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Given a separating embedded connected 3-manifold in a closed 4-manifold, the 
Seifert–van Kampen theorem implies that the fundamental group of the 4-manifold 
is an amalgamated product along the fundamental group of the 3-manifold. In 
the other direction, given a closed 4-manifold whose fundamental group admits 
an injective amalgamated product structure along the fundamental group of a 
3-manifold, is there a corresponding geometric-topological decomposition of the 
4-manifold in a stable sense? We find an algebraic-topological splitting criterion 
in terms of the orientation classes and universal covers. Also, we equivariantly 
generalize the Lickorish–Wallace theorem to regular covers.

© 2019 Published by Elsevier B.V.

1. Introduction

In this paper, we examine the correspondence between algebraic topology and the stable geometric 
topology of 4-dimensional manifolds. Two 4-manifolds are stably equivalent if they become diffeomorphic 
after forming the connected sum with finitely many copies of S2 × S2. Note this does not change the 
fundamental group, signature, or spin of a 4-manifold, but does change the second Betti number. As in 
stable homotopy theory, computations are more tractable and still distinguish many spaces. The Whitney 
trick, which in higher dimensions allows for mirroring between topology and algebra, cannot be used in 
4-manifolds since a disc may intersect itself. By stabilization of the 4-manifold, self-intersections of a disc 
may be removed, by a modification called the Norman trick [8, 2.1].

The Kneser conjecture in 3-manifold topology states that if the fundamental group of a closed 3-manifold 
X is a free product G− ∗G+, then X ∼= X−#X+ where X± have fundamental group G± respectively. This 
conjecture was proved by J Stallings in his dissertation (see [24, 1.B.3, 2.B.3]). Later, C. Feustel [9] and 
G.A. Swarup [25] proved a generalized version of the conjecture when the fundamental group admits an 
injective amalgamated product along a surface group.
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Following Hillman’s work [12] on the 4-dimensional version of the Kneser conjecture, Kreck–Lück–
Teichner proved the 4-dimensional conjecture is false [15] but is true if one allows for stabilization [16]. 
We investigate the problem of stably realizing injective amalgamated product decompositions of the funda-
mental group of a 4-manifold via separating embedded codimension-one submanifolds.

1.1. Bistable results

Our results on stable embeddings vary according to the so-called w2-type of the 4-manifold. So we 
first consider a weaker equivalence relation. We call 4-manifolds bistably diffeomorphic if they become 
diffeomorphic after connecting sum each with finitely many copies of the complex-projective plane CP2

(nonspin) and its orientation-reversal CP2. For any oriented 4-manifold X, denote

X(r) := X#r(S2 × S2) X(a, b) := X#a(CP2)#b(CP2).

Stable implies bistable, as (S2 × S2)#(CP2) ≈ 2(CP2)#(CP2) [28, Cor. 1, Lem. 1].
Given a nonempty connected CW-complex A, by a continuous map u : A −→ BΓ classifying the universal 

cover Ã, we mean the induced map u# on fundamental groups is an isomorphism, for some basepoints. The 
map u is uniquely determined up to homotopy and composition with self-homotopy equivalences Bα :
BΓ −→ BΓ for α an automorphism of Γ. By a connected subcomplex being incompressible, we shall mean 
that the inclusion induces a monomorphism on fundamental groups.

Theorem 1.1. Let X be a oriented closed smooth 4-manifold. Let c : X −→ BG classify its universal cover. 
Let X0 be a connected oriented closed 3-manifold with fundamental group G0. Suppose G = G− ∗G0 G+

with G0 ⊂ G±. There exists an incompressible embedding of X0 in some bistabilization X(a, b) inducing 
the given injective amalgamation of fundamental groups, if and only if there exists a map d : X0 −→ BG0

classifying its universal cover and satisfying the equation

d∗[X0] = ∂c∗[X] ∈ H3(G0;Z), (1.1)

with ∂ the boundary in a Mayer–Vietoris sequence in group homology [4, III:6a].

The simplest case of G0 = 1 was done transparently by J. Hillman [12], whose hands-on approach with 
direct manipulation of handles we generalize in this paper.

Corollary 1.2 (Hillman). Let X be a connected orientable closed smooth 4-manifold whose fundamental group 
is a free product G− ∗G+. Some bistabilization X(a, b) is diffeomorphic to a connected sum X−#X+ with 
X± having fundamental group G± respectively.

Similarly, when G0 = Z, note X is bistably diffeomorphic to some X− ∪S1×S2 X+.

Proof. Here G0 = 1, hence H3(G0) = 0. Take X0 = S3 and d the constant map. �
The proof of Theorem 1.1 generalizes Hillman’s strategy for proving Corollary 1.2 and employs an equiv-

ariant generalization of the Lickorish–Wallace theorem (§2). Theorem 2.1 is a bordism version that slides 
1-handles then does Wallace’s trick. Wallace’s proof of Corollary 2.2 relied upon the Rohlin–Thom theorem 
(ΩSO

3 = 0).
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1.2. Stable results

Shortly after Hillman’s result, Kreck–Lück–Teichner offered an alternative proof, using Kreck’s machinery 
of modified surgery theory [18]. They were able to replace bistabilization with stabilization, due to a careful 
analysis of w2-types and triviality of 3-plane bundles over embedded 2-spheres in certain 5-dimensional 
cobordisms [16]. In general, stabilization is required [15]. Regarding the removal of S2 × S2 factors (desta-
bilization), see [13] and [14].

Recall that a (stable) spin structure s on a smooth oriented manifold M is a homotopy-commutative 
diagram (reduction of structure groups in [20, II:1.3]):

BSpin

M
τM

s

BSO.

Theorem 1.3 (Totally nonspin). Let X be a oriented closed smooth 4-manifold whose universal cover has no 
spin structure. Let c : X −→ BG classify this cover. Let X0 be a connected oriented closed 3-manifold with 
fundamental group G0. Suppose G = G− ∗G0 G+ with G0 ⊂ G±. There exists an incompressible embedding 
of X0 in some X(r) inducing the given injective amalgam of fundamental groups, if and only if there is 
d : X0 −→ BG0 classifying its universal cover satisfying (1.1).

Any oriented manifold has a spin structure if and only if w2 of its tangent bundle vanishes [20]. So any 
oriented 3-manifold has a spin structure (as w2 = v2 = 0).

Theorem 1.4 (Spinnable). Let X be a oriented closed smooth 4-manifold that admits some spin structure. 
Let c : X −→ BG classify the universal cover. Let X0 be a connected oriented closed 3-manifold with 
fundamental group G0. Suppose G = G− ∗G0 G+ with G0 ⊂ G±. There exists an incompressible embedding 
of X0 in a stabilization X(r) inducing the given injective amalgam of fundamental groups, if and only if 
there exist a map d : X0 −→ BG0 classifying its universal cover and spin structures s on X and t on X0
satisfying:

[X0, t, d] = ∂[X, s, c] ∈ ΩSpin
3 (BG0), (1.2)

with ∂ the boundary map in a Mayer–Vietoris sequence in spin bordism [7, 5.7].

Observe that (1.2) is a lift of (1.1), via the cobordism-Hurewicz homomorphism

ΩSpin
3 (BG0)

epi−−−→ ΩSO
3 (BG0)

iso−−−→ H3(BG0).

Finally, we generalize Theorem 1.4 to only require that X̃ admits a spin structure. In order to understand 
the more delicate criterion, we state a lemma and definition.

Lemma 1.5. Let u : Y −→ BΓ classify the universal cover of an oriented connected smooth manifold Y . 
The universal cover Ỹ admits a spin structure if and only if there is a class wu

2 ∈ H2(Γ; Z/2) satisfying the 
equation w2(TY ) = u∗(wu

2 ). When such a class exists it is unique.

The secondary characteristic class wu
2 will vanish if Y admits a spin structure. The following definition 

is rather delicate due to two explicit choices of homotopies. For H : A × [0, 1] −→ B and a ∈ A, the a-track
is Ha := (t �−→ H(a, t)) ∈ B[0,1].
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Definition 1.6. Let Y be an oriented connected smooth manifold whose universal cover Ỹ admits a spin 
structure. Let u : Y −→ BΓ classify the universal cover. Fix homotopy representatives τY : Y −→ BSO, w2 :
BSO −→ K(Z/2, 2), wu

2 : BΓ −→ K(Z/2, 2). By Lemma 1.5, there is a homotopy η from w2 ◦ τY to wu
2 ◦ u. 

Suppose Γ = Γ− ∗Γ0 Γ+ with Γ0 ⊂ Γ±. Write i0 : Γ0 −→ Γ for the inclusion homomorphism. Assume 
Bi0 : BΓ0 −→ BΓ is the inclusion of a bicollared subspace, with u transverse to BΓ0. If there exists a 
nulhomotopy θ of the map wu

2 ◦ Bi0, then we define the induced spin structure sθη on the submanifold 
N := u−1(BΓ0) of Y by

sθη : N −→ BSpin ; x �−→
(
τY (x), ηx ∗ θu(x)

)
,

where we identify BSpin with the homotopy fiber of w2 and ∗ denotes join of paths.

We arrive at a generalization of Theorem 1.4 which further requires i∗0(wc
2) = 0.

Theorem 1.7 (Pre-spinnable). Let X be a oriented closed smooth 4-manifold whose universal cover admits a 
spin structure. Let c : X −→ BG classify this cover. Let X0 be a connected oriented closed 3-manifold with 
fundamental group G0. Suppose G = G− ∗G0 G+ with G0 ⊂ G±. There exists an incompressible embedding 
of X0 in some X(r) inducing the given injective amalgam of fundamental groups, if and only if there exist 
a map d : X0 −→ BG0 classifying its universal cover and a spin structure t on X0 and a nulhomotopy θ of 
wc

2 ◦Bi0 satisfying, with M := c−1(BG0):

[X0, t, d] =
[
M, sθη, c|M

]
∈ ΩSpin

3 (BG0). (1.3)

The special case [16] is a consequence of Theorems 1.3 and 1.7.

Corollary 1.8 (Kreck–Lück–Teichner). Let X be a nonempty connected orientable closed smooth 4-manifold 
whose fundamental group is a free product G− ∗ G+. Some X(r) is diffeomorphic to a sum X−#X+ with 
each X± of fundamental group G±.

Proof. Here G0 = 1, so H3(G0) = 0 = ΩSpin
3 (BG0). Take X0 = S3, d constant. �

Albeit that Kreck’s modified surgery theory [18] is a powerful formalism, by which we were inspired and 
against which we checked our progress, we sought to write this paper from first principles, to be accessible 
to low-dimensional topologists. In particular, we avoid ‘subtraction of solid tori’ and ‘stable s-cobordism 
theorem.’

2. Surgery on a link and regular covers

We generalize the notion of classifying a universal cover. For a nonempty connected CW-complex A, a 
continuous map u : A −→ BΓ classifies a regular cover means that the induced map u# on fundamental 
groups is an epimorphism, for a choice of basepoints. The (connected) regular cover Â corresponds to the 
kernel of u#, and its covering group is identified with Γ, which acts transitively on the fibers.

2.1. Oriented version

This development is used to prove Theorems 1.1 and 1.3.

Theorem 2.1. Let M and M ′ be connected oriented closed 3-manifolds. Let f : M −→ BΓ and f ′ : M ′ −→
BΓ classify regular covers. Then there exists a framed oriented link L in M that transforms (M, f) into 
(M ′, f ′) by surgery if and only if
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f∗[M ] = f ′
∗[M ′] ∈ H3(Γ;Z). (2.1)

In other words, this is an algebraic-topological criterion for whether or not there is a link in M whose 
preimage in M̂ has a Γ-equivariant surgery resulting in M̂ ′.

The original version is simply without reference maps; see [27] and [19].

Corollary 2.2 (Lickorish–Wallace). Any nonempty connected oriented closed 3-manifold N is the result of 
surgery on a framed oriented link L in the 3-sphere.

Lickorish also obtained each component is unknotted with ±1 Dehn coefficients.

Proof. Here Γ = 1, M = S3, M ′ = N . Note BΓ is a point, hence H3(Γ) = 0. �
Here is a more general, technical version of Theorem 2.1 that we shall use later.

Lemma 2.3. Let M and M ′ be connected oriented closed 3-manifolds, and let B be a connected CW-complex. 
Suppose f : M −→ B and f ′ : M ′ −→ B are continuous maps that induce epimorphisms on fundamental 
groups, for some basepoints. Then

f∗[M ] = f ′
∗[M ′] ∈ H3(B;Z) (2.2)

if and only if there is a 4-dimensional smooth connected oriented compact bordism

(F ; f, f ′) : (W ;M,M ′) −→ (B × [0, 1];B × {0}, B × {1})

such that W has no 1-handles with respect to M and no 1-handles with respect to M ′, for a certain handle 
decomposition of the 4-dimensional cobordism (W ; M, M ′).

Proof of Theorem 2.1. By Lemma 2.3, use only 2-handles: surger along a link. �
The argument below, after the preliminary three paragraphs, can be perceived in two geometric steps, 

even though it is combined into a single surgical move. The first step is to slide 1-handles, along with the 
map data, so that they become trivial. The second step is a reference-maps version of Wallace’s trick to 
exchange oriented 1-handles for trivial 2-handles [27, 5.1]. (If dimM > 3, see [22, 6.15] and subsequent 
remark to replace 1-handles for 3-handles in certain cobordisms on M .)

Proof of Lemma 2.3. ⇐= is due to ΩSO
3 (B) ∼= H3(B). Consider the =⇒ direction.

Clearly ΩSO
0 = Z and ΩSO

1 = ΩSO
2 = 0; recall that ΩSO

3 = 0 by Rohlin–Thom [26, IV.13]. Then note, for 
the CW-complex B, by the Atiyah–Hirzebruch spectral sequence, that the cobordism-Hurewicz map is an 
isomorphism:

ΩSO
3 (B) −→ H3(B) ; [M, f : M → B] �−→ f∗[M ].

Thus the criterion (2.2) transforms into the equation: [M, f ] = [M ′, f ′] ∈ ΩSO
3 (B). In other words, there 

exists a 4-dimensional smooth oriented compact bordism

(F0; f, f ′) : (W0;M,M ′) −→ (B × [0, 1];B × {0}, B × {1}).

Since M and M ′ are connected, by joining their two possibly different components in W0 via connected 
sum and ignoring the rest, we may assume that W0 is connected. Hence, in the handle decomposition of a 
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Morse function (W0; M, M ′) −→ ([0, 1]; {0}, {1}), W0 has no 0-handles with respect to M and no 0-handles 
with respect to M ′. Therefore, it remains to eliminate the 1-handles of W0 with respect to M and M ′. For 
simplicity of notation, we assume that W0 has a single 1-handle.

Let h : (D1 ×D3, S0 ×D3) −→ (W0, M) be the 1-handle, preserving orientation. Since M is connected, 
there is a path α0 : [−1, 1] −→ M with α0(±1) = h(∓1, 0). Concatenation yields a loop β0 = h(−, 0) ∗
α0 : S1 −→ W0. Since f# is an epimorphism, there exists a loop β : (S1, 1) −→ (M, α0(1)) such that 
f#[β] = F0#[β0]. By general position, there is a normally framed embedded arc α1 : [−1, 1] × D2 −→ M

such that α1(±1, 0) = h(∓1, 0) and α1(−, 0) is homotopic rel boundary to α0 ∗ β−1.
Push off the 1-handle core h(−, 0) to obtain a normally framed embedded arc h0 : [−1, 1] ×D2 −→ M ′. 

A matching isotopy takes α1 to α′
1 : [−1, 1] ×D2 −→ M ′ with α′

1(±1) = h1(∓1, 0). Concatenation yields a 
normally framed embedded loop

λ := {h0(−, r) ∗ α′
1(−, r)}r∈D2 : S1 ×D2 −→ M ′.

Write W1 := M ′ × [0, 1] ∪λ D2 × D2 for the trace of the surgery along λ in M ′. Since F0 ◦ λ(−, 0) is 
nulhomotopic, choose a nulhomotopy to yield a bordism

(F1; f ′, f ′′) : (W1;M ′,M ′′) −→ (B × [0, 1];B × {0}, B × {1}).

Observe that W1 is the trace of surgery along the framed belt sphere S1 ×D2 ↪→ M ′′. By the cancellation 
lemma [22, 6.4], W0 ∪M ′ W1 is diffeomorphic to M × [0, 2] relative to M × {0}. In particular, there is 
δ : M ≈ M ′′ with f ′′ ◦ δ 
 f . Write W ′

0 := M × [0, 2] ∪δ W1. So we have a new bordism with h replaced by 
a 2-handle:

(δ ∪f ′′ F1; f, f ′) : (W ′
0;M,M ′) −→ (B × [0, 1];B × {0}, B × {1}).

By iteration, we kill all 1-handles of W ′
0 relative to M . Similarly, repeat relative to M ′. Thus, we obtain 

the desired bordism (W, F ) with only 2-handles rel M . �
2.2. Spin version

We shall need this development to prove Theorem 1.4.

Theorem 2.4. Let (M, s) and (M ′, s′) be spin closed 3-manifolds. Let f : M −→ BΓ and f ′ : M ′ −→ BΓ
classify regular covers. There exists a framed oriented link L in M that transforms (M, s, f) into (M ′, s′, f ′)
by a spin bordism if and only if

[M, s, f ] = [M ′, s′, f ′] ∈ ΩSpin
3 (BΓ). (2.3)

Lemma 2.5. Let (M, s) and (M ′, s′) be connected spin closed 3-manifolds, and let B be a connected CW-
complex. Suppose f : M −→ B and f ′ : M ′ −→ B are continuous maps that induce epimorphisms on 
fundamental groups. Then

[M, s, f ] = [M ′, s′, f ′] ∈ ΩSpin
3 (B) (2.4)

if and only if there is a 4-dimensional smooth connected spin compact bordism

(F ; f, f ′) : (W, t;M, s,M ′, s′) −→ (B × [0, 1];B × {0}, B × {1})

such that W has no 1-handles with respect to M and no 1-handles with respect to M ′, for a certain handle 
decomposition of the 4-dimensional cobordism (W ; M, M ′).
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Proof of Theorem 2.4. By Lemma 2.5, use only 2-handles: surger along a link. �
Proof of Lemma 2.5. The ⇐= implication is obvious. Consider the =⇒ implication.

Recall the proof of Lemma 2.3. We reconstruct W1 to admit a spin structure extending the spin structure 
s′ on ∂−W1 = M ′, since by gluing along M ′′ this will induce a spin structure on W ′

0 extending the spin 
structure s � s′ on ∂W ′

0 = M �M ′.
Since Hi+1(M ′; πi(Spin3)) = 0 for all i � 0, by obstruction theory, the spin structure s′ lifts to a framing 

φ of the tangent bundle TM ′. The sole obstruction to extending the stable framing φ ⊕ id of TM ′ ⊕ R to 
the tangent bundle τ of W1 is

o(τ) ∈ H2(W1,M
′;π1(SO4)) = H2(D2, S1;π1(SO4)) = π1(SO4) ∼= Z/2.

Let η ∈ π1(SO2) ∼= Z. Reframe the normal bundle of the surgery circle λ(−, 0) as

λη : S1 ×D2 −→ M ′ ; (z, r) �−→ λ(z, ηz(r)).

Write W η
1 := M ′ × [0, 1] ∪λη D2 ×D2 with tangent bundle τη. By [17, Lemma 6.1],

o(τη) = o(τ) + σ#(η) ∈ π1(SO4),

where σ : SO2 −→ SO4 denotes the inclusion. Since the induced map σ# on fundamental groups is surjective, 
find η so that τη has a framing extending φ ⊕ id. Hence W η

1 has a spin structure extending s′ on its lower 
oriented boundary M ′.

By gluing, we obtain an induced spin structure on W0 ∪M ′ W η
1 ≈ M × [0, 2] relative to M × {0}. 

Modifying Proof 2.3, redefine W ′
0 := M × [0, 2] ∪δη W η

1 with spin structure the union of this one and the 
orientation-reversal of the one on W η

1 . Therefore, the spin structure on W ′
0 restricts to s � s′ on ∂W ′

0 =
M �M ′. �
3. Ambient surgery on pairs of points

Let G = G− ∗G0 G+ be an injective amalgam of groups. The corresponding double mapping cylinder 
model of its classifying space is the homotopy colimit

BG := BG− ∪BG0×{−1} BG0 × [−1,+1] ∪BG0×{+1} BG+ (3.1)

with respect to the maps BG0 −→ BG± induced from the inclusions G0 −→ G±.
Akin to Stalling’s thesis, here is a folklore fact proven in [1, 1.1] (cf. [5]).

Theorem 3.1 (Bowditch). If G and G0 are finitely presented, so are G− and G+.

Instead of G0 being finitely presented, the proof of the next statement can work assuming G−, G0, G+
are finitely generated, but we prefer the former hypothesis.

Proposition 3.2. Let X be a connected oriented closed smooth 4-manifold. Suppose f : X −→ BG classifies 
a regular cover. Assume G0 is finitely presented. Then f can be re-chosen up to homotopy so that: f is 
transverse to the bicollared subspace BG0 × {0} in the model (3.1), the 3-submanifold preimage M in X is 
connected, and the restriction f : M −→ BG0 also classifies a regular cover.

This is proven after three lemmas. The first is an apparatus to recalibrate paths.
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Lemma 3.3. Let X be a connected oriented smooth n-manifold with n > 2. Consider a space B = B−∪B0 B+
with B, B±−B0 path-connected and B0 = B−∩B+. Suppose f : X −→ B is π1-surjective. Assume π1(B±−
B0) are finitely generated, by r± elements. There are disjoint 1-handlebodies Λ± ≈ #r±(S1 ×Dn−1) ⊂ X

and f ′ : X −→ B homotopic to f having π1-surjective restrictions f ′ : Λ± −→ B± −B0.

Proof. We may homotope f so that its image contains some points b± in B± −B0. Then there are x± ∈ X

such that f(x±) = b±. There are based loops μ1
±, . . . , μ

r±
± : (S1, 1) −→ (B±−B0, b±) whose based homotopy 

classes generate π1(B± − B0, b±). Since f# : π1(X, x±) −→ π1(B, b±) is surjective and n > 2, there 
exist disjoint smoothly embedded based loops λ1

±, . . . , λ
r±
± : (S1, 1) −→ (X, x±) and a based homotopy 

Hi
± : S1 × [0, 1] −→ B from f ◦ λi

± to μi
±. Since X is oriented, for each i, there is a tubular neighborhood 

Λ±
i of λ±

i (S1) and a diffeomorphism Λ±
i ≈ S1 ×Dn−1. Taking the radii of the tubes sufficiently small, we 

find that the Λ±
i pairwise intersect in a fixed Dn-neighborhood of x±. Thus we obtain disjoint embeddings 

of #r−(S1 ×Dn−1) and #r+(S1 ×Dn−1) in X, say with images called Λ− and Λ+.
Finally, using these NDR neighborhoods Λ± of 

∨
i λ

i
± and specific homotopies 

∨
i H

i
± as the data for the 

homotopy extension property [2, Theorem VII:1.5], we obtain a homotopy H : X × [0, 1] −→ B from f to a 
map f ′ such that f ′ ◦ λi

± = μi
±. Hence f ′(Λ±) ⊂ B± −B0 and (f ′|Λ±)#π1(Λ±, x±) = π1(B± −B0, b±). �

Given a continuous map f : X −→ B from a smooth manifold X to a topological space B, and given a 
subspace B0 that admits a tubular neighborhood E(ξ) ⊂ B, W. Browder defines f to be transverse to B0
to mean that the conclusion of the implicit-function theorem holds: the preimage X0 = f−1(B0) is a smooth 
submanifold of X with normal bundle ν(X0 ↪→ X) = (f |X0)∗(ξ) [3, II:§2]. Since the proof is omitted for 
Browder’s generalization [3, II:2.1] of Thom’s transversality theorem [26, I:5], we give details for the trivial 
line bundle ξ = R.

Lemma 3.4. Let f : X −→ B be a continuous map from a smooth manifold to a space B. For any bicollared 
subspace B0 of B (i.e., B0 has a neighborhood in B homeomorphic to B0×R), there exists a map f ′ : X −→
B transverse to B0 and homotopic to f , relative to the complement of an open neighborhood of f−1(B0).

Proof. We have an open embedding β : B0 × R −→ B with β(B0 × {0}) = B0 ⊂ B. Write N ⊂ B for the 
image of β, and write π2 : B0 ×R −→ R for the projection. Note f−1(N) ⊂ X is a smooth manifold, since 
it is an open set in a smooth manifold. By Whitney’s approximation theorem [2, II:11.7], the C0 function 
π2 ◦ β−1 ◦ f : f−1(N) −→ R is 0.5-close to a C∞ function g : f−1(N) −→ R. Define

H : f−1(N) × [0, 1] −→ B ; (x, t) �−→ β
(
(π1β

−1f)(x), (1 − t)(π2β
−1f)(x) + tg(x)

)
.

Note H is a homotopy from H(x, 0) = f(x) to a map f ′ := H(−, 1) : f−1(N) −→ B. Then f ′ is transverse 
to B0 with (f ′)−1(B0) = g−1{0} a smooth submanifold of X; where by Sard’s theorem and a tiny homotopy, 
we assume 0 is a regular value of g.

It remains to extend H to X × [0, 1] so that H(x, t) = f(x) for all x ∈ X − N . Using explicit formulas 
derived from the tubular neighborhood structure β, this is achieved by the homotopy extension property 
for the neighborhood deformation retract f−1β(B0 × [−1, 1]) � (X − N) closed in the T4 space X; see [2, 
Theorem VII:1.5]. The desired map f ′ : X −→ B is again H(−, 1) of this extension. �

We perform 1-handle exchanges in dimension 4 by an obstruction-theoretic argument. This is not in the 
literature, but see [11, p. 67] and [6, Lemma I:3]. Recall the frontier FrX(A) := ClX(A) ∩ ClX(X − A) for 
A ⊂ X, a topological space.

Lemma 3.5. Let f : X −→ B be a continuous map from a smooth 4-manifold to a path-connected space B, 
transverse to a path-connected separating subspace B0 of B = B− ∪B0 B+. Decompose X = X− ∪X0 X+ by 
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the f -preimages. Let α : (D1, ∂D1) −→ (X±, X0) be a smoothly embedded arc with [f ◦α] = 0 ∈ π1(B±, B0). 
Suppose π3(B∓) = 0 = π4(B). Then f is homotopic to a B0-transverse map g : X −→ B whose preimage of 
B0 is the result of adding a 1-handle with core α. Namely, for some open-tubular neighborhood U ≈ D1×D̊3

of the arc α in X±:

g−1(B0) = (X0 ∪ FrXU) − (X0 ∩ U).

Proof. Let T be a closed-tubular neighborhood of α(D1) in X±. There is a framing diffeomorphism φ :
(D1 ×D3, ∂D1 ×D3) −→ (T, T ∩X0) with φ(s, 0) = α(s). Define

O := φ
{
(s, x) ∈ D1 ×D3 | 2

3 � ‖x‖ � 1
}

M := φ
{
(s, x) ∈ D1 ×D3 | 1

3 � ‖x‖ � 2
3
}

I := φ
{
(s, x) ∈ D1 ×D3 | 0 � ‖x‖ � 1

3
}
,

which is a decomposition of T = O ∪M ∪ I into three closed subsets. Define a map

g : O −→ B± ; φ(s, x) �−→ (f ◦ φ)(s, (3‖x‖ − 2)x).

Since [f ◦ α] = 0 ∈ π1(B±, B0), there exists a map H : D1 × [0, 1] −→ B± such that

H(s, 1) = (f ◦ α)(s) ∀s ∈ D1

H(±1, t) = α(±1) ∀t ∈ [0, 1]

H−1(B0) = ∂D1 × [0, 1] ∪ D1 × {0}.

By the pasting lemma, we can extend g from O to O ∪M by

g : M −→ B± ; φ(s, x) �−→ H(s, 3‖x‖ − 1).

Next, there exist both a neighborhood C of the attaching 0-sphere α(∂D1) in X∓ and a diffeomorphism 
ψ : ∂D1 × D4

− −→ X∓ such that ψ|∂D1 ×D3
0 = φ|∂D1 ×D3. Extend g from FrX0T = φ(∂D1 × ∂D3) to 

FrX∓C = ψ(∂D1 × ∂−D4
−) by g = f . Then g is defined on the ‘riveted’ 3-sphere S := FrX(C ∪ I). Since 

g(S) ⊂ B∓ and π3(B∓) = 0, we may extend g to the ‘riveted’ 4-disc C ∪ I; using the collar of B0 in B∓, we 
can guarantee that g(C ∪ I − S) ⊂ B∓ − B0. Lastly, extend g to the complement X − (C ∪ T ) by g = f . 
Therefore g : X −→ B is transverse to B0 with

g−1(B0) = (X0 − I) ∪ (M ∩ I).

Finally, note FrX(C ∪ T ) is a 3-sphere in X, so we obtain a 4-sphere X × [0, 1]:

Σ := (C ∪ T ) × {0} ∪ FrX(C ∪ T ) × [0, 1] ∪ (C ∪ T ) × {1}.

Since π4(B) = 0, we may fill in (f ◦ projX)|Σ to obtain a homotopy from f to g. �
We adapt to dimension 4, and simplify, ‘arc-chasing’ arguments of [11, p. 67] and [6, p. 88]. Further, we 

generalize the sliding of 1-handles trick of Proof 2.3.

Proof of Proposition 3.2. By Theorem 3.1 and by Lemma 3.3 with respect to the model (3.1), we homotope
f so that there are disjointly embedded 1-handlebodies Λ± ≈ #r±(S1 × D3) ⊂ X satisfying f(Λ±) ⊂
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BG± − BG0 and f#π1(Λ±, x±) = G±. Hence f(Λ− � Λ+) is disjoint from the bicollar neighborhood 
BG0 × [−1, 1] in BG. Next, by Lemma 3.4, we further re-choose f up to homotopy relative to Λ− � Λ+
so that f is also transverse to BG0 × {0}, say with f -preimage K. Write V± for the X-closure of the 
path-component neighborhood of Λ± in the open subset X −K.

Assume that V+∩K has at least two components, say K0�K1. Since V+ is connected, there is a properly 
and smoothly embedded arc α : [0, 1] −→ V+ satisfying: α(i) ∈ Ki if 0 � i � 1, α(1

2 ) is near-but-not x+, 
and α−1(V̊+) = (0, 1). Since the composite map π1(Λ+) f#−−−→ π1(BG+) −→ π1(BG+, BG0) is surjective, 
upon midpoint-concatenation of some based loop (S1, 1) −→ (∂Λ+, α(1

2 )), we may assume that [f ◦ α] =
0 ∈ π1(BG+, BG0). Then, by Lemma 3.5, we re-choose f up to homotopy relative Λ−�Λ+ so that the new 
component neighborhood V+ of Λ+ in X − f−1(BG0) contains K0#K1. Since X is compact, so is K, so we 
repeat finitely many steps until V+ ∩K becomes connected. Similarly, make V− ∩K connected.

Write L := V− ∩ V+, a connected 3-submanifold of X. Let x0 ∈ L. Assume there exists x1 ∈ K − L. 
Since X is connected, there exists a path γ : [0, 1] −→ X from x0 to x1. Define s0 := sup γ−1(V− ∪ V+). 
Since 0 < s0 < 1, we must have γ(s0) ∈ FrX(V−) ∪ FrX(V+) = L. Then γ(s0) is in the interior of V− ∪ V+. 
So there exists s1 > s0 with γ(s1) also in the interior of V− ∪ V+. This contradicts the maximality of s0. 
Therefore K − L is empty. Hence K = L and so it is connected.

Finally, since G0 ⊂ G+ is finitely generated and since (f |Λ+)# : π1(Λ+) −→ G+ is surjective, there exist 
based loops δ1, . . . , δr0 : (S1, 1) −→ (V+, x0) such that G0 = 〈f#[δ1], . . . , f#[δr0 ]〉. In particular, each f ◦ δi
is based homotopic into BG0. Since each f ◦ δi represents 0 in π1(BG+, BG0), by Lemma 3.5 applied r0
times, we re-choose f so that, further, its restriction to M := f−1(BG0) is π1-surjective. �
4. Proofs of the embedding theorems

Proof of Theorem 1.1. Clearly (1.1) is a necessary condition. So now, assume (1.1).
Consider the double mapping cylinder model (3.1). Since G−, G0, G+ are finitely generated and c : X −→

BG classifies a regular cover, by Proposition 3.2, we may re-choose c up to homotopy so that: c is transverse 
to BG0, the 3-submanifold preimage M is connected, and the restriction c0 : M −→ BG0 classifies a regular 
cover. Write X = X− ∪M X+ and c = c− ∪c0 c+ with restrictions c± : X± −→ BG±.

Next, consider the commutative square, with horizontal maps being connecting homomorphisms induced 
from (3.1) and with vertical maps being of Hurewicz type:

ΩSO
4 (BG) ∂ ΩSO

3 (BG0)

H4(BG) ∂
H3(BG0)

; [X, c] [M, c0]

c∗[X] c0∗[M ].

Hence the criterion (1.1) implies: there is a classifying map d : X0 −→ BG0 with

d∗[X0] = c0∗[M ] ∈ H3(G0).

Since d# and c0# are surjective, by Lemma 2.3, there is a 4-dimensional oriented smooth bordism e : V −→
BG0 from (M, c0) to (X0, d) made with only 2-handles. Since V is obtained from X0 using only 2-handles, 
the inclusion j : X0 −→ V induces an epimorphism on fundamental groups. Since d# = e# ◦ j# is a 
monomorphism, note that j# is also a monomorphism. So both j# and e# are isomorphisms.

Now, we obtain a connected 5-dimensional oriented compact smooth cobordism

T := X × [0, 1] ∪M×[−1,1] V × [−1, 1]
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where we regard M× [−1, 1] in X×{1} and we smooth the corners at M×{−1, 1}. The resultant 4-manifold 
and map are X ′ := ∂T −X × {0} and c′ := D|X′ , where

D : T −→ BG ;
{

(x, t) ∈ X × [0, 1] �−→ c(x)
(v, s) ∈ V × [−1, 1] �−→ (e(v), s).

Decompose the space X ′ = X ′
− ∪X0 X ′

+ with X ′
± = X± ∪M V × {±1} ∪X0 × [±1, 0], as well as the map 

c′ = c′− ∪d c
′
+ : X ′ −→ BG with c′± = c± ∪c0 e : X ′

± −→ BG±.
Write i : M −→ X for the inclusion. Since V is the trace of a surgery on a framed oriented link L

in M , correspondingly note T is the trace of a surgery on i ◦ L in X. By a similar argument as earlier, 
we find that the kernel of c0# equals the kernel of the map induced by the inclusion M −→ V , which is 
generated by the (unbased) components Lk of L, upon anchoring them to the basepoint with choices of 
connecting paths. In addition, since c0# = c# ◦ i# and c# is an isomorphism, the kernel of c0# equals the 
kernel of i#. In particular, each embedded circle Lk is nulhomotopic in X, bounding an immersed disc with 
transverse double points, which can be isotoped away using finger-moves [10, 1.5]; thus each Lk bounds an 
embedded disc in X. Another consequence is that D 
 c ∪c0 e : X ∪M V −→ BG induces an isomorphism 
on fundamental groups. Then, by an argument with alternating words, each c′± : X ′

± −→ BG± also does 
so. So, since d# is an isomorphism, c′ induces an isomorphism on fundamental groups.

Finally, we show that the embedding solution X ′ is bistably diffeomorphic to X. For each Lk, consider 
embedded in T̊ the 2-sphere Sk with equator Lk, with northern hemisphere the core of the bounding 2-handle 
in V × {0}, and with southern hemisphere the bounding 2-disc in X × {1}. Write Nk for the 5-dimensional 
closed-tubular neighborhood of Sk in T̊ . Observe that T is diffeomorphic to the boundary-connected sum 
(X×[0, 1])�(�k Nk). Each Nk is diffeomorphic to either D3×S2 or D3

�S2, where the latter is the nontrivial 
(nonspin) disc bundle. Thus, we obtain X ′

≈ X#p(S2 × S2)#q(S2
� S2) for some p � r and q � 0. Since 

(S2 × S2)#(CP2) ≈ 2(CP2)#(CP2) and S2
� S2

≈ (CP2)#(CP2) [28, C1, L1],

X ′(1, 0) ≈ X(1 + p + q, p + q). �
Proof of Theorem 1.3. Since w2(X̃) �= 0, by the Hurewicz theorem, there exists a spherical class α̃ : S2 −→ X̃

such that 〈w2(X̃), α̃∗[S2]〉 �= 0. Write p : X̃ −→ X for the covering map, and write α := p ◦ α̃ : S2 −→ X. 
Since on tangent bundles TX̃ = p∗(TX), as one obtains the smooth structure on X̃ by even-covering, note

〈w2(X), α∗[S2]〉 = 〈w2(X), p∗α̃∗[S2]〉 = 〈p∗w2(X), α̃∗[S2]〉 = 〈w2(X̃), α̃∗[S2]〉 = 1.

Do the same as in the proof of Theorem 1.1, until the construction of the 2-sphere Sk. In the case that the 
normal bundle of Sk is nontrivial, replace the southern hemisphere with its one-point union with α, smoothed 
rel Lk into immersion then an embedding by finger-moves, to obtain S′

k. Since [S′
k] = [Sk] + [α] ∈ π2(X), 

note

〈w2(X), S′
k∗[S2]〉 = 〈w2(X), Sk∗[S2] + α∗[S2]〉 = 1 + 1 = 0 ∈ Z/2.

Hence the normal 3-plane bundle of the new embedded 2-sphere S′
k in T̊ is trivial. So T is diffeomorphic 

to the boundary-connected sum (X × [0, 1])�(�r
k=1 D

3 × S2). Therefore, we obtain X ′ is diffeomorphic to 
X(r) = X#r(S2 × S2). �
Proof of Theorem 1.4. Do the same as in the proof of Theorem 1.1, except using (1.2) and Lemma 2.5
instead of (1.1) and Lemma 2.3, until the construction of the 2-sphere Sk. Here, the spin structure sM on 
M is the restriction of the spin structure s on X × {1}, where the spin structure on the normal line bundle 
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is induced from its pullback orientation [20, II:2.15]. Since sM is the restriction of the spin structure on 
V × {0}, we obtain that T has an induced spin structure.

Then, since w2(T ) = 0, the normal 3-plane bundle of each Sk in T̊ is trivial. So T is diffeomorphic 
to the boundary-connected sum (X × [0, 1])�(�r

k=1 D
3 × S2). Therefore, we obtain X ′ is diffeomorphic to 

X(r) = X#r(S2 × S2). �
For clarity, we repeat the following proof from [16, p. 258] and [18, p. 713]. The statement shall be applied 

in Proof 1.7 for manifolds Y of dimensions 3, 4, 5.

Proof of Lemma 1.5. Since Ỹ is 1-connected, by the Leray–Serre spectral sequence for the homotopy fibration 
sequence Ỹ

p−−→ Y
u−−→ BΓ, we obtain an exact sequence

0 H2(BΓ;Z/2) u∗

H2(Y ;Z/2)
p∗

H2(Ỹ ;Z/2)G. (4.1)

Then, since w2(T Ỹ ) = w2(p∗(TY )) = p∗(w2(TY )), the oriented smooth manifold Ỹ admits a spin structure 
if and only if there exists wu

2 ∈ H2(BΓ; Z/2) such that u∗(wu
2 ) = w2(TY ). Further by exactness, this class 

wu
2 is unique if it exists. �
For r � 0, the pinch map p : X(r) −→ X ∨ #r(S2 × S2) gives a degree-one map

k := (id ∨ const) ◦ p : X(r) −→ X.

The π1-isomorphism c : X −→ BG induces the π1-isomorphism c ◦ k : X(r) −→ BG.

Proof of Theorem 1.7: necessity of (1.3). Assume for some r � 0 that there exists an incompressible 
embedding j0 : X0 −→ X(r) such that (c ◦ k ◦ j0)#(π1X0) = G0. Then X(r) = X ′

− ∪X0 X
′
+ with inclusions 

j± : X ′
± −→ X(r). Since X(r) and X0 are connected, so are X ′

±. Furthermore, since (c ◦k)# and (c ◦k◦j0)#
are isomorphisms, by a basic observation on normal form [23], so are (c ◦ k ◦ j±)# : π1(X ′

±) −→ G±.
Consider the double mapping cylinder model (3.1) of BG, where Bi0 : BG0 −→ BG is the inclusion of 

a bicollared subspace. Since X0 is a CW-complex, there is a homotopically unique map d : X0 −→ BG0
such that Bi0 ◦ d 
 c ◦ k ◦ j0. Furthermore, since X± are CW-complexes, d extends to maps c± : X ′

± −→
BG± ∪ BG0 × [0, ±1] with Bi± ◦ c± 
 c ◦ k ◦ j±. Therefore, c ◦ k is homotopic to a BG0-transverse map 
c′ := c′− ∪d c

′
+ : X(r) −→ BG satisfying (c′)−1(BG0 × {0}) = X0.

Next, since X̃ admits a spin structure, by Lemma 1.5, there is a unique class wc
2 ∈ H2(BG; Z/2) such 

that w2(TX) = c∗(wc
2). Since S2 is stably parallelizable, so is S2 × S2. Then the tangent bundle TX(r) is 

stably isomorphic to the pullback k∗TX. (The corresponding statement is false for a bistabilization X(a, b)
unless a = 0 = b.) Hence w2(TX(r)) = k∗w2(TX). Note

d∗(i∗0wc
2) = (i0 ◦ d)∗(wc

2) = (c ◦ k ◦ j0)∗(wc
2) = j∗0k

∗(c∗wc
2)

= j∗0k
∗(w2(TX)) = j∗0w2(TX(r)) = w2(TX0) = v2(X0) = 0,

with v2 = w2 + w2
1 the second Wu class [21, 11.14] and Sq2 = 0 on H1(X0; Z/2). The exact sequence (4.1)

holds analogously for X0, so Ker(d∗) = 0 hence i∗0(wc
2) = 0. Thus, there is a nulhomotopy θ of wc

2 ◦Bi0. By 
Lemma 3.4, we may assume c is transverse to BG0 in model (3.1), with 3-submanifold M := c−1(BG0×{0})
of X.

Now, k : X(r) −→ X extends to a retraction K : X[r] 
 X ∨ rS2 −→ X, where X[r] := (X ×
[0, 1]) � r(D3 × S2) is the canonical cobordism from X to X(r). Since c is transverse to BG0, so is c ◦K. 
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Recall there is homotopy H : X(r) × [1, 2] −→ BG such that H(−, 1) = c ◦ k and H(−, 2) = c′. These unite 
to a B0-transverse map

C := (c ◦K) ∪c◦k H : W := X[r] ∪ (X(r) × [1, 2]) −→ BG.

The preimage 4-manifold V := C−1(BG0 × {0}) fits into an oriented bordism (V, C|V ) from (M, c|M) to 
(X0, d). Furthermore, this enhances to a spin bordism, as Definition 1.6 produces a spin structure sθμ on V
defined by the formula

sθμ : V −→ BSpin = hofib(w2) ; x �−→
(
τV (x), μx ∗ θC(x)

)
,

with μ : W × [0, 1] −→ K(Z/2, 2) a homotopy from w2 ◦ τW to wC
2 ◦ C. Indeed, wC

2 exists by Lemma 1.5, 
since W̃ has a spin structure as TW̃ ∼= K̃∗TX̃ ⊕R. Define η : X × [0, 1] −→ K(Z/2, 2) as a restriction of μ. 
So sθμ on V restricts to spin structures sθη on M and t := sθμ|X0 on X0. Therefore, Equation (1.3) holds. �

Recall the homotopy fiber of a map f : A −→ B with respect to b0 ∈ B is

hofib(f) := {(a, p) ∈ A×B[0,1] | p(0) = f(a) and p(1) = b0}.

Proof of Theorem 1.7: sufficiency of (1.3). Assume Equation (1.3) holds, where the transverse 3-submanifold 
M := c−1(BG0) of X exists by Lemma 3.4, upon altering c by a homotopy. Furthermore, by Proposition 3.2, 
we can further homotope c so that M is connected and its restriction c0 : M −→ BG0 is a π1-epimorphism. 
Then the spin bordism (V, Σ, e) from (M, sθη, c|M) to (X0, t, d), by Lemma 2.5, can be assumed to only have 
2-handles relative to X0. From the proof of Theorem 1.1, e : V −→ BG0 is a π1-isomorphism, and the map 
D 
 c ∪c0 e : T −→ BG is also.

Observe that the spin structure Σ : V −→ BSpin = hofib(w2) is of the form

Σ =
(
τV : V −→ BSO, σ : V −→ K(Z/2, 2)[0,1]

)
,

with σ(x) ∈ K(Z/2, 2)[0,1] a path from w2(τV (x)) to the basepoint ω of K(Z/2, 2). Recall that θ : BG0 ×
[0, 1] −→ K(Z/2, 2) is a homotopy from wc

2 ◦ Bi0 to constω. Then define a homotopy ξ : V × [0, 1] −→
K(Z/2, 2) from w2 ◦ τV to wc

2 ◦Bi0 ◦ e by

ξx := σ(x) ∗ θe(x).

Recall that η : X × [0, 1] −→ K(Z/2, 2) is a homotopy from w2 ◦ τX to wc
2 ◦ c. This restricts to a homotopy 

η0 : M × [0, 1] −→ K(Z/2, 2) from w2 ◦ τM to wc
2 ◦ Bi0 ◦ c0. Note ξ extends η0, since τV extends τM and 

e extends c0. Thus, since T 
 X ∪M V , we obtain a homotopy η ∪η0 ξ from w2 ◦ τT to wc
2 ◦ D. Since D

classifies the universal cover of the 5-manifold T , by Lemma 1.5, the universal cover T̃ has a spin structure.
Consider the embedded 2-spheres Sk : S2 −→ T̊ , in the proof of Theorem 1.1. Write P : T̃ −→ T

for the universal covering map. As S2 is simply connected, by the lifting theorem, there is an embedding 
S̃k : S2 −→ T̃ with Sk = P ◦ S̃k. Note

〈w2T, Sk∗[S2]〉 = 〈w2T, P∗S̃k∗[S2]〉 = 〈P ∗(w2T ), S̃k∗[S2]〉 = 〈w2T̃ , S̃k∗[S2]〉 = 0.

Then, although T need not be spin, nonetheless the normal 3-plane bundle of each Sk in T̊ is trivial. So T is 
diffeomorphic to the boundary-connected sum (X × [0, 1])�(�r

k=1 D
3 × S2). Therefore X ′ is diffeomorphic 

to X(r) = X#r(S2 × S2). �
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A final remark on (1.1) is that H3(G0) = Z if X0 is irreducible with infinite fundamental group, as X0
models BG0, a consequence of the sphere theorem [11].
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