THE s/h-COBORDISM THEOREM

QAYUM KHAN

1. WHITEHEAD TORSION

Let R be a (unital associative) ring. The stable general linear group

 $GL(R) := \operatorname{colim}_{n \to \infty} GL_n(R)$

is the direct limit given by the stabilization homomorphisms

 $GL_n(R) \longrightarrow GL_{n+1}(R) ; A \longmapsto \begin{bmatrix} A & 0 \\ 0 & 1 \end{bmatrix}.$

The *n*-th elementary subgroup $E_n(R) < GL_n(R)$ is generated by those matrices with 1's along the diagonal and any element $r \in R$ at any (i, j)-th entry with $i \neq j$.

Lemma 1 (Whitehead). The elementary subgroup $E(R) = \underset{n \to \infty}{\operatorname{colim}} E_n(R)$ equals the commutator subgroup of GL(R).

The 'generalized determinant' [A] is an abelian invariant defined as the stable class of an invertible matrix $A \in GL_n(R)$ under these row and column operations:

$$[A] \in K_1(R) := GL(R)^{ab} = \frac{GL(R)}{[GL(R), GL(R)]} = \frac{GL(R)}{E(R)}$$

Proposition 2. The following two facts are easily verified. If R is commutative, then the determinant det : $K_1(R) \longrightarrow R^{\times}$ is defined and a split epimorphism. Furthermore, if R is euclidean (in particular, a field), then det is an isomorphism.

Let $C_{\bullet} = (C_*, d_*)$ be a contractible finite chain complex of based left *R*-modules. Here *based* means free with a chosen finite basis. Select a *chain contraction* $s_* : C_* \longrightarrow C_{*+1}$, which is a chain homotopy from id to 0; that is: $d \circ s + s \circ d = id - 0$. The the *algebraic torsion* is well-defined by the formula

$$\tau(C_{\bullet}) := [d + s : C_{even} \longrightarrow C_{odd}] \in K_1(R),$$

with $C_{even} := C_0 \oplus C_2 \oplus \cdots + C_{2N}$ and $C_{odd} := C_1 \oplus C_3 \oplus \cdots$ finite based modules. **Exercise 3.** Verify that $(d+s)^{-1} = (d+s)(1-s^2+\cdots+(-1)^Ns^{2N}): C_{odd} \longrightarrow C_{even}$.

Let G be a group. Divide by trivial units in group ring for the Whitehead group

$$\operatorname{Wh}(G) := K_1(\mathbb{Z}G)/\langle \mathbb{Z}^{\times}, G \rangle.$$

Conjecture 4 (Hsiang). Wh(G) = 0 if G is torsion-free.

Let $f: Y \longrightarrow X$ be a cellular homotopy equivalence of connected finite CW complexes. Write $\tilde{f}: \tilde{Y} \longrightarrow \tilde{X}$ for the induced $\pi_1 X$ -equivariant homotopy equivalence of universal covers. Select a lift and orientation in \tilde{X} of each cell in X. This gives a finite basis to the free $\mathbb{Z}[\pi_1 X]$ -module complex $C_{\bullet}(\tilde{X})$. Do the same for \tilde{Y} .

Date: Mon 18 Jul 2016 (Lecture 02 of 19) — Surgery Summer School @ U Calgary.

Q. KHAN

Dividing by these two sets of choices, the *Whitehead torsion* of f is well-defined in terms of the algebraic mapping cone of the cellular map induced by \tilde{f} :

$$\tau(f) := [\tau(\operatorname{Cone}(C_{\bullet}f))] \in \operatorname{Wh}(\pi_1 X).$$

If the homotopy equivalence f is not cellular, then $\tau(f) := \tau(f')$ is well-defined for any cellular approximation f' to f. The homotopy equivalence $f : Y \longrightarrow X$ is simple means that $\tau(f) = 0$. Clearly, any cellular homeomorphism is simple.

Theorem 5 (Chapman). Any homeomorphism of finite CW complexes is simple.

This fundamental result is proven by showing that: $\tau(f) = 0$ if and only if $f \times id_Q$ is homotopic to a homeomorphism, where $Q := [0, 1]^{\mathbb{N}}$ is the Hilbert cube. Here, one uses a geometric characterization of 'simple' in terms of a finite sequence of elementary expansions and elementary collapses of cancelling cell-pairs.

2. Statement of the s-cobordism theorem

A homotopy cobordism (shortly, *h*-cobordism) is a cobordism $(W^{n+1}; M^n, M')$ such that the inclusions $M \hookrightarrow W$ and $M' \hookrightarrow W$ are homotopy equivalences; that is, M and M' are deformation retracts of W. A smooth *h*-cobordism (W; M, M')is simple (shortly, *s*-cobordism) means that these inclusions are simple. We use the Whitehead triangulations induced by their smooth structures, in which simplices are smoothly embedded, to parse the formulas $\tau(M \hookrightarrow W) = 0 = \tau(M' \hookrightarrow W)$.

Example 6. The product s-cobordism on M is $(M^n \times [0,1]; M \times \{0\}, M \times \{1\})$.

Theorem 7 (Mazur–Stallings–Barden, the s-cobordism theorem). Let n > 4. Any smooth s-cobordism $(W^{n+1}; M, M')$ is diffeomorphic to the product, relative to M.

Corollary 8 (Smale, the *h*-cobordism theorem). Let n > 4. Any simply connected smooth *h*-cobordism $(W^{n+1}; M, M')$ is diffeomorphic to the product, relative to M.

(S Donaldson demonstrated this statement is false when n = 4.) More generally:

Theorem 9 (realization). Let M a connected closed smooth manifold of dimension n > 4. Under Whitehead torsion of the inclusion of M, the set of diffeomorphism classes rel M of smooth h-cobordisms on M corresponds bijectively to $Wh(\pi_1 M)$.

3. Application

Corollary 10 (the generalized Poincaré conjecture). Let m > 5. Any closed smooth manifold in the homotopy type of the m-dimensional sphere is homeomorphic to it.

This is true for topological manifolds. By other means, the GPC holds for $m \leq 5$.

Proof. Let Σ^m be a smooth homotopy *m*-sphere. Consider the smooth cobordism $(W^m; M^{m-1}, M')$ where $W := \Sigma - \mathring{D}^m_- - \mathring{D}^m_+$ and $M := \partial D_-$ and $M' := \partial D_+$. Since m > 2, by the Seifert-vanKampen theorem, W is simply connected, as well as M and M'. Using excision, the relative homology with integer coefficients is

$$H_*(W,M) \xrightarrow{\cong} H_*(\Sigma - \mathring{D}_+, D_-) = \widetilde{H}_*(\Sigma - point) = 0.$$

Then, by the Whitehead theorem, the inclusion $M \hookrightarrow W$ is a homotopy equivalence, and similarly $M' \hookrightarrow W$ is also. So, since n := m - 1 > 4, by the *h*-cobordism theorem, $(W; S_{-}^{n}, S_{+}^{n})$ is diffeomorphic to the product $(S^{n} \times [0, 1]; S^{n} \times \{0\}, S^{n} \times \{1\})$, relative to the identification $S_{-}^{n} = S^{n} \times \{0\}$, which extends to $D_{-}^{n+1} = D^{n+1} \times \{0\}$. Hence $\Sigma - \mathring{D}_+ = D_- \cup W$ is diffeomorphic to the disc $D^m = D^m \times \{0\} \cup S^n \times [0, 1]$. The restricted exotic diffeomorphism $S_+ \longrightarrow S^n$ extends to a homeomorphism $D_+ \longrightarrow D^{n+1}$ by coning (the so-called Alexander trick). Therefore, Σ is homeomorphic to the standard sphere $S^m = D^m \cup_{homeo} D^m$.

The proof shows more: Σ is diffeomorphic to a *twisted double* $D^m \cup_{diffeo} D^m$.

4. Proof outline of the h-cobordism theorem

A good reference is page 87 of the monograph of C Rourke and B Sanderson.

- (1) Consider a 'nice' handle decomposition of W relative to M, say via a socalled *nice* Morse function: handles arranged in increasing index and different handles having different critical values. It exists for all dimensions.
- (2) Since $\pi_0(M) \longrightarrow \pi_0(W)$ is surjective (nonexample: $W = M \times I \sqcup S^{n+1}$), we can cancel each 0-handle with a corresponding 1-handle.
- (3) Since $\pi_1(M) \longrightarrow \pi_1(W)$ is surjective (nonexample: $W = m \times I \# S^1 \times S^n$), we can trade each remaining 1-handle for a new 3-handle. This part works for the non-simply connected case as well.
- (4) Dually eliminate the (n+1)-handles and n-handles, working relative to M'.
- (5) Similarly, since $\pi_k(M) \longrightarrow \pi_k(W)$ is surjective, we can trade each k-handle for a new (k+2)-handle. Only (n-1)-handles and (n-2)-handles remain.
- (6) Flip the resulting handle decomposition upside down: only 2-handles and 3-handles relative to M'. Since $\pi_1(M') = 1$ and $H_2(W, M'; \mathbb{Z}) = 0$, we can cancel each such 2-handle with a 3-handle.
- (7) Thus we obtain only 3-handles relative to M'. But $H_3(W, M'; \mathbb{Z}) = 0$, so actually there are no 3-handles remaining! Therefore, we can conclude that W is diffeomorphic to $M \times I$ relative to $M \times \{0\}$.

Above, the canceling and trading of handles necessitates the Whitney trick (n > 4).