THE s / h-COBORDISM THEOREM

QAYUM KHAN

1. Whitehead torsion

Let R be a (unital associative) ring. The stable general linear group

$$
G L(R):=\operatorname{colim}_{n \rightarrow \infty} G L_{n}(R)
$$

is the direct limit given by the stabilization homomorphisms

$$
G L_{n}(R) \longrightarrow G L_{n+1}(R) ; A \longmapsto\left[\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right] .
$$

The n-th elementary subgroup $E_{n}(R)<G L_{n}(R)$ is generated by those matrices with 1 's along the diagonal and any element $r \in R$ at any (i, j)-th entry with $i \neq j$.
Lemma 1 (Whitehead). The elementary subgroup $E(R)=\underset{n \rightarrow \infty}{\operatorname{colim}} E_{n}(R)$ equals the commutator subgroup of $G L(R)$.

The 'generalized determinant' $[A]$ is an abelian invariant defined as the stable class of an invertible matrix $A \in G L_{n}(R)$ under these row and column operations:

$$
[A] \in K_{1}(R):=G L(R)^{a b}=\frac{G L(R)}{[G L(R), G L(R)]}=\frac{G L(R)}{E(R)}
$$

Proposition 2. The following two facts are easily verified. If R is commutative, then the determinant det $: K_{1}(R) \longrightarrow R^{\times}$is defined and a split epimorphism. Furthermore, if R is euclidean (in particular, a field), then det is an isomorphism.

Let $C_{\bullet}=\left(C_{*}, d_{*}\right)$ be a contractible finite chain complex of based left R-modules. Here based means free with a chosen finite basis. Select a chain contraction s_{*} : $C_{*} \longrightarrow C_{*+1}$, which is a chain homotopy from id to 0 ; that is: $d \circ s+s \circ d=\mathrm{id}-0$. The the algebraic torsion is well-defined by the formula

$$
\tau\left(C_{\bullet}\right):=\left[d+s: C_{\text {even }} \longrightarrow C_{\text {odd }}\right] \in K_{1}(R)
$$

with $C_{\text {even }}:=C_{0} \oplus C_{2} \oplus \cdots+C_{2 N}$ and $C_{o d d}:=C_{1} \oplus C_{3} \oplus \cdots$ finite based modules.
Exercise 3. Verify that $(d+s)^{-1}=(d+s)\left(1-s^{2}+\cdots+(-1)^{N} s^{2 N}\right): C_{\text {odd }} \longrightarrow C_{\text {even }}$.
Let G be a group. Divide by trivial units in group ring for the Whitehead group

$$
\mathrm{Wh}(G):=K_{1}(\mathbb{Z} G) /\left\langle\mathbb{Z}^{\times}, G\right\rangle
$$

Conjecture 4 (Hsiang). $\mathrm{Wh}(G)=0$ if G is torsion-free.
Let $f: Y \longrightarrow X$ be a cellular homotopy equivalence of connected finite CW complexes. Write $\widetilde{f}: \widetilde{Y} \longrightarrow \widetilde{X}$ for the induced $\pi_{1} X$-equivariant homotopy equivalence of universal covers. Select a lift and orientation in \widetilde{X} of each cell in X. This gives a finite basis to the free $\mathbb{Z}\left[\pi_{1} X\right]$-module complex $C \bullet(\widetilde{X})$. Do the same for \widetilde{Y}.

[^0]Dividing by these two sets of choices, the Whitehead torsion of f is well-defined in terms of the algebraic mapping cone of the cellular map induced by \widetilde{f} :

$$
\tau(f):=\left[\tau\left(\operatorname{Cone}\left(C_{\bullet} \cdot \tilde{f}\right)\right)\right] \in \mathrm{Wh}\left(\pi_{1} X\right)
$$

If the homotopy equivalence f is not cellular, then $\tau(f):=\tau\left(f^{\prime}\right)$ is well-defined for any cellular approximation f^{\prime} to f. The homotopy equivalence $f: Y \longrightarrow X$ is simple means that $\tau(f)=0$. Clearly, any cellular homeomorphism is simple.

Theorem 5 (Chapman). Any homeomorphism of finite CW complexes is simple.
This fundamental result is proven by showing that: $\tau(f)=0$ if and only if $f \times \operatorname{id}_{Q}$ is homotopic to a homeomorphism, where $Q:=[0,1]^{\mathbb{N}}$ is the Hilbert cube. Here, one uses a geometric characterization of 'simple' in terms of a finite sequence of elementary expansions and elementary collapses of cancelling cell-pairs.

2. Statement of the s-COBORDISM THEOREM

A homotopy cobordism (shortly, h-cobordism) is a cobordism ($W^{n+1} ; M^{n}, M^{\prime}$) such that the inclusions $M \hookrightarrow W$ and $M^{\prime} \hookrightarrow W$ are homotopy equivalences; that is, M and M^{\prime} are deformation retracts of W. A smooth h-cobordism ($W ; M, M^{\prime}$) is simple (shortly, s-cobordism) means that these inclusions are simple. We use the Whitehead triangulations induced by their smooth structures, in which simplices are smoothly embedded, to parse the formulas $\tau(M \hookrightarrow W)=0=\tau\left(M^{\prime} \hookrightarrow W\right)$.

Example 6. The product s-cobordism on M is $\left(M^{n} \times[0,1] ; M \times\{0\}, M \times\{1\}\right)$.
Theorem 7 (Mazur-Stallings-Barden, the s-cobordism theorem). Let $n>4$. Any smooth s-cobordism ($\left.W^{n+1} ; M, M^{\prime}\right)$ is diffeomorphic to the product, relative to M.

Corollary 8 (Smale, the h-cobordism theorem). Let $n>4$. Any simply connected smooth h-cobordism ($\left.W^{n+1} ; M, M^{\prime}\right)$ is diffeomorphic to the product, relative to M.
(S Donaldson demonstrated this statement is false when $n=4$.) More generally:
Theorem 9 (realization). Let M a connected closed smooth manifold of dimension $n>4$. Under Whitehead torsion of the inclusion of M, the set of diffeomorphism classes rel M of smooth h-cobordisms on M corresponds bijectively to $\mathrm{Wh}\left(\pi_{1} M\right)$.

3. Application

Corollary 10 (the generalized Poincaré conjecture). Let $m>5$. Any closed smooth manifold in the homotopy type of the m-dimensional sphere is homeomorphic to it.

This is true for topological manifolds. By other means, the GPC holds for $m \leqslant 5$.
Proof. Let Σ^{m} be a smooth homotopy m-sphere. Consider the smooth cobordism $\left(W^{m} ; M^{m-1}, M^{\prime}\right)$ where $W:=\Sigma-D_{-}^{m}-\stackrel{\circ}{D}_{+}^{m}$ and $M:=\partial D_{-}$and $M^{\prime}:=\partial D_{+}$. Since $m>2$, by the Seifert-vanKampen theorem, W is simply connected, as well as M and M^{\prime}. Using excision, the relative homology with integer coefficients is

$$
H_{*}(W, M) \xrightarrow{\cong} H_{*}\left(\Sigma-\stackrel{\circ}{D}_{+}, D_{-}\right)=\widetilde{H}_{*}(\Sigma-\text { point })=0 .
$$

Then, by the Whitehead theorem, the inclusion $M \hookrightarrow W$ is a homotopy equivalence, and similarly $M^{\prime} \hookrightarrow W$ is also. So, since $n:=m-1>4$, by the h-cobordism theorem, $\left(W ; S_{-}^{n}, S_{+}^{n}\right)$ is diffeomorphic to the product $\left(S^{n} \times[0,1] ; S^{n} \times\{0\}, S^{n} \times\{1\}\right)$, relative to the identification $S_{-}^{n}=S^{n} \times\{0\}$, which extends to $D_{-}^{n+1}=D^{n+1} \times\{0\}$.

Hence $\Sigma-\stackrel{\circ}{D}_{+}=D_{-} \cup W$ is diffeomorphic to the disc $D^{m}=D^{m} \times\{0\} \cup S^{n} \times[0,1]$. The restricted exotic diffeomorphism $S_{+} \longrightarrow S^{n}$ extends to a homeomorphism $D_{+} \longrightarrow D^{n+1}$ by coning (the so-called Alexander trick). Therefore, Σ is homeomorphic to the standard sphere $S^{m}=D^{m} \cup_{\text {homeo }} D^{m}$.

The proof shows more: Σ is diffeomorphic to a twisted double $D^{m} \cup_{\text {diffeo }} D^{m}$.

4. Proof outline of the h-Cobordism theorem

A good reference is page 87 of the monograph of C Rourke and B Sanderson.
(1) Consider a 'nice' handle decomposition of W relative to M, say via a socalled nice Morse function: handles arranged in increasing index and different handles having different critical values. It exists for all dimensions.
(2) Since $\pi_{0}(M) \longrightarrow \pi_{0}(W)$ is surjective (nonexample: $W=M \times I \sqcup S^{n+1}$), we can cancel each 0 -handle with a corresponding 1-handle.
(3) Since $\pi_{1}(M) \longrightarrow \pi_{1}(W)$ is surjective (nonexample: $W=m \times I \# S^{1} \times S^{n}$), we can trade each remaining 1 -handle for a new 3 -handle. This part works for the non-simply connected case as well.
(4) Dually eliminate the $(n+1)$-handles and n-handles, working relative to M^{\prime}.
(5) Similarly, since $\pi_{k}(M) \longrightarrow \pi_{k}(W)$ is surjective, we can trade each k-handle for a new $(k+2)$-handle. Only $(n-1)$-handles and $(n-2)$-handles remain.
(6) Flip the resulting handle decomposition upside down: only 2-handles and 3 -handles relative to M^{\prime}. Since $\pi_{1}\left(M^{\prime}\right)=1$ and $H_{2}\left(W, M^{\prime} ; \mathbb{Z}\right)=0$, we can cancel each such 2 -handle with a 3 -handle.
(7) Thus we obtain only 3 -handles relative to M^{\prime}. But $H_{3}\left(W, M^{\prime} ; \mathbb{Z}\right)=0$, so actually there are no 3 -handles remaining! Therefore, we can conclude that W is diffeomorphic to $M \times I$ relative to $M \times\{0\}$.
Above, the canceling and trading of handles necessitates the Whitney trick $(n>4)$.

[^0]: Date: Mon 18 Jul 2016 (Lecture 02 of 19) - Surgery Summer School @ U Calgary

