THE HOMOTOPY TYPE OF G/TOP

QAYUM KHAN

1. Definition of G/TOP

Recall TOP_n is the topological group of self-homeomorphisms of \mathbb{R}^n fixing 0. Crossing with the identity on \mathbb{R} gives stabilization maps for the topological group

$$\mathrm{TOP} := \operatorname{colim}_{n \to \infty} \mathrm{TOP}_n.$$

Recall G_n is the topological monoid of self-homotopy equivalences of S^{n-1} . Unreduced suspension of a self-map gives stabilization maps for the topological monoid

$$G := \operatorname{colim}_{n \to \infty} G_n.$$

Note $\pi_i G \cong \pi_i^s$ for all i > 0. Reversing stereographic projection $S^n - point \to \mathbb{R}^n$, one-point compactification gives inclusions $\operatorname{TOP}_n \hookrightarrow G_{n+1}$ of topological monoids. The homogenous space G/TOP of cosets fits into a fibration of topological spaces

(1.1) $\operatorname{TOP} \longrightarrow G \longrightarrow G/\operatorname{TOP}.$

Remark 1. Via a contractible free *G*-space *EG*, it deloops to a homotopy fibration

 $G/\text{TOP} \longrightarrow B\text{TOP} \simeq EG/\text{TOP} \longrightarrow BG = EG/G.$

2. Its homotopy groups

Theorem 2. For all n > 0, the group $\pi_n(G/\text{TOP})$ is isomorphic to $L_n(1)$.

Lemma 3. G/TOP is 1-connected, so it's a simple space: π_1 acts trivially on π_* . *Proof.* The fibration (1.1) induces an exact sequence of abelian groups:

$$\begin{array}{cccc} \pi_1 O & & & & \pi_1^s \\ & & & & & \\ & & & & & \\ & & & & & \\ \pi_1 \mathrm{TOP} & \longrightarrow & & & \\ & & & & & \\ \pi_1 \mathrm{TOP} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

Recall $\pi_1 O = \mathbb{Z}/2 = \pi_1^s$ generated by the C-Hopf map $S^3 \longrightarrow S^2$, with J_1 an isomorphism. Note $\pi_0 G = \mathbb{Z}/2 = \pi_0$ TOP generated by complex conjugation the circle; the latter equality is a corollary of Kirby's Stable Homeomorphism Conjecture. \Box

In 4 and 5, we implicitly use the Kervaire–Milnor braid for $O \subset PL \subset TOP \subset G$. By Cerf, PL/O is 6-connected. By Kirby–Siebenmann, TOP/PL models $K(\mathbb{Z}/2, 3)$.

Lemma 4. $\pi_2(G/\text{TOP}) \equiv \mathcal{N}_{\text{TOP}}(S^2) \cong \Omega_2^{fr} = \mathbb{Z}/2.$

The generator is a degree-one normal map $T^2 \longrightarrow S^2$, with the Lie framing on T^2 .

Date: Wed 20 Jul 2016 (Lecture 11 of 19) — Surgery Summer School @ U Calgary.

Proof. The fibration (1.1) induces an exact sequence of abelian groups:



The isomorphism on the right uses the proof of Lemma 3. The epimorphism on the left uses $\pi_2(\text{TOP}/O) = 0$. Note $\pi_2 O = 0$, and $\pi_2^s \cong \Omega_2^{fr}$ by Pontryagin–Thom. \Box

Lemma 5. $\pi_3(G/\text{TOP}) = 0.$

 $\mathbf{2}$

Proof. The fibration (1.1) induces an exact sequence of abelian groups:

The monomorphism on the right uses the proof of Lemma 4. The epimorphism J_3 : $\pi_3 O = \mathbb{Z} \longrightarrow \pi_3^s = \mathbb{Z}/24$ has source generated by the \mathbb{H} -Hopf map $S^7 \longrightarrow S^4$. \Box

Remark 6. In the rest of this section and in the next one, we shall use the fact that the topological surgery obstruction map σ is a homomorphism of abelian groups.

Proof of Theorem 2. We calculate the remaining homotopy groups $(n \ge 4)$, using the topological surgery exact sequence, where the n = 4 case is due to Freedman:

$$\mathcal{S}_{\mathrm{TOP}}(S^n) \xrightarrow{\eta} \mathcal{N}_{\mathrm{TOP}}(S^n) \xrightarrow{\sigma} L_n(1).$$

The (split) epimorphism is due to the existence of the closed topological Milnor 4mmanifold and Kervaire (4m+2)-manifold, and the vanishing of the target $L_{2k+1}(1)$. By the Generalized Poincaré Conjecture, $\mathcal{S}_{\text{TOP}}(S^n) \equiv 0$. So σ is an isomorphism. By topological transversality and 3, $\mathcal{N}_{\text{TOP}}(S^n) \equiv [S^n, G/\text{TOP}] \equiv \pi_n(G/\text{TOP})$. \Box

3. Application

Corollary 7. For all n > 0, $S_{\text{TOP}}(\mathbb{CP}_n) = L_{2n-2}(1) \oplus L_{2n-4}(1) \oplus \cdots \oplus L_2(1)$.

Proof. The topological surgery exact sequence of \mathbb{CP}_n consists of abelian groups:

$$0 = L_{2n+1}(1) \xrightarrow{\partial} \mathcal{S}_{\text{TOP}}(\mathbb{CP}_n) \xrightarrow{\eta} \mathcal{N}_{\text{TOP}}(\mathbb{CP}_n) \xrightarrow{\sigma} L_{2n}(1) = \begin{cases} \mathbb{Z} & n \text{ even} \\ \mathbb{Z}/2 & n \text{ odd.} \end{cases}$$

As in the proof of Theorem 2, σ is always a split epimorphism, where the splitting # is given by connect-sum of elements in $\mathcal{N}_{\text{TOP}}(S^{2n})$ with the identity on \mathbb{CP}_n . So

$$\mathcal{N}_{\mathrm{TOP}}(\mathbb{CP}_n) = L_{2n}(1) \oplus \mathcal{S}_{\mathrm{TOP}}(\mathbb{CP}_n).$$

Consider the cofiber sequence, where the left arrow is quotient by a circle action:

$$\mathbb{C}^n \supset S^{2n-1} \xrightarrow{/U_1} \mathbb{CP}_{n-1} \longrightarrow \mathbb{CP}_n \longrightarrow S^{2n}.$$

The associated Puppe sequence consists of abelian groups:

$$[S^{2n}, G/\text{TOP}] \xrightarrow{\#} [\mathbb{CP}_n, G/\text{TOP}] \longrightarrow [\mathbb{CP}_{n-1}, G/\text{TOP}] \longrightarrow [S^{2n-1}, G/\text{TOP}] = 0.$$

Therefore, the restriction map $S_{\text{TOP}}(\mathbb{CP}_n) \longrightarrow \mathcal{N}_{\text{TOP}}(\mathbb{CP}_{n-1})$ is an isomorphism. Geometrically, the map does transverse splitting along \mathbb{CP}_{n-1} (see Exercise 15). Indeed, induction leads us down to n = 2 because of Freedman as $\pi_1(\mathbb{CP}_2) = 1$. \Box

This calculation was rather special because of the recursive nature of \mathbb{CP}_n . In general, one needs more than the homotopy groups of G/TOP: one needs information involving the Postnikov k-invariants. This motivates the rest of the lecture.

4. Periodicity

Above, we used a homotopy-everything H-space structure on G/TOP, so that homotopy classes of maps to it form an abelian group. However, we did not use the classic H-space structure given by Whitney sum. Instead, we used the one given by the fact that G/TOP can be delooped twice. This follows from 4-fold periodicity:

Theorem 8 (Casson–Sullivan). $A := \mathbb{Z} \times G/\text{TOP}$ is homotopy equivalent to $\Omega^4 A$.

Theorem 2 predicted this 4-periodicity: $\pi_n(A) \cong L_n(1)$ for all $n \ge 0$.

The aforementioned abelian group structure on topological normal invariants is

 $\mathcal{N}_{\text{TOP}}(M) \equiv [M, G/\text{TOP}] \equiv [M, A]_0 \equiv [M, \Omega^2(\Omega^2 A)]_0$

where M is a nonempty connected closed topological manifold.

More, the homotopy equivalence $\pi: A \longrightarrow \Omega^4$ yields a 0-connective Ω -spectrum

 $\mathbf{L}\langle 0 \rangle$: $A, \ \Omega^3 A, \ \Omega^2 A, \ \Omega A, \ A, \ \ldots$

Its 1-connective cover $\mathbf{L}\langle 1 \rangle$ is a 1-connective Ω -spectrum with 0-th space G/TOP. (This yields a generalized cohomology theory.) Since it is an Ω -spectrum, note:

$$\mathcal{N}_{\text{TOP}}(M) \equiv [M, G/\text{TOP}] = H^0(M; \mathbf{L}\langle 1 \rangle).$$

Remark 9. When M^n is oriented, a sophisticated form of Poincaré duality gives $\mathcal{N}_{\text{TOP}}(M) \cong H_n(M; \mathbf{L}(1))$. Then σ becomes a $\pi_1(M)$ -equivariant assembly map.

5. LOCALIZATION OF SPACES

Let S be a multiplicatively closed subset of the positive integers containing 1, so that the S-localization ring $S^{-1}\mathbb{Z}$ of the integers \mathbb{Z} satisfies $\mathbb{Z} \stackrel{l}{\hookrightarrow} S^{-1}\mathbb{Z} \subseteq \mathbb{Q}$.

Let X be a simply connected CW complex. The S-localization of X is a topological space $S^{-1}X$ equipped with a map $L: X \longrightarrow S^{-1}X$ with induced isomorphisms:

$$\pi_*(X) \otimes_{\mathbb{Z}} S^{-1}\mathbb{Z} \xrightarrow{L_* \otimes \mathrm{id}} \pi_*(S^{-1}X) \otimes_{\mathbb{Z}} S^{-1}\mathbb{Z} \xleftarrow{\mathrm{id} \otimes l} \pi_*(S^{-1}X) \otimes_{\mathbb{Z}} \mathbb{Z}.$$

Remark 10. If X is an H-space, then $S^{-1}X$ is also and $S^{-1}[-,X] \cong [-,S^{-1}X]$.

6. Its 2-local, odd-local, and rational homotopy types

We abbreviate three localizations of particular interest:

 $X_{(2)} := \langle \text{odd primes} \rangle^{-1} X, \quad X[\frac{1}{2}] := \langle 2 \rangle^{-1} X, \quad X_{(0)} := \langle \text{primes} \rangle^{-1} X.$ Observe that X is recovered as the homotopy limit of $X_{(2)} \longrightarrow X_{(0)} \longleftarrow X[\frac{1}{2}].$

Theorem 11 (Sullivan). $(G/\text{TOP})_{(2)} \simeq \prod_{m=1}^{\infty} K(\mathbb{Z}/2, 4m-2) \times K(\mathbb{Z}_{(2)}, 4m).$ **Theorem 12** (Sullivan). $(G/\text{TOP})[\frac{1}{2}] \simeq BO[\frac{1}{2}]$ and $(G/\text{TOP})_{(0)} \simeq BO_{(0)}.$