
statement of topological periodicity appeared in [N] where a detailed account of
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Quinn’s surgery spaces was also given. There is now also an elegant proof of topo-
logical periodicity available using algebraic surgery (see [R] in this report).

2). Using surgery spaces to prove periodicity, means that the periodicity of the
structure set itself is rather mysterious: if the boundary of X is non-empty, it
is shown that the surgery spaces STOP (X) and STOP (I4 × X) are the homotopy
fibers of homotopy equivalent homotopy fibre sequences and so have the same
homotopy groups. In particular

STOP (X) = π0(S
TOP (X)) ∼= π0(S

TOP (I4 × X)) = STOP (I4 × X).

However, one does not obtain an explicit construction of this map. This issue was
addressed by Cappell and Weinberger [CW] where a geometric construction of a
map STOP (X) → STOP (I4 × X) is given using PL tools, stating that “experts
should be able to . . . make these ideas (although not details) work topologically”.
Later Hutt [H] extended the Cappell-Weinberger construction to the topological
category and identified the “Cappell-Weinberger map” with Siebenmann’s map.
However, [CW] is very brief and, prima facie, [H] relies on other unpublished work
of the author. It is to be hoped that the work of [CW] and [H] can be expanded
upon in the future.

3). One of the features of topological surgery is that the surgery exact sequence
is a sequence of groups and homomorphisms. This remains true in the PL cate-
gory (since G/PL can be given and infinite loop space structure compatible with
the infinite loop space structure on G/TOP identified by Siebenmann). One may
ask whether this could also be true for the smooth surgery exact sequence (see
[N][p.83] for precisely this question). However, it has long been known that there
are smooth manifolds which are homotopy equivalent but for which the actions of
the L-group are different. It follows that the smooth surgery exact sequence is not
in general a sequence of groups and homomorphisms. For example, the action of
L8(0) on S3 ×S4 has an orbit with 28 distinct smooth structures. However, if one
takes M to be the total space of an S3-bundle over S4 which is fibre homotopy
equivalent to S3 ×S4 and with first Pontryagin class ±24 ∈ H4(M) ∼= Z, then the
action of L8(0) on M is trivial.

4). There are explicit maps

×CP 2 : STOP (X) → STOP (X×CP 2), E : STOP (I4×Xrel ∂) → STOP (X×CP 2)

where the latter map is given by extending by a homeomorphism. One can see
that the images of ×CP 2 and E are different but perhaps a procedure involving
structures on X × CP 2 could be used to compare the images and give a simpler
more explicit proof of periodicity.
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The Product Structure Theorem

James F. Davis

1. Product Structure Theorem

Notation: Greek letters: Γ, Σ for PL manifolds.
Roman letters: e.g. M , N for topological manifolds.

Definition 3. Two PL-structures Γ0, Γ1 on M are concordant if there is a PL-
structure Σ on M × I which restricts to Γi on M × i. Write Γ0 ∼ Γ1.

Definition 4. τPL(M) = concordance classes of PL-structures on M .

Assumption: M is a topological manifold of dimension greater than 4.

Product Structure Theorem. • Existence: Let Σ be a PL-structure on
M × R. Then there is a PL-structure Γ on M so that Σ ∼ Γ × R.

• Uniqueness: If Γ0 and Γ1 are PL-structures on M , and if Γ0×R ∼ Γ1×R,
then Γ0 ∼ Γ1.

Corollary 5. τPL(M) → τPL(M × R) is a bijection.

2. Ingredients

(i) Stable homeomorphism theorem ([1],[3])
[Requires PL-surgery and the computation of L∗(Z

n)]
(ii) Concordance implies isotopy ([2])

[Requires the s-cobordism theorem and Wh(Zn) = 0]

Stable Homeomorphism Theorem. π0(TOP (n)) = Z2, i.e. every orientation-
preserving homeomorphism h : Rn → Rn is isotopic to identity.

Concordance Implies Isotopy. Let Σ be a PL-structure on M × I and Γ0 its
restriction to M = M × 0. Then there is an isotopy ht : M × I → M × I with
h0 = Id and h1 : Γ0 × I → Σ a PL-isomorphism. (Furthermore ht is close to the
identity.)

Corollary 6. Γ0 ∼ Γ1 implies Γ0
∼=PL Γ1.
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Isotopy Implies Concordance. : Given two PL-structures Γ0 and Γ1 on M ,
and an isotopy ht : M → M with h0 =Id and h1 : Γ0

∼= Γ1, then h∗(Γ0 × I) is a
concordance Γ0 ∼ Γ1 where h(m, t) = (ht(m), t).

3. PST ⇒ Classification Theorem

Classification Theorem.

• Existence: M admits a PL-structure if and only if τM : M → BTOP lifts
to BPL.

• Uniqueness: If M admits a PL-structure, τPL(M) = [M, TOP/PL], i.e.
homotopy classes of lifts of τM to BPL.

Proof. (Existence) ⇒: Microbundles, etc.
⇐: Embed M →֒ RN , N large. Then

M × RN = τM ⊕ νM

and

τM ⊕ νM
//

��

τM

��
νM

π // M

So M × RN = π∗τM is a PL-bundle (since τM lifts) over a PL-manifold νM (an
open set in RN ), so M × RN is PL. By PST M is PL.

(Uniqueness) For M a PL-manifold, I indicate the inverse to the obvious map
τPL(M) → [M, G/TOP ]. A map M → TOP/PL gives a f.p. homeomorphism

M × RN

��
E

h // M

where E → M is a PL-bundle over a PL-space. By PST, we have a PL-structure
on M . �

The Product Structure Theorem is a special case of the Classification Theorem.

4. Two consequences of the Classification Theorem

Proposition 7. [2, p.301] Any compact topological manifold has the homotopy
type of a finite simplicial complex.

Proof. Embed the manifold Mn in Rn+k and let E be the normal Dk-bundle
(Hirsch, Annals 1966). Then E is a parallelizable topological manifold, hence
by the classification theorem admits a PL-structure, hence is a finite simplicial
complex. �
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Proposition 8. [2, p.301] Every compact topological manifold has a preferred
simple homotopy type, i.e. given a homeomorphism h : M → M ′ of compact
manifolds and two normal disk bundles EM and EM ′ triangulated as above, the
map

EM
π
−→ M

h
−→ M ′ i

−→ EM ′

is a simple homotopy equivalence.

This is a consequence of uniqueness theorems for normal disk bundles.

5. Proof of PST assuming CII

Step 1: State relative versions of PST and CII

Step 2: Uniqueness follows from a relative form of existence.

Step 3: By chart-by-chart induction, reduce to M = Rn.

We next deal with the PST for M = Rn, n > 4. In fact we prove

Theorem 9. τPL(Rn) = ∗ for n > 4.

Lemma 10. Any two PL-structures on Rn are PL-isomorphic.

Proof. Let Γ be a PL-structure on Rn. Use Browder’s End Theorem to complete
it to a PL-structure Σ on the disk. The complement of the interior of a simplex
in Rn is an PL h-cobordism, coning off on the disk given a PL-isomorphism to
the standard Dn. �

Proof of the PST for M = Rn. Let Γ be a PL-structure on Rn. Then, by the
lemma, there is a homeomorphism h : Rn → Rn so that Γ = h∗ std. By the stable
homeomorphism theorem, π0(TOP (n)) = Z/2, so h is topologically isotopy to
i, the identity, or r, reflection through a hyperplane. Thus h∗ std is isotopic to
i∗ std = std or h∗ std. Apply isotopy implies concordance. �
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The classification of homotopy tori

Ian Hambleton

A key ingredient in the work of Kirby and Siebenmann was the classification
of PL-structures on the n-torus T n, or more generally on T n × Dk, relative to
the standard structure on ∂(T n × Dk) = T n × Sk−1. The results needed were
proved using the surgery exact sequence of Browder, Novikov, Sullivan and Wall
[2]. Let SPL(T n×Dk, T n×Sk−1) denote the equivalence classes of PL-structures
on T n × Sk−1, relative to the boundary. The following result was proved by
C. T. C. Wall [2, 15A], and at the same time by W.-C. Hsiang and J. Shaneson
[1].

Theorem 1. There is a bijection

SPL(T n × Dk, T n × Sk−1) ∼= H3−k(T n;Z/2),

for n + k > 5, which is natural under finite coverings.

Remarks:

1. All fake tori are parallelisable and smoothable.
2. For each fake structure there is a finite covering (of degree 6 2n) which is
standard.
3. After the work of Kirby and Siebenmann it was shown that

STOP (T n × Dk, T n × Sk−1) = 0

for n + k > 5, so all the fake PL-structures are homeomorphic to the standard
structure.

In the talk I described a method for factoring the PL-surgery obstruction map
through an “assembly” map (based on the work of Quinn and Ranicki). The com-
putation of the surgery exact sequence and the determination of the structure set
follows from a purely algebraic calculation of the assembly map, taking advantage
of the Shaneson-Wall codimension 1 splitting theorem [2, 12B].
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The homotopy type of G/PL and the characteristic variety theorem

Qayum Khan and Tibor Macko

To determine the structure set of a manifold via the surgery exact sequence
one needs to understand the normal invariants. The theme of the talk was to
describe two approaches to this, both due to Sullivan, a homotopy theoretic and
a geometric approach.
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1. Homotopy theory (TM). For a CAT manifold X , where CAT = DIFF ,
PL, or TOP , transversality yields isomorphisms

NCAT
∂ (X × Dk) ∼= [X × Dk, ∂(X × Dk); G/CAT, ∗],

where G/CAT is the homotopy fiber of the map BCAT → BG. To determine
this group one needs to understand the homotopy type of G/CAT . The following
result for CAT = PL was first obtained by Sullivan in the unpublished notes [Su].
A published proof appears in the book of Madsen and Milgram [MM, chapter 4].
Localization of spaces is used in the statement:

Theorem A ([Su],[MM]). There are compatible homotopy equivalences

G/PL(2) ≃ F × Πi>2K(Z(2), 4i) × K(Z2, 4i − 2),

G/PL(odd) ≃ BO(odd),

G/PL(0) ≃ BO(0) ≃ Πi>1K(Q, 4i),

where F is a 2-stage Postnikov system K(Z(2), 4) ×βSq2 K(Z2, 2).

We gave a sketch of the proof. The ingredients are:

• The surgery exact sequence for X = Dk shows that the homotopy groups
of the spaces on the left hand side and the right hand side in Theorem A
are isomorphic. It remains to find the maps realizing the isomorphisms.

• These maps are constructed as representatives of the cohomology classes
which arise from functionals on the homology or the real K-theory of
G/PL using suitable universal coefficient theorems.

• Thom and Conner-Floyd provide a relation of the oriented bordism spectra
to the Eilenberg-MacLane spectra when localized at 2 and to the real K-
theory when localized at odd primes ([Th], [CF]).

• Finally, one uses the surgery obstruction map

σ : MSO∗(G/PL) → L∗(Z[π1(X)])

and the results of Thom and Conner-Floyd to obtain the functionals. At
odd primes a surgery product formula is also used.

2. Geometry (QK). The geometric approach to computing normal invariants
goes under the name of the characteristic variety theorem. It states that ele-
ments of the group of normal invariants NPL(X) are detected by a collection of
simply-connected surgery obstructions, over F2 and over Z modulo various r, of
restrictions to various singular Zr-submanifolds. We do not address the question
of realizability of obstructions.

Definition ([Su]). Let r > 0. A Zr-manifold is a pair (Y, δY ) consisting of a
compact, connected, oriented manifold Y and an orientation-preserving identifica-
tion ∂Y ∼=

⊔
r δY . We denote Y as the quotient of Y by the r-to-1 map from ∂Y

to δY . The pair (Y, δY ) possesses an orientation class [Y ] ∈ Hdim(Y )(Y ; Zr). A
singular Zr-submanifold in a topological space X is a pair ((Y, δY ), β) consisting of
a Zr-manifold (Y, δY ) and a continuous map β : Y → X . There is also a notion of
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cobordism of n-dimensional singular Zr-manifolds in X , with the cobordism group
denoted by Ωn(X, Zr).

Dennis Sullivan asserted a less precise version of the following theorem in his
unpublished notes [Su, Thm. II.4′]. Also, the proof there is not rigorous. We
clarify the statement:

Theorem B ([Su]). Let X be a closed PL-manifold of dimension n > 0. Then
there exist N > 0, odd M > 0, and an injective function

Σ : NPL(X) −−−−→
∏

0<4i−26n

Hom(Ω4i−2(X, Z2), Z2)

×
∏

0<4i6n

Hom
(
Ω4i(X, Z), Z(2)

)
×

∏

0<4i6n

Hom(Ω4i(X, Z2N ), Z2N )

×
∏

06j

Hom
(
Ω4j(X, Z), Z(odd)

)
×

∏

06j

Hom(Ω4j(X, ZM ), ZM )

given by the surgery obstructions σ∗ of the restrictions to singular Zr-submanifolds
in X:

(f : M → X, ξ) 7−→
(
((Y, δY ), β) 7→ σ∗(β

∗f → Y , νβ ⊕ β∗ξ) mod r
)
.

The second part of the talk outlined Sullivan’s sketch of proof. Using the ho-
motopy type of G/PL stated in Theorem A, Sullivan constructs another injective
function Σ′ with the same domain and codomain. The rigorous proof of the state-
ment that Σ = Σ′ (hence that Σ is injective) would require the characteristic
classes formulae for surgery obstructions [TW], as well as the addressing of certain
issues arising from the different shape of the universal coefficient theorem for real
K-theory. The latter seems to be the most controversial part of the argument.
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Milnor’s counter-example to the Hauptvermutung

Andrew Korzeniewski

The (non-manifold) Hauptvermutung states that if two simplicial complexes X1

and X2 are homeomorphic as topological spaces, then after suitable subdivision
they are isomorphic as simplicial complexes. In 1961 Milnor [1] shows that this is
not the case by constructing a counter-example. We outline his construction here.

Let L1 and L2 be lens spaces which are homotopy equivalent but not homeo-
morphic. We take the product L1 × σn and cone off the boundary L1 × ∂σn to
form a new complex X1; we form the complex X2 from L2 by the same process.
By a Theorem of Mazur the complexes X1 and X2 are homeomorphic. The spaces
L1 and L2 are distinguished by means of their Reidemeister torsion which depends
only on the simplicial structures of these lens spaces. Milnor constructs a similar
torsion invariant for the spaces X1 and X2 which distinguishes their simplicial
structures, hence proving that the spaces X1 and X2 are a counter-example to the
Hauptvermutung.
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A Proof of Rohlin’s Theorem and the Computation of the Low
Dimensional Spin Bordism Groups

Matthias Kreck

Theorem 1. (Rohlin 1952) The signature of a closed 4-dimensional smooth Spin
manifold M is divisible by 16.

This result is proven by Rohlin in the last paper of a series of four papers. On
the way he gives elementary proofs of the result that oriented bordism groups are
trivial in dimension 1,2, and 3 and Z in dimension 4. These proofs are rather
short. Kirby [1] gave detailed elementary proofs of these results, and Teichner [2]
applied this to give a new beautiful roof of Rohlin’s theorem. In this note I sketch
Teichner’s proof.

The main input is a generalized Atiyah-Hirzebruch spectral sequence called the
James spectral sequence. We only need the following special case. Let X be a
CW -complex and w : X → K(Z/2, 2) a fibration (a class in H2(X ; Z/2)). Let
w2 : BSO → K(Z/2, 2) the classifying map of the second Stiefel-Whitney class.
We pull the fibration w : X → K(Z/2, 2) and w2 back to obtain a fibration de-
noted X(w) over BSO.
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We denote the normal bordism group of this fibration by Ωn(X(w)). The James

spectral sequence computes this group. It’s E2 term is Hi(X ; ΩSpin
j ).

Now we consider the special case, where X = K(Z/2, 2) and w is the identity.
Then X(w) is nothing but the trivial fibration BSO over BSO and so

Ωn(K(Z/2, 2), id) = Ωn,

the oriented bordism group. The James spectral sequence computes this well
known group in terms of the more complicated Spin bordism groups. We want to
argue backwards and compute ΩSpin

n through Ωn in small dimension. We list the
homology groups of K(Z/2, 2):

H2(K(Z/2, 2); Z) = Z/2, H3(K(Z/2, 2); Z) = {0},

H4(K(Z/2, 2); Z) = Z/4, H5(K(Z/2, 2); Z) = Z/2.

Using this and the vanishing of Ωn for 1 6 n 6 3 one immediately sees from the
James spectral sequence that

ΩSpin
1

∼= Z/2, ΩSpin
2

∼= Z/2.

The case of ΩSpin
3 is not obvious since there is an unknown differential. But we

use the fact that ΩSpin
3 = {0}. For example this follows from Rohlin’s elementary

computation of framed bordism in dimension 3, which implies that all 3-manifolds
are framed bordant to a framing on S3. This implies that all 3-dimensional Spin-
manifolds are bordant to S3 with some Spin-structure. But there is a unique
Spin-structure on S3.

Now we look at the line in the James spectral sequence computing Ω4. All
d2−differentials on this line are given by reduction mod 2 (if necessary) composed
by the dual of x 7→ Sq2x + wx. One easily checks that they are all zero. The
case of H5(X ; Z) → H3(X ; Z/2) is a bit more complicated. But the 5-manifold
SU(3)/SO(3) realizes the non-trivial element in H5(X ; Z) = Z/2 implying that all
differentials starting from H5(X ; Z/2) are trivial.

Thus, the entries in the E∞-term on this line are ΩSpin
4 , Z/2, Z/2 and Z/4. The

spectral sequence gives an exact sequence

0 → ΩSpin
4 → Ω4 → C → 0,

where C has order 16. Now we use that Ω4
∼= Z and obtain an exact sequence

C → ΩSpin
4 → Ω4 → Z/16 → 0.

This implies Rohlin’s theorem. Our arguments furthermore imply:

Theorem 2. ΩSpin
1

∼= Z/2, Ω
Spin
2

∼= Z/2 and ΩSpin
4

∼= Z.
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TOP/PL using bounded surgery

Erik Kjær Pedersen

The talk describes how TOP/PL is determined by Ferry and Pedersen, using
bounded surgery theory. Consider the Browder, Novikov, Sullivan, Wall surgery
exact sequence for the PL case:

→ [Σ(M/∂M), G/PL]∗ → Ln+1(Zπ) →

Sh
PL(M rel∂) → [M/∂M, G/PL]∗ → Ln(Zπ)

Here M is a given n-dimensional PL-manifold. This is an exact sequence when
n > 5. We note however that all the terms are defined also for n 6 4, and the
only map that is not defined is the action of the L-group on the structure set,
which is only partially defined. In the case of M an n-dimensional disk we get
a map πn(G/PL) → Ln(Z) which is an isomorphism for n > 5 by the Poincaré
conjecture. For n = 2 it is the Arf invariant map, and since the Arf invariant
can be realized by a normal map T 2 → S2 it is an isomorphism. For n = 4 the
map is given by the index divided by 8, and Rohlin’s theorem implies the map is
multiplication by 2.

Crossing with Rk maps this sequence into the bounded surgery exact sequence
parameterized by Rk, and if we make sure that n + k > 5 this sequence is exact.
The map crossing with Rk is shown to be an isomorphism of L-groups by Ranicki,
and on the normal invariant term it is obviously an isomorphism since Rk is con-
tractible. We can thus compute the maps in the bounded surgery exact sequence,
and it follows that the bounded structure set for Dn × Rk has one element for
n 6= 3 and n + k > 5, and two elements when n = 3 and n + k > 5. It is easy to

construct a map from πn(T̃OP (k), P̃L(k)) to this Rk-bounded structure set, and
using a trick blowing up the metric of Dn near infinity of Rk this map is seen to
be a monomorphism. In doing this, the usual application of local contractibility of
the space of homeomorphism is replaced by an Alexander isotopy, and the usual
classification of tori is replaced by the classification of Rk up to Rk-bounded ho-

motopy equivalence. To see that π3(T̃OP (k), P̃L(k)) is nontrivial for n + k > 6
we need to use Quinn’s end theorem in the simply connected case. Notice we
lose one dimension here since we can not use Quinn’s end theorem to produce a
4-dimensional PL end.
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Handlebody decompositions of high-dimensional TOP manifolds

Ulrich Pennig

A handlebody decomposition of a CAT manifold W on a CAT submanifold M ⊂
W (CAT ∈ {DIFF, PL, TOP}) is a filtration of W the form

M = M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂
⋃

i

Mi = W ,

such that each submanifold Mi is obtained from Mi−1 by attaching a handle, i.e.
for Hi = Mi\Mi−1 the following CAT isomorphism holds:

(Hi, Hi ∩ Mi−1) ∼=
(
Dk, Sk−1

)
× Dm−k for some 0 6 k 6 m.

In the category of differentiable manifolds the existence of such decompositions is
shown using the arguments of Morse theory. The case of PL handlebodies is based
on the second derived of a triangulation of (W, M), in which the handles are easily
identified (see [2]). However, in the case of high-dimensional (i.e. dim(W ) > 6)
TOP manifolds, the existence proof for handlebody decompositions requires more
elaborate theorems, like a ”local version” of the product structure theorem (LPST)
and the concordance implies isotopy theorem (CII). It was published in the book of
Kirby and Siebenmann in 1977 (see [1]) and was presented in this talk. Its basic
idea is to cover W by open sets that carry PL structures and contain a closed
covering of W . To locally reduce the TOP to the PL case of the handlebody
theorem the PL structures on the overlaps of the open regions have to be taken
care of. This is where an LPST argument enters, which requires a careful treatment
in the case of 6-dimensional manifolds with boundary. An application emphasizing
the importance of handlebody decompositions is given by a result of M.Cohen and
Sanderson: A compact TOP manifold that is a handlebody is homeomorphic to
the mapping cylinder Map(f) of a map f : ∂W → X into a finite CW complex X .

References

[1] Kirby, Robion C. and Siebenmann, Laurence C., Foundational essays on topological mani-
folds, smoothings and triangulations, Princeton University Press (1977).

[2] Rourke, C. P. and Sanderson, B. J., Introduction to piecewise-linear topology, Springer-
Verlag (1972).

Periodicity and the Hauptvermutung

Frank Quinn

A “relaxed” version of the structure set Ŝ(M) was described for which the
surgery exact sequence is exact in all dimensions. Homology equivalence over
Z[π1M ] is allowed to get exactness in dimension 3, and the Poincaré homology
sphere P represents a nontrivial element in SPL(S3). Carefully controlled con-
nected sums with S2 × S2 are allowed in dimension 4. The Poincaré conjecture
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in dimensions 6= 3 (stable in dimension 4) then gives a quick demonstration that
G/PL → L has fiber K(Z/2, 3) over the basepoint component.

The result that G/TOP → L is an equivalence to the basepoint component
comes from topological transversality, the high-dimensional topological Poincaré
conjecture (the 3-dimensional Poincaré conjecture is actually irrelevant here), and
Freedman’s result that the Poincaré sphere bounds a contractible topological man-
ifold. Freedman’s work can be avoided using the “double suspension” result that
(cone (P )) × R is a topological manifold (there is a direct proof of this case).

The Siebenmann periodicity STOP (M) → STOP (M × D4) is a formal conse-
quence of periodicity in L, the equivalence of G/TOP with the basepoint compo-
nent of L, and a space formulation of surgery. The periodicity map is a bijection
if M has boundary, and an injection with cokernel at most Z if M is closed. The
cokernel comes from the fact that G/TOP is the basepoint component of L, and
π0L ≃ Z.

Use of the relaxed structure set also provides an explicit description of PL
homotopy tori. A decomposition T n = T 3 × T n−3 gives a homology equivalence

(T 3#P ) × T n−3 → T n

where as above P denotes the Poincaré homology sphere. These clearly realize
the appropriate PL normal invariants. These are canonically h-cobordant (by a
“plus” construction) to the required homotopy equivalences.

A sketch was also given of a much more direct approach to the Hauptvermutung
using controlled topology. This uses “Ends of maps I”, which appeared in the
Annals just two years after the publication of the Kirby-Siebenmann book.

The manifold Hauptvermutung and the Siebenmann periodicity from
the algebraic surgery point of view.

Andrew Ranicki

The manifold Hauptvermutung is the conjecture that every homeomorphism h :
L → M of compact n-dimensional PL manifolds is homotopic to a PL homeomor-
phism – see [3] for the background. This conjecture has been known to be false
ever since the 1969 work of Kirby and Siebenmann [1], with counterexamples in
every dimension n > 5. The original counterexamples were constructed geometri-
cally. Counterexamples may also be constructed using algebra and the realization
theorem of the Wall non-simply-connected surgery obstruction theory, as follows.

For n > 5 the structure sets SPL(M), STOP (M) of a closed n-dimensional
PL manifold M are abelian groups which fit into a commutative braid of exact
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sequences

Ln+1(Z[π1(M)])
((QQ

QQ

""
STOP (M)

((QQ
QQ

$$
H4(M ; Z2)

SPL(M)

88ppp

&&NN
N

[M, G/TOP ]

55llll

))SSSS

H3(M ; Z2)

66mmmm

<<
[M, G/PL]

66mmmm

::
Ln(Z[π1(M)])

with
H3(M ; Z2) → SPL(M) ; x 7→ s(g : L → M)

sending x ∈ H3(M ; Z2) = [M, TOP/PL] to the structure invariant s(g) ∈ SPL(M)
of a homotopy equivalence g : L → M of PL manifolds such that

νM − (g−1)∗νL = [x]

∈ im([M, TOP/PL] → [M, BPL]) = ker([M, BPL] → [M, BTOP ])

and g is homotopic to a homeomorphism h.
Let M = T n, so that π1(M) = Zn, STOP (M) = 0. The morphism

Ln+1(Z[Zn]) =

n⊕

k=0

(
n

k

)
Lk+1(Z) → SPL(M)

= H3(M ; Z2) =

(
n

3

)
L4(Z)/2L4(Z)

is just the projection, with E8 = 1 ∈ L4(Z) = Z mapping to the generator of
L4(Z)/2L4(Z) = Z2. For any x 6= 0 ∈ H3(M ; Z2) there exists

y 6= 0 ∈

(
n

3

)
L4(Z) ⊂ Ln+1(Z[Zn])

with image x ∈ SPL(M) = H3(M ; Z2). Realize y ∈ Ln+1(Z[Zn]) as the rel ∂
surgery obstruction of a normal map in the PL category

(f ; g, 1) : (Kn+1; Ln, Mn) → Mn × (I; {0}, {1})

such that g : L → M is a homotopy equivalence with structure invariant

s(g) = x 6= 0 ∈ SPL(M) = H3(M ; Z2) ,

and g is homotopic to a homeomorphism h. For any T 3 ⊂ M such that 〈x, [T 3]〉 =
1 ∈ Z2 it is possible to choose f PL transverse at T 3 × I ⊂ M × I. The 4-
dimensional normal map in the PL category

(f ; g, 1)| : (W 4; τ3, T 3) = (f ; g, 1)−1(T 3 × (I; {0}, {1})) → T 3 × (I; {0}, {1})

has the quadratic form E8 as simply-connected kernel, and g| : τ3 = T 3#Σ3 →
T 3 is a homology equivalence, with Σ3 the Poincaré homology 3-sphere. Now
g is not homotopic to a PL homeomorphism by Rohlin’s theorem, so that the
homeomorphism h is a counterexample to the manifold Hauptvermutung.
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The (corrected) Siebenmann periodicity theorem STOP
∂ (M) ∼= STOP

∂ (M × D4)
([1, C.5,p.283]) for an n-dimensional topological manifold M with nonempty bound-
ary ∂M (and as ever n > 5) has the following algebraic surgery interpretation.
For any space M there is defined a commutative braid of exact sequences

Ln+1(Z[π1(M)])

((RRRR

##
Sn+1(M)

''OOO

##
Hn(M ; L0(Z))

''OO
OO

!!
Hn−1(M ; L•)

Sn+1(M)

88ppp

&&NN
NN

Hn(M ; L•)

66mmmm

((QQ
QQ

Sn(M)

88pppp

&&NNN

Hn+1(M ; L0(Z))

66llll

<<
Hn(M ; L•)

77oooo

;;
Ln(Z[π1(M)])

77oooo

<<
Sn(M)

with L• (resp. L•) the 1- (resp. 0-) connective L-spectrum of Z (Ranicki [2, 25.1]).
In particular, if M is an n-dimensional CW complex then

Sn+k(M) = Sn+k(M) (k > 2)

and there is defined an exact sequence

0 → Sn+1(M) → Sn+1(M) → Hn(M ; L0(Z)) → Sn(M) → Sn(M) → . . . .

Let now M be a connected n-dimensional manifold with (possibly empty)
boundary and n > 5. By [2, 18.5,25.4] there is defined an isomorphism between the
1-connective algebraic surgery exact sequence and the topological surgery exact
sequence for the rel ∂ structure set

. . . // Ln+1(Z[π1(M)]) // STOP
∂ (M) //

∼=
��

[M, G/TOP ]

∼=
��

// Ln(Z[π1(M)])

. . . // Ln+1(Z[π1(M)]) // Sn+1(M) // Hn(M ; L•) // Ln(Z[π1(M)])

with

STOP
∂ (M × Dk) =

{
Sn+1(M) if k = 0

Sn+k+1(M) = Sn+k+1(M) if k > 1 ,

with an exact sequence

0 → STOP
∂ (M) → STOP

∂ (M × D4) → Hn(M ; L0(Z)) → Sn(M) → Sn(M) .

If M is closed then Hn(M ; L0(Z)) = L0(Z) = Z. For example, the case M = Sn

0 → STOP (Sn) = 0 → STOP
∂ (Sn × D4) → L0(Z) → Sn(Sn) → Sn(Sn) = 0

gives the canonical counterexample to the Siebenmann periodicity theorem

STOP (Sn) = 0 6= STOP
∂ (Sn × D4) = Sn+1(S

n) = L0(Z) .

On the other hand, the periodicity theorem holds in the case M = T n

0 → STOP (T n) = 0 → STOP
∂ (T n × D4) = 0 → L0(Z) → Sn(T n) → Sn(T n) = 0 ,
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with

STOP (T n) = STOP
∂ (T n × Dk) = 0 (k > 0) .

If M has non-empty boundary then Hn(M ; L0(Z)) = 0 and the periodicity theorem
holds, with

STOP
∂ (M) = STOP

∂ (M × D4) .
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Identifying the algebraic and topological surgery exact sequences

Michael Weiss

For a closed m-dimensional topological manifold Mm, the geometric surgery
fibration sequence has the form

S(M) → N (M) → Lm(M)

where S(M) is the block structure space, N (M) is the space of degree 1 nor-
mal maps to M and L(M) is the appropriate L-theory space, so πkLm(M) =
Lk+m(π1M) for k > 0. These spaces are geometric realizations of simplicial sets
(often without degeneracy operators). In particular Lm(M) is defined following
Ranicki, so that the 0-simplices are certain chain complexes with m-dimensional
nondegenerate quadratic structure.

One of the main points was to prove that this sequence is indeed a homotopy
fibration sequence if m > 5 (using ideas related to the concept of a Kan fibration).
The algebraic surgery fibration sequence has the form

hofiber(α) −→ Hm(X ; L•(⋆ ))
α

−→ Lm(X)

where X is a simplicial complex or ∆-set. The spaces in it are geometric real-
izations of simplicial sets without degeneracy operators. The details are as in
Ranicki’s blue book, Algebraic L-theory and topological manifolds.

Using a homotopy equivalence M → X (where Mm is a closed manifold and
X is a simplicial complex) and working with Poincaré’s dual cell decomposition
of X , and making full use of topological transversality, one can produce a map
from the geometric surgery sequence of M to the algebraic surgery sequence of
X . It was the second main point of the talk to show that this is “almost” an
equivalence for m > 5, except for a well-known small deviation (caused by the fact
that the comparison map from G/TOP to L0(⋆ ) is not a homotopy equivalence
but a 0-connected Postnikov cover). The proof can be given by induction on the
number of handles in a topological handlebody decomposition of M . Of course,
this strategy makes it necessary to generalize the statement from closed manifolds
to compact manifolds with boundary.
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A user’s guide to the algebraic theory of surgery

Masayuki Yamasaki

I gave a brief introduction to the algebraic theory of surgery. The talk was based
on Andrew Ranicki’s blue book [2].

First I described the 4-periodic L-spectrum and discussed that the 4-periodicity
comes from the double skew-suspension. Next I mentioned the assembly map
and the 4-periodic algebraic surgery exact sequence. Then I discussed about
the q-connected versions of these. Finally I quoted a theorem due to Aravinda,
Farrell and Roushon [1] which says that the assembly map Hi(E(K); L•(Z)) →
Li(π1(E(K))) is an isomorphism for every i ∈ Z, where E(K) denotes the exterior
of a non-split link K, and showed how the authors used algebraic theory of surgery
to prove this.
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