SURGERY IN THE MIDDLE DIMENSION

QAYUM KHAN

1. Review of surgery kernels

Let $f: M^{n} \longrightarrow X$ be a k-connected degree-one normal map to a simple Poincaré complex. The relative homotopy groups $\pi_{j+1}(X \simeq \operatorname{Cyl}(f), M)$ vanish for all $j<k$. By Exercise $7, H_{j}(M ; \mathbb{Z} \pi) \cong H_{j}(X ; \mathbb{Z} \pi) \oplus K_{j}(M), \pi:=\pi_{1}(X)$, with surgery kernel

$$
K_{j}(M):=\operatorname{Ker}\left(H_{j}(M ; \mathbb{Z} \pi) \xrightarrow{f_{*}} H_{j}(X ; \mathbb{Z} \pi)\right) .
$$

So, by the relative Hurewicz theorem and homology exact sequence of a pair, note

$$
\pi_{k+1}(X, M) \longrightarrow H_{k+1}(X, M ; \mathbb{Z} \pi) \xrightarrow{\cong} K_{k}(M)
$$

By homological algebra, $K_{k}(M)$ is a f.g. $\mathbb{Z} \pi$-module. If $n=2 k$, it is stably based.
Select an element in $\pi_{k+1}(X, M)$, which is represented by a commutative diagram

As we learned in Lecture 06, by the Hirsch-Smale theorem, this element is represented using a unique regular homotopy class of immersion $S^{k} \times D^{n-k} \longrightarrow M$. Indeed, the normal bundle $\nu\left(S^{k} \longrightarrow M\right)$ is stably framed by cancellation, because:

$$
\begin{array}{lcl}
\nu\left(S^{k} \longrightarrow M\right) \oplus & \left.\nu\left(M \hookrightarrow S^{N}\right)\right|_{S^{k}} & =\nu\left(S^{k} \hookrightarrow S^{N}\right) \\
\nu\left(S^{k} \longrightarrow M\right) \oplus & \left.f^{*} \xi\right|_{S^{k}} & =\underline{\mathbb{R}}^{N-k}
\end{array}
$$

and using the canonical framing $\left.f^{*} \xi\right|_{S^{k}}=\left.\left(\left.\xi\right|_{D^{k+1}}\right)\right|_{S^{k}}=\underline{\mathbb{R}}^{N-n}$; see Exercise 11 .
2. The Equivariant intersection form $(n=2 k)$

Let $\alpha, \beta: S^{k} \times D^{k} \longrightarrow M^{2 k}$ be immersions that intersect transversally in doublepoints. Assume the cores $\alpha_{0}, \beta_{0}: S^{k} \longrightarrow M$ are pointed, as occur in Section 1 . There are unique pointed lifts $\widetilde{\alpha}_{0}, \widetilde{\beta}_{0}: S^{k} \longrightarrow \widetilde{M}$ to the universal cover. Define

$$
\lambda(\alpha, \beta):=\sum_{g \in \pi}\left(\widetilde{\alpha}_{0} g \cdot \widetilde{\beta}_{0}\right) g \in \mathbb{Z} \pi
$$

where π has a right-action on \widetilde{M} and \cdot is the usual \mathbb{Z}-valued intersection product.
This defines the equivariant intersection form $\lambda: K_{k}(M) \times K_{k}(M) \longrightarrow \mathbb{Z} \pi$, which is $(-1)^{k}$-symmetric and is nonsingular by Poincaré duality on surgery kernels.

[^0]
3. EQuivariant self-intersection $(n=2 k>2)$

The quadratic refinement $\mu: K_{k}(M) \longrightarrow \mathbb{Z} \pi /\left\{r-(-1)^{k} \bar{r}\right\}$ is defined geometrically as follows. Let $\alpha_{0}: S^{k} \longrightarrow M^{2 k}$ be as above, intersecting itself transversally in double-points p. For each such p, assign $g_{p} \in \pi$ as the pointed loop obtained from applying α_{0} to the oriented arc joining the two points of $\left(\alpha_{0}\right)^{-1}(p)$ through the basepoint in S^{k}. Since $k>1$, this arc in S^{k} is well-defined up to homotopy relative endpoints. Also, the orientation on S^{k} gives local orientation to the two intersecting sheets near p, so there is an intersection product $n_{p} \in\{ \pm 1\}$. Define

$$
\mu(\alpha):=\sum_{p} n_{p} g_{p}
$$

However, the value of n_{p} depended on taking an arbitrary order of the two sheets, and reversing the order introduces a sign of $(-1)^{k}$ and also reverses the arc and loop to g_{p}^{-1}. So μ is well-defined by dividing by this effect.

We ignored the normal framings for both λ and μ, and instead we only used the uniqueness of the regular homotopy class of immersion. The normal framing will be remembered in the Whitney trick (Section 5) and when performing surgery.

4. The surgery obstruction map $(n=2 k>2)$

The even-dimensional surgery obstruction map is now defined as

$$
\mathcal{N}_{\text {DIFF }}\left(X^{2 k}\right) \xrightarrow{\sigma} L_{2 k}^{s}\left(\pi_{1} X\right) ;[M, f, \bar{f}] \longmapsto\left[K_{k}(M), \lambda, \mu\right] .
$$

If $(M, f, \bar{f})=\partial(W, F, \bar{F})$, the image of $\partial: K_{k+1}(W, M) \rightarrow K_{k}(M)$ is a lagrangian.
Theorem 1. Suppose $\sigma[M, f, \bar{f}]=0 \in L_{2 k}^{s}\left(\pi_{1} X\right)$ for a k-connected degree-one normal map $f: M \rightarrow X$. Then f is normally bordant a simple homotopy equivalence.

5. The Whitney trick $(n=2 k>4)$

Lemma 2 (Whitney). Suppose α and β do not algebraically intersect: $\lambda(\alpha, \beta)=0$.
Then β is regularly homotopic to some β^{\prime} that does not geometrically intersect α.

Lemma 3 (Wall). Similarly, α is regularly homotopic to an embedding if $\mu(\alpha)=0$.

6. Proof of the fundamental theorem $(n=2 k>4)$

Proof. Stabilizing with a hyperbolic form via connected sum with copies of $S^{k} \times S^{k}$, we may assume that $\left(K_{k}(M), \lambda, \mu\right)$ has a lagrangian F, say with basis $\alpha_{1}, \ldots, \alpha_{r}$. Since $\lambda\left(\alpha_{i}, \alpha_{j}\right)=0$ for each $i \neq j$, by Lemma 2 isotope the $\alpha_{i}: S^{k} \times D^{k} \longrightarrow M^{2 k}$ to be disjoint. Then, since $\mu\left(\alpha_{i}\right)=0$, by Lemma 3 , isotope the α_{i} to be embeddings.

Now do surgery on $\alpha_{1}, \ldots, \alpha_{r}$ to obtain a degree-one normal map $f^{\prime}: M^{\prime} \longrightarrow X$. The effect is to kill $F \oplus F^{*}=K_{k}(M)$. So $K_{k}\left(M^{\prime}\right)=0$. Since f^{\prime} is also k-connected, note $K_{*}\left(M^{\prime}\right)=0$, by Poincaré duality of surgery kernels: $K_{n-j}\left(M^{\prime}\right) \cong K^{j}(M)$.

Then \widetilde{f}^{\prime} is an integral homology equivalence. So, $\widetilde{M^{\prime}}$ and \widetilde{X} are simply connected, by Whitehead's theorem, \tilde{f}^{\prime} is a weak homotopy equivalence. Therefore, since f^{\prime} induces an isomorphism on π_{1}, f^{\prime} is a weak homotopy equivalence. Hence, since M^{\prime} and X have CW structures, by Whitehead's theorem, f^{\prime} is a homotopy equivalence. Its Whitehead torsion turns out to be $\tau\left(f^{\prime}\right)=[y \mapsto \lambda(-, y)]=0 \in \mathrm{~Wh}\left(\pi_{1} X\right)$.

7. The surgery obstruction map $(n=2 k+1)$

Let $f: M^{2 k+1} \longrightarrow X$ be a k-connected degree-one normal map to a simple Poincaré complex. Again, each element of the surgery kernel $K_{k}(M)$, which is a stably based $\mathbb{Z} \pi$-module, is represented by a unique regular homotopy class of normally framed embedding $S^{k} \times D^{k+1} \hookrightarrow M^{2 k+1}$ by general position. (However, the embedding may not be unique up to regular isotopy, as knotting often occurs.)

Choose such an embedding for each basis element $e_{1}, \ldots, e_{r}: S^{k} \times D^{k+1} \longrightarrow M$ of $K_{k}(M)$ such that the images are disjoint. (However, linking can easily occur.) Taking boundary-connected sum produces an embedded k-handlebody U in M :

$$
U^{2 k+1}:=e_{1} দ \cdots \not e_{r}: \bigsqcup_{i=1}^{r} S^{k} \times D^{k+1} \longrightarrow M^{2 k+1} .
$$

Then its boundary is a hypersurface (similar to a Heegard decomposition for $n=3$):

$$
\partial U: \underset{i=1}{\#} S^{k} \times S^{k} \longrightarrow M^{2 k+1}
$$

However note ∂U bounds in two ways; it's also the boundary of the exterior $M-\stackrel{\circ}{U}$. This yields two lagrangians in the intersection form of the degree-one normal map

$$
f \mid: \partial U \longrightarrow S^{2 k} \subset D^{2 k+1} \subset X
$$

see Exercise 15. Specifically, these lagrangians are the images

$$
\begin{aligned}
F & :=\operatorname{Im}\left(K_{k+1}(U, \partial U) \xrightarrow{\partial} K_{k}(\partial U)\right) \\
G & :=\operatorname{Im}\left(K_{k+1}(M-\stackrel{\circ}{U}, \partial U) \xrightarrow{\partial} K_{k}(\partial U)\right) .
\end{aligned}
$$

The odd-dimensional surgery obstruction is now defined in terms of this formation:

$$
\mathcal{N}_{\text {DIFF }}\left(X^{2 k+1}\right) \xrightarrow{\sigma} L_{2 k+1}^{s}\left(\pi_{1} X\right) ;[M, f, \bar{f}] \longmapsto\left[H_{k}(\partial U), \lambda_{\partial U}, \mu_{\partial U} ; F, G\right] .
$$

[^0]: Date: Tue 19 Jul 2016 (Lecture 08 of 19) - Surgery Summer School @ U Calgary

