$$
\text { Citations } \quad \text { From References: } 1 \quad \text { From Reviews: } 0
$$

MR3619277 57N13 57M05
Khan, Qayum (1-STL)
Cancellation for 4-manifolds with virtually abelian fundamental group. (English summary)
Topology Appl. 220 (2017), 14-30.
Understanding the stable homeomorphism classification of topological 4-manifolds, namely compact connected 4 -manifolds up to homeomorphisms and connected sums with $S^{2} \times S^{2}$, is a fundamental problem in 4 -manifold topology. Here, orientability is not required.

The paper under review gives a contribution to the following problem. Suppose that there are given 4-manifolds X and Y, and assume that there is a homeomorphism

$$
X \# r\left(S^{2} \times S^{2}\right) \cong Y \# r\left(S^{2} \times S^{2}\right)
$$

for some $r>0$. Is there a similar homeomorphism with fewer $S^{2} \times S^{2}$ connected summands?

Building on work of S. E. Cappell and J. L. Shaneson [Comment. Math. Helv. 46 (1971), 500-528; MR0301750] and of I. Hambleton and M. Kreck [J. Reine Angew. Math. 443 (1993), 21-47; MR1241127], the author gives in Theorem 2.1 a certain technical algebraic condition on the fundamental group (which is assumed to be good in the sense of M. H. Freedman and F. S. Quinn III [Topology of 4-manifolds, Princeton Math. Ser., 39, Princeton Univ. Press, Princeton, NJ, 1990; MR1201584]), under which the number of stabilizations (that is, the number r of the $S^{2} \times S^{2}$ connected summands) can be bounded from above, under the extra assumption that X itself is of the form $X \cong$ $X^{\prime} \#\left(S^{2} \times S^{2}\right)$. This bound is expressed as the dimension (if it is finite) of a certain (commutative) subring R_{0} of the center of the fundamental group ring $\mathbb{Z}\left[\pi_{1}\right]$, such that $\mathbb{Z}\left[\pi_{1}\right]$ is a finitely generated R_{0}-module.

Then, the author proves in Proposition 2.2 that every finitely presented and virtually abelian fundamental group satisfies the hypotheses of Theorem 2.1, and if π_{1} contains \mathbb{Z}^{n} as a finite index subgroup, then the number of stabilizations can be bounded by $n+1$.

These results are applied to nonorientable topological 4-manifolds with fundamental group of order two (they have been classified up to homeomorphisms by Hambleton, Kreck and P. Teichner [Trans. Amer. Math. Soc. 344 (1994), no. 2, 649-665; MR1234481]). For example, the following is proved (in part 2 of Theorem 3.4). Let $X=$ $M \# M^{\prime}$, with M and M^{\prime} closed nonorientable 4-manifolds with π_{1} of order two, and let X_{ϑ} be tangential homotopy equivalent to X (meaning that there is a homotopy equivalence $h_{\vartheta}: X_{\vartheta} \simeq X$ that pulls back the tangent microbundle of X to that of X_{ϑ}). Then,

$$
X_{\vartheta} \# 3\left(S^{2} \times S^{2}\right) \cong X \# 3\left(S^{2} \times S^{2}\right)
$$

In particular, this is true for $X=\mathbb{R} P^{4} \# \mathbb{R P}^{4}$.
It is remarkable that the proofs take some ideas from algebraic geometry.
Daniele Zuddas

References

1. A. Bak, K-Theory of Forms, Ann. Math. Stud., vol. 98, Princeton University

Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1981. MR0632404
2. H. Bass, Algebraic K-Theory, W.A. Benjamin, Inc., New York-Amsterdam, 1968. MR0249491
3. H. Bass, Unitary algebraic K-theory, in: Algebraic K-Theory, III: Hermitian KTheory and Geometric Applications, Proc. Conf., Battelle Memorial Inst., Seattle, Wash 1972, in: Lect. Notes Math., vol. 343, Springer, Berlin, 1973, pp. 57-265. MR0371994
4. N. Bourbaki, Commutative Algebra, Elements of Mathematics, Springer-Verlag, Berlin, 1998, Chapters 1-7, translated from the French, reprint of the 1989 English translation. MR1727221
5. J. Brookman, J.F. Davis, Q. Khan, Manifolds homotopy equivalent to $P^{n} \# P^{n}$, Math. Ann. 338 (4) (2007) 947-962. MR2317756
6. S.E. Cappell, Manifolds with fundamental group a generalized free product, Bull. Am. Math. Soc. 80 (1974) 1193-1198. MR0356091
7. S.E. Cappell, J.L. Shaneson, On four-dimensional surgery and applications, Comment. Math. Helv. 46 (1971) 500-528. MR0301750
8. F.X. Connolly, J.F. Davis, The surgery obstruction groups of the infinite dihedral group, Geom. Topol. 8 (2004) 1043-1078 (electronic). MR2087078
9. D. Eisenbud, Commutative Algebra, Grad. Texts Math., vol. 150, Springer-Verlag, New York, 1995, with a view toward algebraic geometry. MR1322960
10. M.H. Freedman, F. Quinn, Topology of 4-Manifolds, Princeton Math. Ser., vol. 39, Princeton University Press, Princeton, NJ, 1990. MR1201584
11. A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Publ. Math. IHÉS 28 (1966) 255. MR0217086
12. I. Hambleton, M. Kreck, Cancellation of hyperbolic forms and topological fourmanifolds, J. Reine Angew. Math. 443 (1993) 21-47. MR1241127
13. I. Hambleton, M. Kreck, P. Teichner, Nonorientable 4-manifolds with fundamental group of order 2, Trans. Am. Math. Soc. 344 (2) (1994) 649-665. MR1234481
14. R. Hartshorne, Algebraic Geometry, Grad. Texts Math., vol. 52, Springer-Verlag, New York-Heidelberg, 1977. MR0463157
15. B. Jahren, S. Kwasik, Manifolds homotopy equivalent to $R P^{4} \# R P^{4}$, Math. Proc. Camb. Philos. Soc. 140 (2) (2006) 245-252. MR2212277
16. Q. Khan, On connected sums of real projective spaces, ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)-Indiana University, 2006. MR2708907
17. Q. Khan, Homotopy invariance of 4-manifold decompositions: connected sums, Topol. Appl. 159 (16) (2012) 3432-3444. MR2964857
18. F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. (2) 108 (1-2) (1978) 135-256. MR0498808
19. C.T.C. Wall, Surgery on Compact Manifolds, 2nd edition, Math. Surv. Monogr., vol. 69, American Mathematical Society, Providence, RI, 1999, edited and with a foreword by A.A. Ranicki. MR1687388

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.
(C) Copyright American Mathematical Society 2019

