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1. Whitehead torsion

Let R be a (unital associative) ring. The stable general linear group

GL(R) := colim
n→∞

GLn(R)

is the direct limit given by the stabilization homomorphisms

GLn(R) −→ GLn+1(R) ; A 7−→ [ A 0
0 1 ] .

The n-th elementary subgroup En(R) < GLn(R) is generated by those matrices
with 1’s along the diagonal and any element r ∈ R at any (i, j)-th entry with i 6= j.

Lemma 1 (Whitehead). The elementary subgroup E(R) = colim
n→∞

En(R) equals the

commutator subgroup of GL(R).

The ‘generalized determinant’ [A] is an abelian invariant defined as the stable
class of an invertible matrix A ∈ GLn(R) under these row and column operations:

[A] ∈ K1(R) := GL(R)ab =
GL(R)

[GL(R), GL(R)]
=
GL(R)

E(R)
.

Proposition 2. The following two facts are easily verified. If R is commutative,
then the determinant det : K1(R) −→ R× is defined and a split epimorphism.
Furthermore, if R is euclidean (in particular, a field), then det is an isomorphism.

Let C• = (C∗, d∗) be a contractible finite chain complex of based left R-modules.
Here based means free with a chosen finite basis. Select a chain contraction s∗ :
C∗ −→ C∗+1, which is a chain homotopy from id to 0; that is: d ◦ s+ s ◦ d = id− 0.
The the algebraic torsion is well-defined by the formula

τ(C•) := [d+ s : Ceven −→ Codd] ∈ K1(R),

with Ceven := C0⊕C2⊕· · ·+C2N and Codd := C1⊕C3⊕· · · finite based modules.

Exercise 3. Verify that (d+s)−1 = (d+s)(1−s2+· · ·+(−1)Ns2N ) : Codd −→ Ceven.

Let G be a group. Divide by trivial units in group ring for the Whitehead group

Wh(G) := K1(ZG)/〈Z×, G〉.

Conjecture 4 (Hsiang). Wh(G) = 0 if G is torsion-free.

Let f : Y −→ X be a cellular homotopy equivalence of connected finite CW

complexes. Write f̃ : Ỹ −→ X̃ for the induced π1X-equivariant homotopy equiva-

lence of universal covers. Select a lift and orientation in X̃ of each cell in X. This
gives a finite basis to the free Z[π1X]-module complex C•(X̃). Do the same for Ỹ .
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Dividing by these two sets of choices, the Whitehead torsion of f is well-defined in

terms of the algebraic mapping cone of the cellular map induced by f̃ :

τ(f) := [τ(Cone(C•f̃))] ∈Wh(π1X).

If the homotopy equivalence f is not cellular, then τ(f) := τ(f ′) is well-defined
for any cellular approximation f ′ to f . The homotopy equivalence f : Y −→ X is
simple means that τ(f) = 0. Clearly, any cellular homeomorphism is simple.

Theorem 5 (Chapman). Any homeomorphism of finite CW complexes is simple.

This fundamental result is proven by showing that: τ(f) = 0 if and only if
f × idQ is homotopic to a homeomorphism, where Q := [0, 1]N is the Hilbert cube.
Here, one uses a geometric characterization of ‘simple’ in terms of a finite sequence
of elementary expansions and elementary collapses of cancelling cell-pairs.

2. Statement of the s-cobordism theorem

A homotopy cobordism (shortly, h-cobordism) is a cobordism (Wn+1;Mn,M ′)
such that the inclusions M ↪→ W and M ′ ↪→ W are homotopy equivalences; that
is, M and M ′ are deformation retracts of W . A smooth h-cobordism (W ;M,M ′)
is simple (shortly, s-cobordism) means that these inclusions are simple. We use the
Whitehead triangulations induced by their smooth structures, in which simplices
are smoothly embedded, to parse the formulas τ(M ↪→W ) = 0 = τ(M ′ ↪→W ).

Example 6. The product s-cobordism on M is (Mn × [0, 1];M × {0},M × {1}).

Theorem 7 (Mazur–Stallings–Barden, the s-cobordism theorem). Let n > 4. Any
smooth s-cobordism (Wn+1;M,M ′) is diffeomorphic to the product, relative to M .

Corollary 8 (Smale, the h-cobordism theorem). Let n > 4. Any simply connected
smooth h-cobordism (Wn+1;M,M ′) is diffeomorphic to the product, relative to M .

(S Donaldson demonstrated this statement is false when n = 4.) More generally:

Theorem 9 (realization). Let M a connected closed smooth manifold of dimension
n > 4. Under Whitehead torsion of the inclusion of M , the set of diffeomorphism
classes rel M of smooth h-cobordisms on M corresponds bijectively to Wh(π1M).

3. Application

Corollary 10 (the generalized Poincaré conjecture). Let m > 5. Any closed smooth
manifold in the homotopy type of the m-dimensional sphere is homeomorphic to it.

This is true for topological manifolds. By other means, the GPC holds for m 6 5.

Proof. Let Σm be a smooth homotopy m-sphere. Consider the smooth cobordism
(Wm;Mm−1,M ′) where W := Σ − D̊m

− − D̊m
+ and M := ∂D− and M ′ := ∂D+.

Since m > 2, by the Seifert–vanKampen theorem, W is simply connected, as well
as M and M ′. Using excision, the relative homology with integer coefficients is

H∗(W,M)
∼=−−→ H∗(Σ− D̊+, D−) = H̃∗(Σ− point) = 0.

Then, by the Whitehead theorem, the inclusion M ↪→W is a homotopy equivalence,
and similarly M ′ ↪→W is also. So, since n := m− 1 > 4, by the h-cobordism theo-
rem, (W ;Sn

−, S
n
+) is diffeomorphic to the product (Sn × [0, 1];Sn × {0}, Sn × {1}),

relative to the identification Sn
− = Sn×{0}, which extends to Dn+1

− = Dn+1×{0}.
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Hence Σ− D̊+ = D−∪W is diffeomorphic to the disc Dm = Dm×{0}∪Sn× [0, 1].
The restricted exotic diffeomorphism S+ −→ Sn extends to a homeomorphism
D+ −→ Dn+1 by coning (the so-called Alexander trick). Therefore, Σ is homeo-
morphic to the standard sphere Sm = Dm ∪homeo D

m. �

The proof shows more: Σ is diffeomorphic to a twisted double Dm ∪diffeo Dm.

4. Proof outline of the h-cobordism theorem

A good reference is page 87 of the monograph of C Rourke and B Sanderson.

(1) Consider a ‘nice’ handle decomposition of W relative to M , say via a so-
called nice Morse function: handles arranged in increasing index and dif-
ferent handles having different critical values. It exists for all dimensions.

(2) Since π0(M) −→ π0(W ) is surjective (nonexample: W = M × I t Sn+1),
we can cancel each 0-handle with a corresponding 1-handle.

(3) Since π1(M) −→ π1(W ) is surjective (nonexample: W = m× I#S1 × Sn),
we can trade each remaining 1-handle for a new 3-handle. This part works
for the non-simply connected case as well.

(4) Dually eliminate the (n+1)-handles and n-handles, working relative to M ′.
(5) Similarly, since πk(M) −→ πk(W ) is surjective, we can trade each k-handle

for a new (k+ 2)-handle. Only (n− 1)-handles and (n− 2)-handles remain.
(6) Flip the resulting handle decomposition upside down: only 2-handles and

3-handles relative to M ′. Since π1(M ′) = 1 and H2(W,M ′;Z) = 0, we can
cancel each such 2-handle with a 3-handle.

(7) Thus we obtain only 3-handles relative to M ′. But H3(W,M ′;Z) = 0, so
actually there are no 3-handles remaining! Therefore, we can conclude that
W is diffeomorphic to M × I relative to M × {0}.

Above, the canceling and trading of handles necessitates the Whitney trick (n > 4).
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