L-GROUPS

QAYUM KHAN

1. Rings with involution

An involution on a unital associative ring R is an order-two ring map ${ }^{-}: R \rightarrow R^{o p}$:

$$
\overline{\bar{r}}=r \quad \text { and } \quad \overline{r+s}=\bar{r}+\bar{s} \quad \text { and } \quad \overline{r s}=\bar{s} \bar{r} .
$$

In particular, note $\overline{0}=0$ and $\overline{1}=1$, since

$$
\begin{aligned}
& \overline{0}=\overline{0+0}-\overline{0}=\overline{0}-\overline{0}=0 \\
& \overline{1}=1 \overline{1}=\overline{\overline{1}} \overline{1}=\overline{1 \overline{1}}=\overline{\overline{1}}=1
\end{aligned}
$$

Example 1. Below are some frequently occurring rings with involution $\left(R,^{-}\right)$.
(1) (commutative ring, identity map)
(2) (complex numbers \mathbb{C}, complex conjugation: $\overline{x+i y}=x-i y$)
(3) $\left(n \times n\right.$ matrices $M_{n}(\mathbb{C})$, conjugate transpose $\left.\left[a_{i j}\right]^{*}=\left[\overline{a_{j i}}\right]\right):(A B)^{*}=B^{*} A^{*}$
(4) $\mathbb{Z} G^{\omega}=\left(\right.$ group ring $\mathbb{Z} G$, geometric involution: $\left.\bar{g}=\omega(g) g^{-1}\right)$, where the given homomorphism $\omega: G \longrightarrow\{ \pm 1\}$ is called an orientation character.

2. Symmetric \& quadratic forms

Let M be a based left R-module. A sesquilinear form is a bi-additive function

$$
\lambda: M \times M \longrightarrow R \quad \text { satisfying } \quad \lambda(r x, s y)=r \lambda(x, y) \bar{s}
$$

It is $(-1)^{k}$-symmetric means $\lambda(y, x)=(-1)^{k} \overline{\lambda(x, y)}$. It is nonsingular means

$$
M \longrightarrow M^{*}:=\operatorname{Hom}_{R}(M, R) ; y \longmapsto \lambda(-, y)
$$

is an isomorphism with zero torsion, with respect to the dual basis of M^{*}, in the reduced K-group $\widetilde{K}_{1}(R):=K_{1}(R) / K_{1}(\mathbb{Z})$.

Exercise 2. Turn the right R-module structure on M^{*} into a left one, using - .
Exercise 3. Show $\overline{\mathrm{ev}}: M \rightarrow M^{* *} ; x \mapsto(f \mapsto \overline{f(x)})$ is an isomorphism (M f.g. free).
A quadratic refinement of (M, λ) is a function that is 'quadratic' and 'refinement':

$$
\mu: M \longrightarrow \frac{R}{\left\{r-(-1)^{k} \bar{r}\right\}} \quad \text { such that }\left\{\begin{array}{l}
\mu(r x)=r \mu(x) \bar{r} \\
\mu(x+y)=\mu(x)+\mu(y)+[\lambda(x, y)] \\
\lambda(x, x)=\mu(x)+(-1)^{k} \overline{\mu(x)} \in R .
\end{array}\right.
$$

Exercise 4. (M, λ) admits a unique quadratic refinement if 2 is a unit in R.
Example 5. A hyperbolic form is the triple $\mathcal{H}(M)=\left(M \oplus M^{*},\left(\begin{array}{cc}0 & I \\ (-1)^{k} I & 0\end{array}\right),\binom{0}{0}\right)$.
Date: Tue 19 Jul 2016 (Lecture 07 of 19) — Surgery Summer School @ U Calgary.

Example 6 (quadratic forms in classic linear algebra). Let A be an $n \times n$ matrix over \mathbb{C} such that the symmetrization $A+A^{*}$ is invertible. Take $k=0$ and $M=\mathbb{C}^{n}$ and $\lambda(x, y)=x^{t}\left(A+A^{*}\right) \bar{y}$ and $\mu(x)=\left[x^{t} A \bar{x}\right] \in \mathbb{R}=\mathbb{C} /\{z-\bar{z}\}$.

3. Definition of $L_{2 k}(R)$

A sublagrangian F in a $(-1)^{k}$-quadratic form $Q=(M, \lambda, \mu)$ is a free submodule $F \subset M$ with a basis that extends to M which is simple-isomorphic to the preferred one such that λ and μ vanish on F. It is a lagrangian if it is maximal such object.
Example 7. $\Delta:=\{(x, x) \mid x \in M\}$ is a lagrangian in $(M \oplus M, \lambda \oplus-\lambda, \mu \oplus-\mu)$.
Exercise 8. A nonsingular Q admits a lagrangian F if and only if Q is isomorphic to the hyperbolic form $\mathcal{H}(F)$. The image of F^{*} in M is a complementary lagrangian.

The abelian monoid $L_{2 k}^{s}(R)$ consists of the stable isomorphism classes of (simple) nonsingular $(-1)^{k}$-quadratic forms over $\left(R,,^{-}\right)$. Here, the sum operation is $Q+Q^{\prime}=$ $\left(M \oplus M^{\prime},\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{\prime}\end{array}\right),\binom{\mu}{\mu^{\prime}}\right)$, and stably isomorphic means $Q+\mathcal{H}\left(R^{m}\right) \cong Q^{\prime}+\mathcal{H}\left(R^{n}\right)$.
Exercise 9. It is an abelian group. (Hint: Use the diagonal Δ.)
Note $L_{0}=L_{4}=L_{8}=\ldots$ and $L_{2}=L_{6}=L_{10}=\ldots$. Write $L_{*}^{s}\left(G^{\omega}\right)=L_{*}^{s}\left(\mathbb{Z}[G]^{\omega}\right)$.

4. Signature

Any (+1)-symmetric invertible matrix over \mathbb{Z} has all eigenvalues real and nonzero. Moreover, by the spectral theorem and taking square roots, this matrix is congruent $\left(\exists C: C^{t} A C\right)$ over \mathbb{R} to a diagonal matrix of +1 's (the number of which is the positive inertia i_{+}) and -1 's (the number of which is the negative inertia i_{-}).

Theorem 10 (Sylvester's Law of Inertia, 1852). Congruent matrices over \mathbb{R} have equal inertia $\left(i_{+}, i_{-}\right)$. So the signature $i_{+}-i_{-}$is an invariant of congruence classes.

Thus the signature function sign : $L_{0}(\mathbb{Z}) \longrightarrow \mathbb{Z}$ is a well-defined homomorphism. Because of the existence of the quadratic refinement, all the diagonal entries of the symmetric matrix are even. In fact, sign is injective with image $8 \mathbb{Z}$ via Gauss sums.

Remark 11. Signature injects from $L_{0}(\mathbb{R})$ or $L_{0}(\mathbb{C})$ onto $4 \mathbb{Z}$, from $L_{0}(\mathbb{H})$ onto $2 \mathbb{Z}$.

5. Some computations of $L_{2 k}(R)$

Remark 12. An isomorphism $L_{2}(\mathbb{Z}) \rightarrow L_{2}\left(\mathbb{F}_{2}\right) \xrightarrow{\text { Arf }} \mathbb{Z} / 2$ exists; see its minilecture.
Let G be a finite group. Via irreducible representations of G, by the theorems of Maschke and Artin-Wedderburn, there is an isomorphism of rings with involution:

$$
\mathbb{R} G \cong M_{r_{1}}(\mathbb{R}) \times \cdots \times M_{c_{1}}(\mathbb{C}) \times \cdots \times M_{h_{1}}(\mathbb{H}) \times \cdots
$$

The complex numbers \mathbb{C} and quaternions \mathbb{H} are equipped with their conjugations.
Example 13. Here are decompositions with representations indicated in subscript.
(1) $\mathbb{R} C_{2}=\mathbb{R}_{+} \times \mathbb{R}_{-}$
(2) $\mathbb{R} C_{p}=\mathbb{R}_{+} \times \prod_{a=1}^{(p-1) / 2} \mathbb{C}_{\zeta^{a}}$ where p is an odd prime and $\zeta:=e^{2 \pi i / p} \in \mathbb{C}$
(3) $\mathbb{R} Q_{8}=\mathbb{R}_{++} \times \mathbb{R}_{+-} \times \mathbb{R}_{-+} \times \mathbb{R}_{--} \times \mathbb{H}$ with $1 \rightarrow\{ \pm 1\} \rightarrow Q_{8} \rightarrow C_{2} \times C_{2} \rightarrow 1$.

Proposition 14 (Morita equivalence). Any $L_{*}\left(M_{n}(R)\right)$ is isomorphic to $L_{*}(R)$.

Therefore, the multisignature of G is the induced homomorphism

$$
\operatorname{msign}: L_{*}(\mathbb{Z} G) \longrightarrow L_{*}(\mathbb{R} G) \longrightarrow L_{*}(\mathbb{R}) \oplus \cdots L_{*}(\mathbb{C}) \oplus \cdots L_{*}(\mathbb{H}) \oplus \cdots
$$

Theorem 15 (Wall). On $L_{2 k}(\mathbb{Z} G)$, msign has kernel and cokernel finite 2-groups.
The reduced L-groups $\widetilde{L}_{*}(R):=L_{*}(R) / L_{*}(\mathbb{Z})$ satisfy $L_{*}(\mathbb{Z} G)=L_{*}(\mathbb{Z}) \oplus \widetilde{L}_{*}(\mathbb{Z} G)$.
Theorem 16 (Bak). Suppose G has odd order. On $\widetilde{L}_{2 k}(\mathbb{Z} G)$, msign is injective.
6. Symmetric \& quadratic formations

A $(-1)^{k}$-quadratic formation is a triple $(Q ; F, G)$, consisting of a nonsingular $(-1)^{k}$-quadratic form $Q=(M, \lambda, \mu)$ over $\left(R,{ }^{-}\right)$, along with a lagrangian F and a sublagrangian G in Q. The formation is nonsingular means that G is a langrangian.

Example 17. A hyperbolic formation is the triple $\left(\mathcal{H}(M) ; M \oplus 0,0 \oplus M^{*}\right)$.
Example 18. A boundary formation is a triple $\left(\mathcal{H}(M) ; M \oplus 0, \Gamma_{f}=\{(x, g(x))\}\right)$, where $f: M \longrightarrow M^{*}$ is any homomorphism of left R-modules and $g=f-(-1)^{k} f^{*}$.

Exercise 19. The previous two examples are isomorphic if g is an isomorphism. So, if M has even rank, then boundary formations generalize hyperbolic formations.

7. Definition of $L_{2 k+1}(R)$

The abelian monoid $L_{2 k+1}^{s}(R)$ under component-wise sum consists of stabilized boundary isomorphism classes of nonsingular $(-1)^{k}$-quadratic formations over R. Boundary isomorphic is isomorphic after adding boundary formations to both sides. Stably isomorphic is isomorphic after adding hyperbolic formations to both sides.

Exercise 20. It is an abelian group. (Hint: Choose complements, as in Exercise 8.)
As functors there is 4-periodicity, $L_{1}=L_{5}=L_{9}=\ldots$ and $L_{3}=L_{7}=L_{11}=\ldots$.

8. Some computations of $L_{2 k+1}(R)$

Remark 21. An isomorphism $L_{3}\left(C_{2}\right) \stackrel{\partial}{\leftarrow} L_{4}\left(\mathbb{F}_{2}\right) \xrightarrow{\text { Arf }} \mathbb{Z} / 2$ exists, by Rim's square.
Theorem 22 (Connolly-Hausmann). Let G be finite. Then $16 \cdot L_{2 k+1}^{s}(G)=0$.
Theorem 23 (Bak). Suppose G has odd order. Then $L_{2 k+1}^{s}(G)=0$.

