Stable existence of incompressible 3-manifolds in 4-manifolds

Qayum Khan ${ }^{\text {a,* }}$, Gerrit Smith
${ }^{\text {a }}$ Department of Mathematics, Washington University, Saint Louis, MO 63130, USA

A R T I C L E I N F O

Article history:

Received 30 June 2017
Received in revised form 11 April 2019
Accepted 11 April 2019
Available online 16 April 2019

Keywords:

Smooth 4-manifolds
Amalgamated product
Stabilization
Group homology
Surgery
Splitting

Abstract

Given a separating embedded connected 3-manifold in a closed 4-manifold, the Seifert-van Kampen theorem implies that the fundamental group of the 4-manifold is an amalgamated product along the fundamental group of the 3 -manifold. In the other direction, given a closed 4-manifold whose fundamental group admits an injective amalgamated product structure along the fundamental group of a 3 -manifold, is there a corresponding geometric-topological decomposition of the 4-manifold in a stable sense? We find an algebraic-topological splitting criterion in terms of the orientation classes and universal covers. Also, we equivariantly generalize the Lickorish-Wallace theorem to regular covers.

© 2019 Published by Elsevier B.V.

1. Introduction

In this paper, we examine the correspondence between algebraic topology and the stable geometric topology of 4-dimensional manifolds. Two 4-manifolds are stably equivalent if they become diffeomorphic after forming the connected sum with finitely many copies of $S^{2} \times S^{2}$. Note this does not change the fundamental group, signature, or spin of a 4-manifold, but does change the second Betti number. As in stable homotopy theory, computations are more tractable and still distinguish many spaces. The Whitney trick, which in higher dimensions allows for mirroring between topology and algebra, cannot be used in 4-manifolds since a disc may intersect itself. By stabilization of the 4-manifold, self-intersections of a disc may be removed, by a modification called the Norman trick [8, 2.1].

The Kneser conjecture in 3-manifold topology states that if the fundamental group of a closed 3-manifold X is a free product $G_{-} * G_{+}$, then $X \cong X_{-} \# X_{+}$where $X_{ \pm}$have fundamental group $G_{ \pm}$respectively. This conjecture was proved by J Stallings in his dissertation (see [24, 1.B.3, 2.B.3]). Later, C. Feustel [9] and G.A. Swarup [25] proved a generalized version of the conjecture when the fundamental group admits an injective amalgamated product along a surface group.

[^0]Following Hillman's work [12] on the 4-dimensional version of the Kneser conjecture, Kreck-LückTeichner proved the 4-dimensional conjecture is false [15] but is true if one allows for stabilization [16]. We investigate the problem of stably realizing injective amalgamated product decompositions of the fundamental group of a 4-manifold via separating embedded codimension-one submanifolds.

1.1. Bistable results

Our results on stable embeddings vary according to the so-called w_{2}-type of the 4 -manifold. So we first consider a weaker equivalence relation. We call 4 -manifolds bistably diffeomorphic if they become diffeomorphic after connecting sum each with finitely many copies of the complex-projective plane $\mathbb{C} P_{2}$ (nonspin) and its orientation-reversal $\overline{\mathbb{C} P_{2}}$. For any oriented 4 -manifold X, denote

$$
X(r):=X \# r\left(S^{2} \times S^{2}\right) \quad X(a, b):=X \# a\left(\mathbb{C} P_{2}\right) \# b\left(\overline{\mathbb{C} P_{2}}\right)
$$

Stable implies bistable, as $\left(S^{2} \times S^{2}\right) \#\left(\mathbb{C} P_{2}\right) \approx 2\left(\mathbb{C} P_{2}\right) \#\left(\overline{\mathbb{C} P_{2}}\right)$ [28, Cor. 1, Lem. 1].
Given a nonempty connected CW-complex A, by a continuous map $u: A \longrightarrow B \Gamma$ classifying the universal cover \widetilde{A}, we mean the induced map $u_{\#}$ on fundamental groups is an isomorphism, for some basepoints. The map u is uniquely determined up to homotopy and composition with self-homotopy equivalences $B \alpha$: $B \Gamma \longrightarrow B \Gamma$ for α an automorphism of Γ. By a connected subcomplex being incompressible, we shall mean that the inclusion induces a monomorphism on fundamental groups.

Theorem 1.1. Let X be a oriented closed smooth 4-manifold. Let $c: X \longrightarrow B G$ classify its universal cover. Let X_{0} be a connected oriented closed 3-manifold with fundamental group G_{0}. Suppose $G=G_{-} *_{G_{0}} G_{+}$ with $G_{0} \subset G_{ \pm}$. There exists an incompressible embedding of X_{0} in some bistabilization $X(a, b)$ inducing the given injective amalgamation of fundamental groups, if and only if there exists a map $d: X_{0} \longrightarrow B G_{0}$ classifying its universal cover and satisfying the equation

$$
\begin{equation*}
d_{*}\left[X_{0}\right]=\partial c_{*}[X] \in H_{3}\left(G_{0} ; \mathbb{Z}\right) \tag{1.1}
\end{equation*}
$$

with ∂ the boundary in a Mayer-Vietoris sequence in group homology [4, III:6a].
The simplest case of $G_{0}=1$ was done transparently by J. Hillman [12], whose hands-on approach with direct manipulation of handles we generalize in this paper.

Corollary 1.2 (Hillman). Let X be a connected orientable closed smooth 4-manifold whose fundamental group is a free product $G_{-} * G_{+}$. Some bistabilization $X(a, b)$ is diffeomorphic to a connected sum $X_{-} \# X_{+}$with $X_{ \pm}$having fundamental group $G_{ \pm}$respectively.

Similarly, when $G_{0}=\mathbb{Z}$, note X is bistably diffeomorphic to some $X_{-} \cup_{S^{1} \times S^{2}} X_{+}$.
Proof. Here $G_{0}=1$, hence $H_{3}\left(G_{0}\right)=0$. Take $X_{0}=S^{3}$ and d the constant map.

The proof of Theorem 1.1 generalizes Hillman's strategy for proving Corollary 1.2 and employs an equivariant generalization of the Lickorish-Wallace theorem (§2). Theorem 2.1 is a bordism version that slides 1-handles then does Wallace's trick. Wallace's proof of Corollary 2.2 relied upon the Rohlin-Thom theorem $\left(\Omega_{3}^{S O}=0\right)$.

1.2. Stable results

Shortly after Hillman's result, Kreck-Lück-Teichner offered an alternative proof, using Kreck's machinery of modified surgery theory [18]. They were able to replace bistabilization with stabilization, due to a careful analysis of w_{2}-types and triviality of 3 -plane bundles over embedded 2 -spheres in certain 5 -dimensional cobordisms [16]. In general, stabilization is required [15]. Regarding the removal of $S^{2} \times S^{2}$ factors (destabilization), see [13] and [14].

Recall that a (stable) spin structure s on a smooth oriented manifold M is a homotopy-commutative diagram (reduction of structure groups in [20, II:1.3]):

Theorem 1.3 (Totally nonspin). Let X be a oriented closed smooth 4-manifold whose universal cover has no spin structure. Let $c: X \longrightarrow B G$ classify this cover. Let X_{0} be a connected oriented closed 3-manifold with fundamental group G_{0}. Suppose $G=G_{-} *_{G_{0}} G_{+}$with $G_{0} \subset G_{ \pm}$. There exists an incompressible embedding of X_{0} in some $X(r)$ inducing the given injective amalgam of fundamental groups, if and only if there is $d: X_{0} \longrightarrow B G_{0}$ classifying its universal cover satisfying (1.1).

Any oriented manifold has a spin structure if and only if w_{2} of its tangent bundle vanishes [20]. So any oriented 3-manifold has a spin structure (as $w_{2}=v_{2}=0$).

Theorem 1.4 (Spinnable). Let X be a oriented closed smooth 4-manifold that admits some spin structure. Let $c: X \longrightarrow B G$ classify the universal cover. Let X_{0} be a connected oriented closed 3-manifold with fundamental group G_{0}. Suppose $G=G_{-} *_{G_{0}} G_{+}$with $G_{0} \subset G_{ \pm}$. There exists an incompressible embedding of X_{0} in a stabilization $X(r)$ inducing the given injective amalgam of fundamental groups, if and only if there exist a map $d: X_{0} \longrightarrow B G_{0}$ classifying its universal cover and spin structures s on X and t on X_{0} satisfying:

$$
\begin{equation*}
\left[X_{0}, t, d\right]=\partial[X, s, c] \in \Omega_{3}^{\mathrm{Spin}}\left(B G_{0}\right), \tag{1.2}
\end{equation*}
$$

with ∂ the boundary map in a Mayer-Vietoris sequence in spin bordism [7, 5.7].
Observe that (1.2) is a lift of (1.1), via the cobordism-Hurewicz homomorphism

$$
\Omega_{3}^{\mathrm{Spin}}\left(B G_{0}\right) \xrightarrow{e p i} \Omega_{3}^{S O}\left(B G_{0}\right) \xrightarrow{i s o} H_{3}\left(B G_{0}\right) .
$$

Finally, we generalize Theorem 1.4 to only require that \widetilde{X} admits a spin structure. In order to understand the more delicate criterion, we state a lemma and definition.

Lemma 1.5. Let $u: Y \longrightarrow B \Gamma$ classify the universal cover of an oriented connected smooth manifold Y. The universal cover \widetilde{Y} admits a spin structure if and only if there is a class $w_{2}^{u} \in H^{2}(\Gamma ; \mathbb{Z} / 2)$ satisfying the equation $w_{2}(T Y)=u^{*}\left(w_{2}^{u}\right)$. When such a class exists it is unique.

The secondary characteristic class w_{2}^{u} will vanish if Y admits a spin structure. The following definition is rather delicate due to two explicit choices of homotopies. For $H: A \times[0,1] \longrightarrow B$ and $a \in A$, the a-track is $H^{a}:=(t \longmapsto H(a, t)) \in B^{[0,1]}$.

Definition 1.6. Let Y be an oriented connected smooth manifold whose universal cover \widetilde{Y} admits a spin structure. Let $u: Y \longrightarrow B \Gamma$ classify the universal cover. Fix homotopy representatives $\tau_{Y}: Y \longrightarrow B S O, w_{2}$: $B S O \longrightarrow K(\mathbb{Z} / 2,2), w_{2}^{u}: B \Gamma \longrightarrow K(\mathbb{Z} / 2,2)$. By Lemma 1.5, there is a homotopy η from $w_{2} \circ \tau_{Y}$ to $w_{2}^{u} \circ u$. Suppose $\Gamma=\Gamma_{-} *_{\Gamma_{0}} \Gamma_{+}$with $\Gamma_{0} \subset \Gamma_{ \pm}$. Write $i_{0}: \Gamma_{0} \longrightarrow \Gamma$ for the inclusion homomorphism. Assume $B i_{0}: B \Gamma_{0} \longrightarrow B \Gamma$ is the inclusion of a bicollared subspace, with u transverse to $B \Gamma_{0}$. If there exists a nulhomotopy θ of the map $w_{2}^{u} \circ B i_{0}$, then we define the induced spin structure s_{η}^{θ} on the submanifold $N:=u^{-1}\left(B \Gamma_{0}\right)$ of Y by

$$
s_{\eta}^{\theta}: N \longrightarrow B \operatorname{Spin} ; x \longmapsto\left(\tau_{Y}(x), \eta^{x} * \theta^{u(x)}\right)
$$

where we identify B Spin with the homotopy fiber of w_{2} and $*$ denotes join of paths.
We arrive at a generalization of Theorem 1.4 which further requires $i_{0}^{*}\left(w_{2}^{c}\right)=0$.
Theorem 1.7 (Pre-spinnable). Let X be a oriented closed smooth 4-manifold whose universal cover admits a spin structure. Let $c: X \longrightarrow B G$ classify this cover. Let X_{0} be a connected oriented closed 3-manifold with fundamental group G_{0}. Suppose $G=G_{-} *_{G_{0}} G_{+}$with $G_{0} \subset G_{ \pm}$. There exists an incompressible embedding of X_{0} in some $X(r)$ inducing the given injective amalgam of fundamental groups, if and only if there exist a map $d: X_{0} \longrightarrow B G_{0}$ classifying its universal cover and a spin structure t on X_{0} and a nulhomotopy θ of $w_{2}^{c} \circ B i_{0}$ satisfying, with $M:=c^{-1}\left(B G_{0}\right)$:

$$
\begin{equation*}
\left[X_{0}, t, d\right]=\left[M, s_{\eta}^{\theta}, c \mid M\right] \in \Omega_{3}^{\mathrm{Spin}}\left(B G_{0}\right) \tag{1.3}
\end{equation*}
$$

The special case [16] is a consequence of Theorems 1.3 and 1.7.
Corollary 1.8 (Kreck-Lück-Teichner). Let X be a nonempty connected orientable closed smooth 4-manifold whose fundamental group is a free product $G_{-} * G_{+}$. Some $X(r)$ is diffeomorphic to a sum $X_{-} \# X_{+}$with each $X_{ \pm}$of fundamental group $G_{ \pm}$.

Proof. Here $G_{0}=1$, so $H_{3}\left(G_{0}\right)=0=\Omega_{3}^{\text {Spin }}\left(B G_{0}\right)$. Take $X_{0}=S^{3}, d$ constant.
Albeit that Kreck's modified surgery theory [18] is a powerful formalism, by which we were inspired and against which we checked our progress, we sought to write this paper from first principles, to be accessible to low-dimensional topologists. In particular, we avoid 'subtraction of solid tori' and 'stable s-cobordism theorem.'

2. Surgery on a link and regular covers

We generalize the notion of classifying a universal cover. For a nonempty connected CW-complex A, a continuous map $u: A \longrightarrow B \Gamma$ classifies a regular cover means that the induced map $u_{\#}$ on fundamental groups is an epimorphism, for a choice of basepoints. The (connected) regular cover \widehat{A} corresponds to the kernel of $u_{\#}$, and its covering group is identified with Γ, which acts transitively on the fibers.

2.1. Oriented version

This development is used to prove Theorems 1.1 and 1.3.
Theorem 2.1. Let M and M^{\prime} be connected oriented closed 3-manifolds. Let $f: M \longrightarrow B \Gamma$ and $f^{\prime}: M^{\prime} \longrightarrow$ $B \Gamma$ classify regular covers. Then there exists a framed oriented link L in M that transforms (M, f) into $\left(M^{\prime}, f^{\prime}\right)$ by surgery if and only if

$$
\begin{equation*}
f_{*}[M]=f_{*}^{\prime}\left[M^{\prime}\right] \in H_{3}(\Gamma ; \mathbb{Z}) \tag{2.1}
\end{equation*}
$$

In other words, this is an algebraic-topological criterion for whether or not there is a link in M whose preimage in \widehat{M} has a Γ-equivariant surgery resulting in $\widehat{M^{\prime}}$.

The original version is simply without reference maps; see [27] and [19].

Corollary 2.2 (Lickorish-Wallace). Any nonempty connected oriented closed 3-manifold N is the result of surgery on a framed oriented link L in the 3-sphere.

Lickorish also obtained each component is unknotted with ± 1 Dehn coefficients.

Proof. Here $\Gamma=1, M=S^{3}, M^{\prime}=N$. Note $B \Gamma$ is a point, hence $H_{3}(\Gamma)=0$.

Here is a more general, technical version of Theorem 2.1 that we shall use later.

Lemma 2.3. Let M and M^{\prime} be connected oriented closed 3-manifolds, and let B be a connected $C W$-complex. Suppose $f: M \longrightarrow B$ and $f^{\prime}: M^{\prime} \longrightarrow B$ are continuous maps that induce epimorphisms on fundamental groups, for some basepoints. Then

$$
\begin{equation*}
f_{*}[M]=f_{*}^{\prime}\left[M^{\prime}\right] \in H_{3}(B ; \mathbb{Z}) \tag{2.2}
\end{equation*}
$$

if and only if there is a 4-dimensional smooth connected oriented compact bordism

$$
\left(F ; f, f^{\prime}\right):\left(W ; M, M^{\prime}\right) \longrightarrow(B \times[0,1] ; B \times\{0\}, B \times\{1\})
$$

such that W has no 1-handles with respect to M and no 1-handles with respect to M^{\prime}, for a certain handle decomposition of the 4 -dimensional cobordism $\left(W ; M, M^{\prime}\right)$.

Proof of Theorem 2.1. By Lemma 2.3, use only 2-handles: surger along a link.

The argument below, after the preliminary three paragraphs, can be perceived in two geometric steps, even though it is combined into a single surgical move. The first step is to slide 1-handles, along with the map data, so that they become trivial. The second step is a reference-maps version of Wallace's trick to exchange oriented 1 -handles for trivial 2-handles [27, 5.1]. (If $\operatorname{dim} M>3$, see [22, 6.15] and subsequent remark to replace 1 -handles for 3 -handles in certain cobordisms on M.)

Proof of Lemma 2.3. \Longleftarrow is due to $\Omega_{3}^{S O}(B) \cong H_{3}(B)$. Consider the \Longrightarrow direction.
Clearly $\Omega_{0}^{S O}=\mathbb{Z}$ and $\Omega_{1}^{S O}=\Omega_{2}^{S O}=0$; recall that $\Omega_{3}^{S O}=0$ by Rohlin-Thom [26, IV.13]. Then note, for the CW-complex B, by the Atiyah-Hirzebruch spectral sequence, that the cobordism-Hurewicz map is an isomorphism:

$$
\Omega_{3}^{S O}(B) \longrightarrow H_{3}(B) \quad ; \quad[M, f: M \rightarrow B] \longmapsto f_{*}[M]
$$

Thus the criterion (2.2) transforms into the equation: $[M, f]=\left[M^{\prime}, f^{\prime}\right] \in \Omega_{3}^{S O}(B)$. In other words, there exists a 4-dimensional smooth oriented compact bordism

$$
\left(F_{0} ; f, f^{\prime}\right):\left(W_{0} ; M, M^{\prime}\right) \longrightarrow(B \times[0,1] ; B \times\{0\}, B \times\{1\})
$$

Since M and M^{\prime} are connected, by joining their two possibly different components in W_{0} via connected sum and ignoring the rest, we may assume that W_{0} is connected. Hence, in the handle decomposition of a

Morse function $\left(W_{0} ; M, M^{\prime}\right) \longrightarrow([0,1] ;\{0\},\{1\}), W_{0}$ has no 0 -handles with respect to M and no 0 -handles with respect to M^{\prime}. Therefore, it remains to eliminate the 1-handles of W_{0} with respect to M and M^{\prime}. For simplicity of notation, we assume that W_{0} has a single 1-handle.

Let $h:\left(D^{1} \times D^{3}, S^{0} \times D^{3}\right) \longrightarrow\left(W_{0}, M\right)$ be the 1-handle, preserving orientation. Since M is connected, there is a path $\alpha_{0}:[-1,1] \longrightarrow M$ with $\alpha_{0}(\pm 1)=h(\mp 1,0)$. Concatenation yields a loop $\beta_{0}=h(-, 0) *$ $\alpha_{0}: S^{1} \longrightarrow W_{0}$. Since $f_{\#}$ is an epimorphism, there exists a loop $\beta:\left(S^{1}, 1\right) \longrightarrow\left(M, \alpha_{0}(1)\right)$ such that $f_{\#}[\beta]=F_{0 \#}\left[\beta_{0}\right]$. By general position, there is a normally framed embedded arc $\alpha_{1}:[-1,1] \times D^{2} \longrightarrow M$ such that $\alpha_{1}(\pm 1,0)=h(\mp 1,0)$ and $\alpha_{1}(-, 0)$ is homotopic rel boundary to $\alpha_{0} * \beta^{-1}$.

Push off the 1-handle core $h(-, 0)$ to obtain a normally framed embedded arc $h_{0}:[-1,1] \times D^{2} \longrightarrow M^{\prime}$. A matching isotopy takes α_{1} to $\alpha_{1}^{\prime}:[-1,1] \times D^{2} \longrightarrow M^{\prime}$ with $\alpha_{1}^{\prime}(\pm 1)=h_{1}(\mp 1,0)$. Concatenation yields a normally framed embedded loop

$$
\lambda:=\left\{h_{0}(-, r) * \alpha_{1}^{\prime}(-, r)\right\}_{r \in D^{2}}: S^{1} \times D^{2} \longrightarrow M^{\prime} .
$$

Write $W_{1}:=M^{\prime} \times[0,1] \cup_{\lambda} D^{2} \times D^{2}$ for the trace of the surgery along λ in M^{\prime}. Since $F_{0} \circ \lambda(-, 0)$ is nulhomotopic, choose a nulhomotopy to yield a bordism

$$
\left(F_{1} ; f^{\prime}, f^{\prime \prime}\right):\left(W_{1} ; M^{\prime}, M^{\prime \prime}\right) \longrightarrow(B \times[0,1] ; B \times\{0\}, B \times\{1\}) .
$$

Observe that $\overline{W_{1}}$ is the trace of surgery along the framed belt sphere $S^{1} \times D^{2} \hookrightarrow M^{\prime \prime}$. By the cancellation lemma [22, 6.4], $W_{0} \cup_{M^{\prime}} W_{1}$ is diffeomorphic to $M \times[0,2]$ relative to $M \times\{0\}$. In particular, there is $\delta: M \approx M^{\prime \prime}$ with $f^{\prime \prime} \circ \delta \simeq f$. Write $W_{0}^{\prime}:=M \times[0,2] \cup_{\delta} \overline{W_{1}}$. So we have a new bordism with h replaced by a 2-handle:

$$
\left(\delta \cup_{f^{\prime \prime}} F_{1} ; f, f^{\prime}\right):\left(W_{0}^{\prime} ; M, M^{\prime}\right) \longrightarrow(B \times[0,1] ; B \times\{0\}, B \times\{1\})
$$

By iteration, we kill all 1-handles of W_{0}^{\prime} relative to M. Similarly, repeat relative to M^{\prime}. Thus, we obtain the desired bordism (W, F) with only 2 -handles rel M.

2.2. Spin version

We shall need this development to prove Theorem 1.4.
Theorem 2.4. Let (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ be spin closed 3-manifolds. Let $f: M \longrightarrow B \Gamma$ and $f^{\prime}: M^{\prime} \longrightarrow B \Gamma$ classify regular covers. There exists a framed oriented link L in M that transforms (M, s, f) into ($M^{\prime}, s^{\prime}, f^{\prime}$) by a spin bordism if and only if

$$
\begin{equation*}
[M, s, f]=\left[M^{\prime}, s^{\prime}, f^{\prime}\right] \in \Omega_{3}^{\mathrm{Spin}}(B \Gamma) . \tag{2.3}
\end{equation*}
$$

Lemma 2.5. Let (M, s) and $\left(M^{\prime}, s^{\prime}\right)$ be connected spin closed 3-manifolds, and let B be a connected $C W$ complex. Suppose $f: M \longrightarrow B$ and $f^{\prime}: M^{\prime} \longrightarrow B$ are continuous maps that induce epimorphisms on fundamental groups. Then

$$
\begin{equation*}
[M, s, f]=\left[M^{\prime}, s^{\prime}, f^{\prime}\right] \in \Omega_{3}^{\mathrm{Spin}}(B) \tag{2.4}
\end{equation*}
$$

if and only if there is a 4-dimensional smooth connected spin compact bordism

$$
\left(F ; f, f^{\prime}\right):\left(W, t ; M, s, M^{\prime}, s^{\prime}\right) \longrightarrow(B \times[0,1] ; B \times\{0\}, B \times\{1\})
$$

such that W has no 1-handles with respect to M and no 1-handles with respect to M^{\prime}, for a certain handle decomposition of the 4-dimensional cobordism ($W ; M, M^{\prime}$).

Proof of Theorem 2.4. By Lemma 2.5, use only 2-handles: surger along a link.
Proof of Lemma 2.5. The \Longleftarrow implication is obvious. Consider the \Longrightarrow implication.
Recall the proof of Lemma 2.3. We reconstruct W_{1} to admit a spin structure extending the spin structure $\overline{s^{\prime}}$ on $\partial_{-} W_{1}=\overline{M^{\prime}}$, since by gluing along $M^{\prime \prime}$ this will induce a spin structure on W_{0}^{\prime} extending the spin structure $\bar{s} \sqcup s^{\prime}$ on $\partial W_{0}^{\prime}=\bar{M} \sqcup M^{\prime}$.

Since $H^{i+1}\left(M^{\prime} ; \pi_{i}\left(\operatorname{Spin}_{3}\right)\right)=0$ for all $i \geqslant 0$, by obstruction theory, the spin structure s^{\prime} lifts to a framing ϕ of the tangent bundle $T M^{\prime}$. The sole obstruction to extending the stable framing $\phi \oplus \mathrm{id}$ of $T M^{\prime} \oplus \mathbb{R}$ to the tangent bundle τ of W_{1} is

$$
\mathfrak{o}(\tau) \in H^{2}\left(W_{1}, M^{\prime} ; \pi_{1}\left(S O_{4}\right)\right)=H^{2}\left(D^{2}, S^{1} ; \pi_{1}\left(S O_{4}\right)\right)=\pi_{1}\left(S O_{4}\right) \cong \mathbb{Z} / 2 .
$$

Let $\eta \in \pi_{1}\left(S O_{2}\right) \cong \mathbb{Z}$. Reframe the normal bundle of the surgery circle $\lambda(-, 0)$ as

$$
\lambda^{\eta}: S^{1} \times D^{2} \longrightarrow M^{\prime} ;(z, r) \longmapsto \lambda\left(z, \eta_{z}(r)\right) .
$$

Write $W_{1}^{\eta}:=M^{\prime} \times[0,1] \cup_{\lambda^{\eta}} D^{2} \times D^{2}$ with tangent bundle τ^{η}. By [17, Lemma 6.1],

$$
\mathfrak{o}\left(\tau^{\eta}\right)=\mathfrak{o}(\tau)+\sigma_{\#}(\eta) \in \pi_{1}\left(S O_{4}\right)
$$

where $\sigma: S O_{2} \longrightarrow S O_{4}$ denotes the inclusion. Since the induced map $\sigma_{\#}$ on fundamental groups is surjective, find η so that τ^{η} has a framing extending $\phi \oplus$ id. Hence W_{1}^{η} has a spin structure extending $\overline{s^{\prime}}$ on its lower oriented boundary $\overline{M^{\prime}}$.

By gluing, we obtain an induced spin structure on $W_{0} \cup_{M^{\prime}} W_{1}^{\eta} \approx M \times[0,2]$ relative to $M \times\{0\}$. Modifying Proof 2.3 , redefine $W_{0}^{\prime}:=M \times[0,2] \cup_{\delta^{\eta}} \overline{W_{1}^{\eta}}$ with spin structure the union of this one and the orientation-reversal of the one on W_{1}^{η}. Therefore, the spin structure on W_{0}^{\prime} restricts to $\bar{s} \sqcup s^{\prime}$ on $\partial W_{0}^{\prime}=$ $\bar{M} \sqcup M^{\prime}$.

3. Ambient surgery on pairs of points

Let $G=G_{-} *_{G_{0}} G_{+}$be an injective amalgam of groups. The corresponding double mapping cylinder model of its classifying space is the homotopy colimit

$$
\begin{equation*}
B G:=B G_{-} \cup_{B G_{0} \times\{-1\}} B G_{0} \times[-1,+1] \cup_{B G_{0} \times\{+1\}} B G_{+} \tag{3.1}
\end{equation*}
$$

with respect to the maps $B G_{0} \longrightarrow B G_{ \pm}$induced from the inclusions $G_{0} \longrightarrow G_{ \pm}$.
Akin to Stalling's thesis, here is a folklore fact proven in [1, 1.1] (cf. [5]).
Theorem 3.1 (Bowditch). If G and G_{0} are finitely presented, so are G_{-}and G_{+}.
Instead of G_{0} being finitely presented, the proof of the next statement can work assuming G_{-}, G_{0}, G_{+} are finitely generated, but we prefer the former hypothesis.

Proposition 3.2. Let X be a connected oriented closed smooth 4-manifold. Suppose $f: X \longrightarrow B G$ classifies a regular cover. Assume G_{0} is finitely presented. Then f can be re-chosen up to homotopy so that: f is transverse to the bicollared subspace $B G_{0} \times\{0\}$ in the model (3.1), the 3-submanifold preimage M in X is connected, and the restriction $f: M \longrightarrow B G_{0}$ also classifies a regular cover.

This is proven after three lemmas. The first is an apparatus to recalibrate paths.

Lemma 3.3. Let X be a connected oriented smooth n-manifold with $n>2$. Consider a space $B=B_{-} \cup_{B_{0}} B_{+}$ with $B, B_{ \pm}-B_{0}$ path-connected and $B_{0}=B_{-} \cap B_{+}$. Suppose $f: X \longrightarrow B$ is π_{1}-surjective. Assume $\pi_{1}\left(B_{ \pm}-\right.$ B_{0}) are finitely generated, by $r_{ \pm}$elements. There are disjoint 1-handlebodies $\Lambda_{ \pm} \approx \# r_{ \pm}\left(S^{1} \times D^{n-1}\right) \subset X$ and $f^{\prime}: X \longrightarrow B$ homotopic to f having π_{1}-surjective restrictions $f^{\prime}: \Lambda_{ \pm} \longrightarrow B_{ \pm}-B_{0}$.

Proof. We may homotope f so that its image contains some points $b_{ \pm}$in $B_{ \pm}-B_{0}$. Then there are $x_{ \pm} \in X$ such that $f\left(x_{ \pm}\right)=b_{ \pm}$. There are based loops $\mu_{ \pm}^{1}, \ldots, \mu_{ \pm}^{r_{ \pm}}:\left(S^{1}, 1\right) \longrightarrow\left(B_{ \pm}-B_{0}, b_{ \pm}\right)$whose based homotopy classes generate $\pi_{1}\left(B_{ \pm}-B_{0}, b_{ \pm}\right)$. Since $f_{\#}: \pi_{1}\left(X, x_{ \pm}\right) \longrightarrow \pi_{1}\left(B, b_{ \pm}\right)$is surjective and $n>2$, there exist disjoint smoothly embedded based loops $\lambda_{ \pm}^{1}, \ldots, \lambda_{ \pm}^{r_{ \pm}}:\left(S^{1}, 1\right) \longrightarrow\left(X, x_{ \pm}\right)$and a based homotopy $H_{ \pm}^{i}: S^{1} \times[0,1] \longrightarrow B$ from $f \circ \lambda_{ \pm}^{i}$ to $\mu_{ \pm}^{i}$. Since X is oriented, for each i, there is a tubular neighborhood $\Lambda_{i}^{ \pm}$of $\lambda_{i}^{ \pm}\left(S^{1}\right)$ and a diffeomorphism $\Lambda_{i}^{ \pm} \approx S^{1} \times D^{n-1}$. Taking the radii of the tubes sufficiently small, we find that the $\Lambda_{i}^{ \pm}$pairwise intersect in a fixed D^{n}-neighborhood of $x_{ \pm}$. Thus we obtain disjoint embeddings of $\# r_{-}\left(S^{1} \times D^{n-1}\right)$ and $\# r_{+}\left(S^{1} \times D^{n-1}\right)$ in X, say with images called Λ_{-}and Λ_{+}.

Finally, using these NDR neighborhoods $\Lambda_{ \pm}$of $\bigvee_{i} \lambda_{ \pm}^{i}$ and specific homotopies $\bigvee_{i} H_{ \pm}^{i}$ as the data for the homotopy extension property [2, Theorem VII:1.5], we obtain a homotopy $H: X \times[0,1] \longrightarrow B$ from f to a map f^{\prime} such that $f^{\prime} \circ \lambda_{ \pm}^{i}=\mu_{ \pm}^{i}$. Hence $f^{\prime}\left(\Lambda_{ \pm}\right) \subset B_{ \pm}-B_{0}$ and $\left(f^{\prime} \mid \Lambda_{ \pm}\right)_{\#} \pi_{1}\left(\Lambda_{ \pm}, x_{ \pm}\right)=\pi_{1}\left(B_{ \pm}-B_{0}, b_{ \pm}\right)$.

Given a continuous map $f: X \longrightarrow B$ from a smooth manifold X to a topological space B, and given a subspace B_{0} that admits a tubular neighborhood $E(\xi) \subset B$, W. Browder defines f to be transverse to B_{0} to mean that the conclusion of the implicit-function theorem holds: the preimage $X_{0}=f^{-1}\left(B_{0}\right)$ is a smooth submanifold of X with normal bundle $\nu\left(X_{0} \hookrightarrow X\right)=\left(f \mid X_{0}\right)^{*}(\xi)$ [3, II:§2]. Since the proof is omitted for Browder's generalization [3, II:2.1] of Thom's transversality theorem [26, I:5], we give details for the trivial line bundle $\xi=\underline{\mathbb{R}}$.

Lemma 3.4. Let $f: X \longrightarrow B$ be a continuous map from a smooth manifold to a space B. For any bicollared subspace B_{0} of B (i.e., B_{0} has a neighborhood in B homeomorphic to $B_{0} \times \mathbb{R}$), there exists a map $f^{\prime}: X \longrightarrow$ B transverse to B_{0} and homotopic to f, relative to the complement of an open neighborhood of $f^{-1}\left(B_{0}\right)$.

Proof. We have an open embedding $\beta: B_{0} \times \mathbb{R} \longrightarrow B$ with $\beta\left(B_{0} \times\{0\}\right)=B_{0} \subset B$. Write $N \subset B$ for the image of β, and write $\pi_{2}: B_{0} \times \mathbb{R} \longrightarrow \mathbb{R}$ for the projection. Note $f^{-1}(N) \subset X$ is a smooth manifold, since it is an open set in a smooth manifold. By Whitney's approximation theorem [2, II:11.7], the C^{0} function $\pi_{2} \circ \beta^{-1} \circ f: f^{-1}(N) \longrightarrow \mathbb{R}$ is 0.5 -close to a C^{∞} function $g: f^{-1}(N) \longrightarrow \mathbb{R}$. Define

$$
H: f^{-1}(N) \times[0,1] \longrightarrow B ;(x, t) \longmapsto \beta\left(\left(\pi_{1} \beta^{-1} f\right)(x),(1-t)\left(\pi_{2} \beta^{-1} f\right)(x)+t g(x)\right) .
$$

Note H is a homotopy from $H(x, 0)=f(x)$ to a map $f^{\prime}:=H(-, 1): f^{-1}(N) \longrightarrow B$. Then f^{\prime} is transverse to B_{0} with $\left(f^{\prime}\right)^{-1}\left(B_{0}\right)=g^{-1}\{0\}$ a smooth submanifold of X; where by Sard's theorem and a tiny homotopy, we assume 0 is a regular value of g.

It remains to extend H to $X \times[0,1]$ so that $H(x, t)=f(x)$ for all $x \in X-N$. Using explicit formulas derived from the tubular neighborhood structure β, this is achieved by the homotopy extension property for the neighborhood deformation retract $f^{-1} \beta\left(B_{0} \times[-1,1]\right) \sqcup(X-N)$ closed in the T_{4} space X; see [2, Theorem VII:1.5]. The desired map $f^{\prime}: X \longrightarrow B$ is again $H(-, 1)$ of this extension.

We perform 1-handle exchanges in dimension 4 by an obstruction-theoretic argument. This is not in the literature, but see [11, p. 67] and [6, Lemma I:3]. Recall the frontier $\operatorname{Fr}_{X}(A):=\mathrm{Cl}_{X}(A) \cap \mathrm{Cl}_{X}(X-A)$ for $A \subset X$, a topological space.

Lemma 3.5. Let $f: X \longrightarrow B$ be a continuous map from a smooth 4-manifold to a path-connected space B, transverse to a path-connected separating subspace B_{0} of $B=B_{-} \cup_{B_{0}} B_{+}$. Decompose $X=X_{-} \cup_{X_{0}} X_{+}$by
the f-preimages. Let $\alpha:\left(D^{1}, \partial D^{1}\right) \longrightarrow\left(X_{ \pm}, X_{0}\right)$ be a smoothly embedded arc with $[f \circ \alpha]=0 \in \pi_{1}\left(B_{ \pm}, B_{0}\right)$. Suppose $\pi_{3}\left(B_{\mp}\right)=0=\pi_{4}(B)$. Then f is homotopic to a B_{0}-transverse map $g: X \longrightarrow B$ whose preimage of B_{0} is the result of adding a 1-handle with core α. Namely, for some open-tubular neighborhood $U \approx D^{1} \times D^{3}$ of the arc α in $X_{ \pm}$:

$$
g^{-1}\left(B_{0}\right)=\left(X_{0} \cup \operatorname{Fr}_{X} U\right)-\left(X_{0} \cap U\right)
$$

Proof. Let T be a closed-tubular neighborhood of $\alpha\left(D^{1}\right)$ in $X_{ \pm}$. There is a framing diffeomorphism ϕ : $\left(D^{1} \times D^{3}, \partial D^{1} \times D^{3}\right) \longrightarrow\left(T, T \cap X_{0}\right)$ with $\phi(s, 0)=\alpha(s)$. Define

$$
\begin{aligned}
O & :=\phi\left\{(s, x) \in D^{1} \times D^{3} \left\lvert\, \frac{2}{3} \leqslant\|x\| \leqslant 1\right.\right\} \\
M & :=\phi\left\{(s, x) \in D^{1} \times D^{3} \left\lvert\, \frac{1}{3} \leqslant\|x\| \leqslant \frac{2}{3}\right.\right\} \\
I & :=\phi\left\{(s, x) \in D^{1} \times D^{3} \left\lvert\, 0 \leqslant\|x\| \leqslant \frac{1}{3}\right.\right\},
\end{aligned}
$$

which is a decomposition of $T=O \cup M \cup I$ into three closed subsets. Define a map

$$
g: O \longrightarrow B_{ \pm} ; \phi(s, x) \longmapsto(f \circ \phi)(s,(3\|x\|-2) x) .
$$

Since $[f \circ \alpha]=0 \in \pi_{1}\left(B_{ \pm}, B_{0}\right)$, there exists a map $H: D^{1} \times[0,1] \longrightarrow B_{ \pm}$such that

$$
\begin{array}{rlrl}
H(s, 1) & =(f \circ \alpha)(s) & \forall s \in D^{1} \\
H(\pm 1, t) & =\alpha(\pm 1) & \forall t \in[0,1] \\
H^{-1}\left(B_{0}\right) & =\partial D^{1} \times[0,1] \cup D^{1} \times\{0\} .
\end{array}
$$

By the pasting lemma, we can extend g from O to $O \cup M$ by

$$
g: M \longrightarrow B_{ \pm} ; \phi(s, x) \longmapsto H(s, 3\|x\|-1)
$$

Next, there exist both a neighborhood C of the attaching 0 -sphere $\alpha\left(\partial D^{1}\right)$ in X_{\mp} and a diffeomorphism $\psi: \partial D^{1} \times D_{-}^{4} \longrightarrow X_{\text {干 }}$ such that $\psi\left|\partial D^{1} \times D_{0}^{3}=\phi\right| \partial D^{1} \times D^{3}$. Extend g from $\operatorname{Fr}_{X_{0}} T=\phi\left(\partial D^{1} \times \partial D^{3}\right)$ to $\operatorname{Fr}_{X_{\mp}} C=\psi\left(\partial D^{1} \times \partial_{-} D_{-}^{4}\right)$ by $g=f$. Then g is defined on the 'riveted' 3 -sphere $S:=\operatorname{Fr}_{X}(C \cup I)$. Since $g(S) \subset B_{\mp}$ and $\pi_{3}\left(B_{\mp}\right)=0$, we may extend g to the 'riveted' 4-disc $C \cup I$; using the collar of B_{0} in B_{\mp}, we can guarantee that $g(C \cup I-S) \subset B_{\mp}-B_{0}$. Lastly, extend g to the complement $X-(C \cup T)$ by $g=f$. Therefore $g: X \longrightarrow B$ is transverse to B_{0} with

$$
g^{-1}\left(B_{0}\right)=\left(X_{0}-I\right) \cup(M \cap I) .
$$

Finally, note $\operatorname{Fr}_{X}(C \cup T)$ is a 3 -sphere in X, so we obtain a 4 -sphere $X \times[0,1]$:

$$
\Sigma:=(C \cup T) \times\{0\} \cup \operatorname{Fr}_{X}(C \cup T) \times[0,1] \cup(C \cup T) \times\{1\}
$$

Since $\pi_{4}(B)=0$, we may fill in $\left(f \circ \operatorname{proj}_{X}\right) \mid \Sigma$ to obtain a homotopy from f to g.
We adapt to dimension 4, and simplify, 'arc-chasing' arguments of [11, p. 67] and [6, p. 88]. Further, we generalize the sliding of 1-handles trick of Proof 2.3.

Proof of Proposition 3.2. By Theorem 3.1 and by Lemma 3.3 with respect to the model (3.1), we homotope f so that there are disjointly embedded 1-handlebodies $\Lambda_{ \pm} \approx \# r_{ \pm}\left(S^{1} \times D^{3}\right) \subset X$ satisfying $f\left(\Lambda_{ \pm}\right) \subset$
$B G_{ \pm}-B G_{0}$ and $f_{\#} \pi_{1}\left(\Lambda_{ \pm}, x_{ \pm}\right)=G_{ \pm}$. Hence $f\left(\Lambda_{-} \sqcup \Lambda_{+}\right)$is disjoint from the bicollar neighborhood $B G_{0} \times[-1,1]$ in $B G$. Next, by Lemma 3.4, we further re-choose f up to homotopy relative to $\Lambda_{-} \sqcup \Lambda_{+}$ so that f is also transverse to $B G_{0} \times\{0\}$, say with f-preimage K. Write $V_{ \pm}$for the X-closure of the path-component neighborhood of $\Lambda_{ \pm}$in the open subset $X-K$.

Assume that $V_{+} \cap K$ has at least two components, say $K_{0} \sqcup K_{1}$. Since V_{+}is connected, there is a properly and smoothly embedded arc $\alpha:[0,1] \longrightarrow V_{+}$satisfying: $\alpha(i) \in K_{i}$ if $0 \leqslant i \leqslant 1, \alpha\left(\frac{1}{2}\right)$ is near-but-not x_{+}, and $\alpha^{-1}\left(\stackrel{\circ}{V}_{+}\right)=(0,1)$. Since the composite map $\pi_{1}\left(\Lambda_{+}\right) \xrightarrow{f_{\#}} \pi_{1}\left(B G_{+}\right) \longrightarrow \pi_{1}\left(B G_{+}, B G_{0}\right)$ is surjective, upon midpoint-concatenation of some based loop $\left(S^{1}, 1\right) \longrightarrow\left(\partial \Lambda_{+}, \alpha\left(\frac{1}{2}\right)\right)$, we may assume that $[f \circ \alpha]=$ $0 \in \pi_{1}\left(B G_{+}, B G_{0}\right)$. Then, by Lemma 3.5 , we re-choose f up to homotopy relative $\Lambda_{-} \sqcup \Lambda_{+}$so that the new component neighborhood V_{+}of Λ_{+}in $X-f^{-1}\left(B G_{0}\right)$ contains $K_{0} \# K_{1}$. Since X is compact, so is K, so we repeat finitely many steps until $V_{+} \cap K$ becomes connected. Similarly, make $V_{-} \cap K$ connected.

Write $L:=V_{-} \cap V_{+}$, a connected 3 -submanifold of X. Let $x_{0} \in L$. Assume there exists $x_{1} \in K-L$. Since X is connected, there exists a path $\gamma:[0,1] \longrightarrow X$ from x_{0} to x_{1}. Define $s_{0}:=\sup \gamma^{-1}\left(V_{-} \cup V_{+}\right)$. Since $0<s_{0}<1$, we must have $\gamma\left(s_{0}\right) \in \operatorname{Fr}_{X}\left(V_{-}\right) \cup \operatorname{Fr}_{X}\left(V_{+}\right)=L$. Then $\gamma\left(s_{0}\right)$ is in the interior of $V_{-} \cup V_{+}$. So there exists $s_{1}>s_{0}$ with $\gamma\left(s_{1}\right)$ also in the interior of $V_{-} \cup V_{+}$. This contradicts the maximality of s_{0}. Therefore $K-L$ is empty. Hence $K=L$ and so it is connected.

Finally, since $G_{0} \subset G_{+}$is finitely generated and since $\left(f \mid \Lambda_{+}\right)_{\#}: \pi_{1}\left(\Lambda_{+}\right) \longrightarrow G_{+}$is surjective, there exist based loops $\delta_{1}, \ldots, \delta_{r_{0}}:\left(S^{1}, 1\right) \longrightarrow\left(V_{+}, x_{0}\right)$ such that $G_{0}=\left\langle f_{\#}\left[\delta_{1}\right], \ldots, f_{\#}\left[\delta_{r_{0}}\right]\right\rangle$. In particular, each $f \circ \delta_{i}$ is based homotopic into $B G_{0}$. Since each $f \circ \delta_{i}$ represents 0 in $\pi_{1}\left(B G_{+}, B G_{0}\right)$, by Lemma 3.5 applied r_{0} times, we re-choose f so that, further, its restriction to $M:=f^{-1}\left(B G_{0}\right)$ is π_{1}-surjective.

4. Proofs of the embedding theorems

Proof of Theorem 1.1. Clearly (1.1) is a necessary condition. So now, assume (1.1).
Consider the double mapping cylinder model (3.1). Since G_{-}, G_{0}, G_{+}are finitely generated and $c: X \longrightarrow$ $B G$ classifies a regular cover, by Proposition 3.2, we may re-choose c up to homotopy so that: c is transverse to $B G_{0}$, the 3 -submanifold preimage M is connected, and the restriction $c_{0}: M \longrightarrow B G_{0}$ classifies a regular cover. Write $X=X_{-} \cup_{M} X_{+}$and $c=c_{-} \cup_{c_{0}} c_{+}$with restrictions $c_{ \pm}: X_{ \pm} \longrightarrow B G_{ \pm}$.

Next, consider the commutative square, with horizontal maps being connecting homomorphisms induced from (3.1) and with vertical maps being of Hurewicz type:

Hence the criterion (1.1) implies: there is a classifying map $d: X_{0} \longrightarrow B G_{0}$ with

$$
d_{*}\left[X_{0}\right]=c_{0 *}[M] \in H_{3}\left(G_{0}\right)
$$

Since $d_{\#}$ and $c_{0 \#}$ are surjective, by Lemma 2.3, there is a 4-dimensional oriented smooth bordism $e: V \longrightarrow$ $B G_{0}$ from $\left(M, c_{0}\right)$ to $\left(X_{0}, d\right)$ made with only 2-handles. Since V is obtained from X_{0} using only 2-handles, the inclusion $j: X_{0} \longrightarrow V$ induces an epimorphism on fundamental groups. Since $d_{\#}=e_{\#} \circ j_{\#}$ is a monomorphism, note that $j_{\#}$ is also a monomorphism. So both $j_{\#}$ and $e_{\#}$ are isomorphisms.

Now, we obtain a connected 5 -dimensional oriented compact smooth cobordism

$$
T:=X \times[0,1] \cup_{M \times[-1,1]} V \times[-1,1]
$$

where we regard $M \times[-1,1]$ in $X \times\{1\}$ and we smooth the corners at $M \times\{-1,1\}$. The resultant 4-manifold and map are $X^{\prime}:=\partial T-X \times\{0\}$ and $c^{\prime}:=\left.D\right|_{X^{\prime}}$, where

$$
D: T \longrightarrow B G ; \begin{cases}(x, t) \in X \times[0,1] & \longmapsto c(x) \\ (v, s) \in V \times[-1,1] & \longmapsto(e(v), s) .\end{cases}
$$

Decompose the space $X^{\prime}=X_{-}^{\prime} \cup_{X_{0}} X_{+}^{\prime}$ with $X_{ \pm}^{\prime}=X_{ \pm} \cup_{M} V \times\{ \pm 1\} \cup X_{0} \times[\pm 1,0]$, as well as the map $c^{\prime}=c_{-}^{\prime} \cup_{d} c_{+}^{\prime}: X^{\prime} \longrightarrow B G$ with $c_{ \pm}^{\prime}=c_{ \pm} \cup_{c_{0}} e: X_{ \pm}^{\prime} \longrightarrow B G_{ \pm}$.

Write $i: M \longrightarrow X$ for the inclusion. Since V is the trace of a surgery on a framed oriented link L in M, correspondingly note T is the trace of a surgery on $i \circ L$ in X. By a similar argument as earlier, we find that the kernel of $c_{0 \#}$ equals the kernel of the map induced by the inclusion $M \longrightarrow V$, which is generated by the (unbased) components L_{k} of L, upon anchoring them to the basepoint with choices of connecting paths. In addition, since $c_{0 \#}=c_{\#} \circ i_{\#}$ and $c_{\#}$ is an isomorphism, the kernel of $c_{0 \#}$ equals the kernel of $i_{\#}$. In particular, each embedded circle L_{k} is nulhomotopic in X, bounding an immersed disc with transverse double points, which can be isotoped away using finger-moves [10, 1.5]; thus each L_{k} bounds an embedded disc in X. Another consequence is that $D \simeq c \cup_{c_{0}} e: X \cup_{M} V \longrightarrow B G$ induces an isomorphism on fundamental groups. Then, by an argument with alternating words, each $c_{ \pm}^{\prime}: X_{ \pm}^{\prime} \longrightarrow B G_{ \pm}$also does so. So, since $d_{\#}$ is an isomorphism, c^{\prime} induces an isomorphism on fundamental groups.

Finally, we show that the embedding solution X^{\prime} is bistably diffeomorphic to X. For each L_{k}, consider embedded in $\stackrel{\circ}{T}$ the 2 -sphere S_{k} with equator L_{k}, with northern hemisphere the core of the bounding 2 -handle in $V \times\{0\}$, and with southern hemisphere the bounding 2 -disc in $X \times\{1\}$. Write N_{k} for the 5 -dimensional closed-tubular neighborhood of S_{k} in $\stackrel{\circ}{T}$. Observe that T is diffeomorphic to the boundary-connected sum $(X \times[0,1])$ Ł $\left(\bigsqcup_{k} N_{k}\right)$. Each N_{k} is diffeomorphic to either $D^{3} \times S^{2}$ or $D^{3} \rtimes S^{2}$, where the latter is the nontrivial (nonspin) disc bundle. Thus, we obtain $X^{\prime} \approx X \# p\left(S^{2} \times S^{2}\right) \# q\left(S^{2} \rtimes S^{2}\right)$ for some $p \geqslant r$ and $q \geqslant 0$. Since $\left(S^{2} \times S^{2}\right) \#\left(\mathbb{C} P_{2}\right) \approx 2\left(\mathbb{C} P_{2}\right) \#\left(\overline{\mathbb{C} P_{2}}\right)$ and $S^{2} \rtimes S^{2} \approx\left(\mathbb{C} P_{2}\right) \#\left(\overline{\mathbb{C} P_{2}}\right)[28, \mathrm{C} 1, \mathrm{~L} 1]$,

$$
X^{\prime}(1,0) \approx X(1+p+q, p+q) .
$$

Proof of Theorem 1.3. Since $w_{2}(\widetilde{X}) \neq 0$, by the Hurewicz theorem, there exists a spherical class $\widetilde{\alpha}: S^{2} \longrightarrow \widetilde{X}$ such that $\left\langle w_{2}(\widetilde{X}), \widetilde{\alpha}_{*}\left[S^{2}\right]\right\rangle \neq 0$. Write $p: \widetilde{X} \longrightarrow X$ for the covering map, and write $\alpha:=p \circ \widetilde{\alpha}: S^{2} \longrightarrow X$. Since on tangent bundles $T \widetilde{X}=p^{*}(T X)$, as one obtains the smooth structure on \widetilde{X} by even-covering, note

$$
\left\langle w_{2}(X), \alpha_{*}\left[S^{2}\right]\right\rangle=\left\langle w_{2}(X), p_{*} \widetilde{\alpha}_{*}\left[S^{2}\right]\right\rangle=\left\langle p^{*} w_{2}(X), \widetilde{\alpha}_{*}\left[S^{2}\right]\right\rangle=\left\langle w_{2}(\widetilde{X}), \widetilde{\alpha}_{*}\left[S^{2}\right]\right\rangle=1 .
$$

Do the same as in the proof of Theorem 1.1, until the construction of the 2 -sphere S_{k}. In the case that the normal bundle of S_{k} is nontrivial, replace the southern hemisphere with its one-point union with α, smoothed rel L_{k} into immersion then an embedding by finger-moves, to obtain S_{k}^{\prime}. Since $\left[S_{k}^{\prime}\right]=\left[S_{k}\right]+[\alpha] \in \pi_{2}(X)$, note

$$
\left\langle w_{2}(X), S_{k *}^{\prime}\left[S^{2}\right]\right\rangle=\left\langle w_{2}(X), S_{k *}\left[S^{2}\right]+\alpha_{*}\left[S^{2}\right]\right\rangle=1+1=0 \in \mathbb{Z} / 2 .
$$

Hence the normal 3-plane bundle of the new embedded 2-sphere S_{k}^{\prime} in T° is trivial. So T is diffeomorphic to the boundary-connected sum $(X \times[0,1])$ t $\left(\bigsqcup_{k=1}^{r} D^{3} \times S^{2}\right)$. Therefore, we obtain X^{\prime} is diffeomorphic to $X(r)=X \# r\left(S^{2} \times S^{2}\right)$.

Proof of Theorem 1.4. Do the same as in the proof of Theorem 1.1, except using (1.2) and Lemma 2.5 instead of (1.1) and Lemma 2.3, until the construction of the 2 -sphere S_{k}. Here, the spin structure s_{M} on M is the restriction of the spin structure s on $X \times\{1\}$, where the spin structure on the normal line bundle
is induced from its pullback orientation [20, II:2.15]. Since s_{M} is the restriction of the spin structure on $V \times\{0\}$, we obtain that T has an induced spin structure.

Then, since $w_{2}(T)=0$, the normal 3-plane bundle of each S_{k} in \grave{T}° is trivial. So T is diffeomorphic to the boundary-connected sum $(X \times[0,1])$ t $\left(\bigsqcup_{k=1}^{r} D^{3} \times S^{2}\right)$. Therefore, we obtain X^{\prime} is diffeomorphic to $X(r)=X \# r\left(S^{2} \times S^{2}\right)$.

For clarity, we repeat the following proof from [16, p. 258] and [18, p. 713]. The statement shall be applied in Proof 1.7 for manifolds Y of dimensions $3,4,5$.

Proof of Lemma 1.5. Since \widetilde{Y} is 1-connected, by the Leray-Serre spectral sequence for the homotopy fibration sequence $\widetilde{Y} \xrightarrow{p} Y \xrightarrow{u} B \Gamma$, we obtain an exact sequence

$$
\begin{equation*}
0 \longrightarrow H^{2}(B \Gamma ; \mathbb{Z} / 2) \xrightarrow{u^{*}} H^{2}(Y ; \mathbb{Z} / 2) \xrightarrow{p^{*}} H^{2}(\widetilde{Y} ; \mathbb{Z} / 2)^{G} . \tag{4.1}
\end{equation*}
$$

Then, since $w_{2}(T \tilde{Y})=w_{2}\left(p^{*}(T Y)\right)=p^{*}\left(w_{2}(T Y)\right)$, the oriented smooth manifold \tilde{Y} admits a spin structure if and only if there exists $w_{2}^{u} \in H^{2}(B \Gamma ; \mathbb{Z} / 2)$ such that $u^{*}\left(w_{2}^{u}\right)=w_{2}(T Y)$. Further by exactness, this class w_{2}^{u} is unique if it exists.

For $r \geqslant 0$, the pinch map $p: X(r) \longrightarrow X \vee \# r\left(S^{2} \times S^{2}\right)$ gives a degree-one map

$$
k:=(\text { id } \vee \text { const }) \circ p: X(r) \longrightarrow X .
$$

The π_{1}-isomorphism $c: X \longrightarrow B G$ induces the π_{1}-isomorphism $c \circ k: X(r) \longrightarrow B G$.

Proof of Theorem 1.7: necessity of (1.3). Assume for some $r \geqslant 0$ that there exists an incompressible embedding $j_{0}: X_{0} \longrightarrow X(r)$ such that $\left(c \circ k \circ j_{0}\right)_{\#}\left(\pi_{1} X_{0}\right)=G_{0}$. Then $X(r)=X_{-}^{\prime} \cup_{X_{0}} X_{+}^{\prime}$ with inclusions $j_{ \pm}: X_{ \pm}^{\prime} \longrightarrow X(r)$. Since $X(r)$ and X_{0} are connected, so are $X_{ \pm}^{\prime}$. Furthermore, since $(c \circ k)_{\#}$ and $\left(c \circ k \circ j_{0}\right)_{\#}$ are isomorphisms, by a basic observation on normal form [23], so are $\left(c \circ k \circ j_{ \pm}\right)$\#: $\pi_{1}\left(X_{ \pm}^{\prime}\right) \longrightarrow G_{ \pm}$.

Consider the double mapping cylinder model (3.1) of $B G$, where $B i_{0}: B G_{0} \longrightarrow B G$ is the inclusion of a bicollared subspace. Since X_{0} is a CW-complex, there is a homotopically unique map $d: X_{0} \longrightarrow B G_{0}$ such that $B i_{0} \circ d \simeq c \circ k \circ j_{0}$. Furthermore, since $X_{ \pm}$are CW-complexes, d extends to maps $c_{ \pm}: X_{ \pm}^{\prime} \longrightarrow$ $B G_{ \pm} \cup B G_{0} \times[0, \pm 1]$ with $B i_{ \pm} \circ c_{ \pm} \simeq c \circ k \circ j_{ \pm}$. Therefore, $c \circ k$ is homotopic to a $B G_{0}$-transverse map $c^{\prime}:=c_{-}^{\prime} \cup_{d} c_{+}^{\prime}: X(r) \longrightarrow B G$ satisfying $\left(c^{\prime}\right)^{-1}\left(B G_{0} \times\{0\}\right)=X_{0}$.

Next, since \widetilde{X} admits a spin structure, by Lemma 1.5 , there is a unique class $w_{2}^{c} \in H^{2}(B G ; \mathbb{Z} / 2)$ such that $w_{2}(T X)=c^{*}\left(w_{2}^{c}\right)$. Since S^{2} is stably parallelizable, so is $S^{2} \times S^{2}$. Then the tangent bundle $T X(r)$ is stably isomorphic to the pullback $k^{*} T X$. (The corresponding statement is false for a bistabilization $X(a, b)$ unless $a=0=b$.) Hence $w_{2}(T X(r))=k^{*} w_{2}(T X)$. Note

$$
\begin{aligned}
d^{*}\left(i_{0}^{*} w_{2}^{c}\right) & =\left(i_{0} \circ d\right)^{*}\left(w_{2}^{c}\right)=\left(c \circ k \circ j_{0}\right)^{*}\left(w_{2}^{c}\right)=j_{0}^{*} k^{*}\left(c^{*} w_{2}^{c}\right) \\
& =j_{0}^{*} k^{*}\left(w_{2}(T X)\right)=j_{0}^{*} w_{2}(T X(r))=w_{2}\left(T X_{0}\right)=v_{2}\left(X_{0}\right)=0,
\end{aligned}
$$

with $v_{2}=w_{2}+w_{1}^{2}$ the second Wu class $[21,11.14]$ and $\mathrm{Sq}^{2}=0$ on $H^{1}\left(X_{0} ; \mathbb{Z} / 2\right)$. The exact sequence (4.1) holds analogously for X_{0}, so $\operatorname{Ker}\left(d^{*}\right)=0$ hence $i_{0}^{*}\left(w_{2}^{c}\right)=0$. Thus, there is a nulhomotopy θ of $w_{2}^{c} \circ B i_{0}$. By Lemma 3.4, we may assume c is transverse to $B G_{0}$ in model (3.1), with 3-submanifold $M:=c^{-1}\left(B G_{0} \times\{0\}\right)$ of X.

Now, $k: X(r) \longrightarrow X$ extends to a retraction $K: X[r] \simeq X \vee r S^{2} \longrightarrow X$, where $X[r]:=(X \times$ $[0,1]) \natural r\left(D^{3} \times S^{2}\right)$ is the canonical cobordism from X to $X(r)$. Since c is transverse to $B G_{0}$, so is $c \circ K$.

Recall there is homotopy $H: X(r) \times[1,2] \longrightarrow B G$ such that $H(-, 1)=c \circ k$ and $H(-, 2)=c^{\prime}$. These unite to a B_{0}-transverse map

$$
C:=(c \circ K) \cup_{c o k} H: W:=X[r] \cup(X(r) \times[1,2]) \longrightarrow B G .
$$

The preimage 4-manifold $V:=C^{-1}\left(B G_{0} \times\{0\}\right)$ fits into an oriented bordism $(V, C \mid V)$ from $(M, c \mid M)$ to $\left(X_{0}, d\right)$. Furthermore, this enhances to a spin bordism, as Definition 1.6 produces a spin structure s_{μ}^{θ} on V defined by the formula

$$
s_{\mu}^{\theta}: V \longrightarrow B \text { Spin }=\operatorname{hofib}\left(w_{2}\right) ; x \longmapsto\left(\tau_{V}(x), \mu^{x} * \theta^{C(x)}\right),
$$

with $\mu: W \times[0,1] \longrightarrow K(\mathbb{Z} / 2,2)$ a homotopy from $w_{2} \circ \tau_{W}$ to $w_{2}^{C} \circ C$. Indeed, w_{2}^{C} exists by Lemma 1.5, since \widetilde{W} has a spin structure as $T \widetilde{W} \cong \widetilde{K}^{*} T \widetilde{X} \oplus \mathbb{R}$. Define $\eta: X \times[0,1] \longrightarrow K(\mathbb{Z} / 2,2)$ as a restriction of μ. So s_{μ}^{θ} on V restricts to spin structures s_{η}^{θ} on M and $t:=s_{\mu}^{\theta} \mid X_{0}$ on X_{0}. Therefore, Equation (1.3) holds.

Recall the homotopy fiber of a map $f: A \longrightarrow B$ with respect to $b_{0} \in B$ is

$$
\operatorname{hofib}(f):=\left\{(a, p) \in A \times B^{[0,1]} \mid p(0)=f(a) \text { and } p(1)=b_{0}\right\} .
$$

Proof of Theorem 1.7: sufficiency of (1.3). Assume Equation (1.3) holds, where the transverse 3-submanifold $M:=c^{-1}\left(B G_{0}\right)$ of X exists by Lemma 3.4, upon altering c by a homotopy. Furthermore, by Proposition 3.2, we can further homotope c so that M is connected and its restriction $c_{0}: M \longrightarrow B G_{0}$ is a π_{1}-epimorphism. Then the spin bordism (V, Σ, e) from $\left(M, s_{\eta}^{\theta}, c \mid M\right)$ to (X_{0}, t, d), by Lemma 2.5, can be assumed to only have 2-handles relative to X_{0}. From the proof of Theorem 1.1, $e: V \longrightarrow B G_{0}$ is a π_{1}-isomorphism, and the map $D \simeq c \cup_{c_{0}} e: T \longrightarrow B G$ is also.

Observe that the spin structure $\Sigma: V \longrightarrow B \operatorname{Spin}=\operatorname{hofib}\left(w_{2}\right)$ is of the form

$$
\Sigma=\left(\tau_{V}: V \longrightarrow B S O, \sigma: V \longrightarrow K(\mathbb{Z} / 2,2)^{[0,1]}\right),
$$

with $\sigma(x) \in K(\mathbb{Z} / 2,2)^{[0,1]}$ a path from $w_{2}\left(\tau_{V}(x)\right)$ to the basepoint ω of $K(\mathbb{Z} / 2,2)$. Recall that $\theta: B G_{0} \times$ $[0,1] \longrightarrow K(\mathbb{Z} / 2,2)$ is a homotopy from $w_{2}^{c} \circ B i_{0}$ to const ${ }_{\omega}$. Then define a homotopy $\xi: V \times[0,1] \longrightarrow$ $K(\mathbb{Z} / 2,2)$ from $w_{2} \circ \tau_{V}$ to $w_{2}^{c} \circ B i_{0} \circ e$ by

$$
\xi^{x}:=\sigma(x) * \overline{\theta^{e(x)}} .
$$

Recall that $\eta: X \times[0,1] \longrightarrow K(\mathbb{Z} / 2,2)$ is a homotopy from $w_{2} \circ \tau_{X}$ to $w_{2}^{c} \circ c$. This restricts to a homotopy $\eta_{0}: M \times[0,1] \longrightarrow K(\mathbb{Z} / 2,2)$ from $w_{2} \circ \tau_{M}$ to $w_{2}^{c} \circ B i_{0} \circ c_{0}$. Note ξ extends η_{0}, since τ_{V} extends τ_{M} and e extends c_{0}. Thus, since $T \simeq X \cup_{M} V$, we obtain a homotopy $\eta \cup_{\eta_{0}} \xi$ from $w_{2} \circ \tau_{T}$ to $w_{2}^{c} \circ D$. Since D classifies the universal cover of the 5 -manifold T, by Lemma 1.5 , the universal cover \widetilde{T} has a spin structure.

Consider the embedded 2-spheres $S_{k}: S^{2} \longrightarrow \stackrel{\circ}{T}$, in the proof of Theorem 1.1. Write $P: \widetilde{T} \longrightarrow T$ for the universal covering map. As S^{2} is simply connected, by the lifting theorem, there is an embedding $\widetilde{S_{k}}: S^{2} \longrightarrow \widetilde{T}$ with $S_{k}=P \circ \widetilde{S_{k}}$. Note

$$
\left\langle w_{2} T, S_{k *}\left[S^{2}\right]\right\rangle=\left\langle w_{2} T, P_{*} \widetilde{S_{k *}}\left[S^{2}\right]\right\rangle=\left\langle P^{*}\left(w_{2} T\right), \widetilde{S_{k *}}\left[S^{2}\right]\right\rangle=\left\langle w_{2} \widetilde{T}, \widetilde{S_{k *}}\left[S^{2}\right]\right\rangle=0
$$

Then, although T need not be spin, nonetheless the normal 3-plane bundle of each S_{k} in $\stackrel{\circ}{T}$ is trivial. So T is diffeomorphic to the boundary-connected sum $(X \times[0,1]) \natural\left(\bigsqcup_{k=1}^{r} D^{3} \times S^{2}\right)$. Therefore X^{\prime} is diffeomorphic to $X(r)=X \# r\left(S^{2} \times S^{2}\right)$.

A final remark on (1.1) is that $H_{3}\left(G_{0}\right)=\mathbb{Z}$ if X_{0} is irreducible with infinite fundamental group, as X_{0} models $B G_{0}$, a consequence of the sphere theorem [11].

Acknowledgements

The second author is a doctoral student of the first author and thanks him for equal involvement on this stable existence project. His dissertation solves the stable uniqueness problem, using instead the power of Kreck's modified surgery machine [23]. The first author is grateful to his low-dimensional topology professors at U Illinois-Chicago, Louis Kauffman and Peter Shalen, who instilled in him the beauty of knots and of incompressible surfaces in 3-manifolds. This project is a 'boyhood dream' to see if that philosophy works up one dimension.

References

[1] Brian H. Bowditch, Connectedness properties of limit sets, Trans. Am. Math. Soc. 351 (9) (1999) 3673-3686.
[2] Glen E. Bredon, Topology and Geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1997, corrected third printing of the 1993 original.
[3] William Browder, Surgery on Simply-Connected Manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 65, Springer-Verlag, New York-Heidelberg, 1972.
[4] Kenneth S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994, corrected reprint of the 1982 original.
[5] Gilbert Baumslag, Peter Shalen, Amalgamated products and finitely presented groups, Comment. Math. Helv. 65 (2) (1990) 243-254.
[6] Sylvain Cappell, A splitting theorem for manifolds, Invent. Math. 33 (2) (1976) 69-170.
[7] P.E. Conner, E.E. Floyd, Differentiable Periodic Maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N.F., Band 33, Academic Press Inc., Publishers/Springer-Verlag, New York/Berlin-Göttingen-Heidelberg, 1964.
[8] Sylvain Cappell, Julius Shaneson, On four dimensional surgery and applications, Comment. Math. Helv. 46 (1971) 500-528.
[9] Charles D. Feustel, A generalization of Kneser's conjecture, Pac. J. Math. 46 (1973) 123-130.
[10] Michael H. Freedman, Frank Quinn, Topology of 4-Manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990.
[11] John Hempel, 3-Manifolds, Ann. of Math. Studies, vol. 86, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1976.
[12] Jonathan A. Hillman, Free products and 4-dimensional connected sums, Bull. Lond. Math. Soc. 27 (4) (1995) 387-391.
[13] Ian Hambleton, Matthias Kreck, Cancellation of hyperbolic forms and topological four-manifolds, J. Reine Angew. Math. 443 (1993) 21-47.
[14] Qayum Khan, Cancellation for 4-manifolds with virtually abelian fundamental group, Topol. Appl. 220 (2017) 14-30.
[15] Matthias Kreck, Wolfgang Lück, Peter Teichner, Counterexamples to the Kneser conjecture in dimension four, Comment. Math. Helv. 70 (3) (1995) 423-433.
[16] Matthias Kreck, Wolfgang Lück, Peter Teichner, Stable prime decompositions of four-manifolds, in: Prospects in Topology, Princeton, NJ, 1994, in: Ann. of Math. Stud., vol. 138, Princeton Univ. Press, Princeton, NJ, 1995, pp. 251-269.
[17] Michel A. Kervaire, John W. Milnor, Groups of homotopy spheres, Ann. Math. (2) 77 (1963) 504-537.
[18] Matthias Kreck, Surgery and duality, Ann. Math. (2) 149 (3) (1999) 707-754.
[19] W.B.R. Lickorish, A representation of orientable combinatorial 3-manifolds, Ann. Math. (2) 76 (1962) 531-540.
[20] H. Blaine Lawson II, Marie-Louise Michelsohn, Spin Geometry, Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ, 1989.
[21] John Milnor, James Stasheff, Characteristic Classes, Annals of Mathematics Studies, vol. 76, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974.
[22] C.P. Rourke, B.J. Sanderson, Introduction to Piecewise-Linear Topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 69, Springer-Verlag, New York-Heidelberg, 1972.
[23] Gerrit N. Smith, Realizing Injective Splittings of Stable 4-Manifolds, PhD thesis, Saint Louis University, 2017.
[24] John Stallings, Group theory and three-dimensional manifolds, A James K. Whittemore Lecture in Mathematics given at Yale University, 1969, in: Yale Mathematical Monographs, vol. 4, Yale University Press, New Haven, Conn.-London, 1971.
[25] G. Ananda Swarup, Projective planes in irreducible 3-manifolds, Math. Z. 132 (1973) 305-317.
[26] René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17-86.
[27] Andrew H. Wallace, Modifications and cobounding manifolds, Can. J. Math. 12 (1960) 503-528.
[28] C.T.C. Wall, Diffeomorphisms of 4-manifolds, J. Lond. Math. Soc. 39 (1964) 131-140.

[^0]: * Corresponding author.

 E-mail addresses: qayum.khan.usa@gmail.com (Q. Khan), gsmith660@gmail.com (G. Smith).

