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1. Rings with involution

An involution on a unital associative ring R is an order-two ring map − : R→ Rop:

r = r and r + s = r + s and rs = s r.

In particular, note 0 = 0 and 1 = 1, since

0 = 0 + 0− 0 = 0− 0 = 0

1 = 11 = 1 1 = 11 = 1 = 1.

Example 1. Below are some frequently occurring rings with involution (R,−).

(1) (commutative ring, identity map)
(2) (complex numbers C, complex conjugation: x+ iy = x− iy)
(3) (n×n matrices Mn(C), conjugate transpose [aij ]

∗ = [aji]): (AB)∗ = B∗A∗

(4) ZGω =(group ring ZG, geometric involution: g = ω(g)g−1), where the
given homomorphism ω : G −→ {±1} is called an orientation character.

2. Symmetric & quadratic forms

Let M be a based left R-module. A sesquilinear form is a bi-additive function

λ : M ×M −→ R satisfying λ(rx, sy) = r λ(x, y) s.

It is (−1)k-symmetric means λ(y, x) = (−1)kλ(x, y). It is nonsingular means

M −→M∗ := HomR(M,R) ; y 7−→ λ(−, y)

is an isomorphism with zero torsion, with respect to the dual basis of M∗, in the

reduced K-group K̃1(R) := K1(R)/K1(Z).

Exercise 2. Turn the right R-module structure on M∗ into a left one, using −.

Exercise 3. Show ev : M →M∗∗;x 7→ (f 7→ f(x)) is an isomorphism (M f.g. free).

A quadratic refinement of (M,λ) is a function that is ‘quadratic’ and ‘refinement’:

µ : M −→ R

{r − (−1)k r}
such that


µ(rx) = r µ(x) r

µ(x+ y) = µ(x) + µ(y) + [λ(x, y)]

λ(x, x) = µ(x) + (−1)kµ(x) ∈ R.

Exercise 4. (M,λ) admits a unique quadratic refinement if 2 is a unit in R.

Example 5. A hyperbolic form is the triple H(M) = (M ⊕M∗,
(

0 I
(−1)kI 0

)
, ( 0

0 )).
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Example 6 (quadratic forms in classic linear algebra). Let A be an n× n matrix
over C such that the symmetrization A+A∗ is invertible. Take k = 0 and M = Cn
and λ(x, y) = xt(A+A∗) y and µ(x) = [xtAx] ∈ R = C/{z − z}.

3. Definition of L2k(R)

A sublagrangian F in a (−1)k-quadratic form Q = (M,λ, µ) is a free submodule
F ⊂M with a basis that extends to M which is simple-isomorphic to the preferred
one such that λ and µ vanish on F . It is a lagrangian if it is maximal such object.

Example 7. ∆ := {(x, x) | x ∈M} is a lagrangian in (M ⊕M,λ⊕−λ, µ⊕−µ).

Exercise 8. A nonsingular Q admits a lagrangian F if and only if Q is isomorphic
to the hyperbolic formH(F ). The image of F ∗ in M is a complementary lagrangian.

The abelian monoid Ls2k(R) consists of the stable isomorphism classes of (simple)
nonsingular (−1)k-quadratic forms over (R,−). Here, the sum operation is Q+Q′ =

(M ⊕M ′,
(
λ 0
0 λ′

)
,
( µ
µ′
)
), and stably isomorphic means Q+H(Rm) ∼= Q′ +H(Rn).

Exercise 9. It is an abelian group. (Hint: Use the diagonal ∆.)

Note L0 = L4 = L8 = . . . and L2 = L6 = L10 = . . .. Write Ls∗(G
ω) = Ls∗(Z[G]ω).

4. Signature

Any (+1)-symmetric invertible matrix over Z has all eigenvalues real and nonzero.
Moreover, by the spectral theorem and taking square roots, this matrix is congru-
ent (∃C : CtAC) over R to a diagonal matrix of +1’s (the number of which is the
positive inertia i+) and −1’s (the number of which is the negative inertia i−).

Theorem 10 (Sylvester’s Law of Inertia, 1852). Congruent matrices over R have
equal inertia (i+, i−). So the signature i+−i− is an invariant of congruence classes.

Thus the signature function sign : L0(Z) −→ Z is a well-defined homomorphism.
Because of the existence of the quadratic refinement, all the diagonal entries of the
symmetric matrix are even. In fact, sign is injective with image 8Z via Gauss sums.

Remark 11. Signature injects from L0(R) or L0(C) onto 4Z, from L0(H) onto 2Z.

5. Some computations of L2k(R)

Remark 12. An isomorphism L2(Z)→ L2(F2)
Arf−−→ Z/2 exists; see its minilecture.

Let G be a finite group. Via irreducible representations of G, by the theorems of
Maschke and Artin–Wedderburn, there is an isomorphism of rings with involution:

RG ∼= Mr1(R)× · · · ×Mc1(C)× · · · ×Mh1
(H)× · · · .

The complex numbers C and quaternions H are equipped with their conjugations.

Example 13. Here are decompositions with representations indicated in subscript.

(1) RC2 = R+ × R−

(2) RCp = R+ ×
(p−1)/2∏
a=1

Cζa where p is an odd prime and ζ := e2πi/p ∈ C

(3) RQ8 = R++×R+−×R−+×R−−×H with 1→ {±1} → Q8 → C2×C2 → 1.

Proposition 14 (Morita equivalence). Any L∗(Mn(R)) is isomorphic to L∗(R).



L-GROUPS 3

Therefore, the multisignature of G is the induced homomorphism

msign : L∗(ZG) −→ L∗(RG) −→ L∗(R)⊕ · · ·L∗(C)⊕ · · ·L∗(H)⊕ · · · .

Theorem 15 (Wall). On L2k(ZG), msign has kernel and cokernel finite 2-groups.

The reduced L-groups L̃∗(R) := L∗(R)/L∗(Z) satisfy L∗(ZG) = L∗(Z)⊕L̃∗(ZG).

Theorem 16 (Bak). Suppose G has odd order. On L̃2k(ZG), msign is injective.

6. Symmetric & quadratic formations

A (−1)k-quadratic formation is a triple (Q;F,G), consisting of a nonsingular
(−1)k-quadratic form Q = (M,λ, µ) over (R,−), along with a lagrangian F and a
sublagrangian G in Q. The formation is nonsingular means that G is a langrangian.

Example 17. A hyperbolic formation is the triple (H(M);M ⊕ 0, 0⊕M∗).

Example 18. A boundary formation is a triple (H(M);M ⊕ 0,Γf = {(x, g(x))}),
where f : M −→M∗ is any homomorphism of left R-modules and g = f−(−1)kf∗.

Exercise 19. The previous two examples are isomorphic if g is an isomorphism.
So, if M has even rank, then boundary formations generalize hyperbolic formations.

7. Definition of L2k+1(R)

The abelian monoid Ls2k+1(R) under component-wise sum consists of stabilized

boundary isomorphism classes of nonsingular (−1)k-quadratic formations over R.
Boundary isomorphic is isomorphic after adding boundary formations to both sides.
Stably isomorphic is isomorphic after adding hyperbolic formations to both sides.

Exercise 20. It is an abelian group. (Hint: Choose complements, as in Exercise 8.)

As functors there is 4-periodicity, L1 = L5 = L9 = . . . and L3 = L7 = L11 = . . ..

8. Some computations of L2k+1(R)

Remark 21. An isomorphism L3(C2)
∂←− L4(F2)

Arf−−→ Z/2 exists, by Rim’s square.

Theorem 22 (Connolly–Hausmann). Let G be finite. Then 16 · Ls2k+1(G) = 0.

Theorem 23 (Bak). Suppose G has odd order. Then Ls2k+1(G) = 0.
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