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Definition (Riemann 1851)

Recall that a topological space M is a (topological = C 0)
manifold if it is locally euclidean, separable, and metrizable.

The next conjecture was posed as Hilbert’s Fifth Problem (1900).
Partial results were by vonNeumann (1933) and Pontryagin (1934).

Theorem (Gleason–Montgomery–Zippin 1955)

Let G be a topological group. It is a Lie group iff it is a manifold.

This was then generalized to the setting of effective group actions.

Conjecture (Hilbert–Smith)

Let M be a connected topological manifold. Any locally compact
subgroup of Homeo(M), with the compact-open topology, is Lie.
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Definition

Let G be a Lie group. A G -space M is a smooth G -manifold if
it is a smooth (C∞) manifold and the continuous homomorphism
G −→ Homeo(M) has image in the subgroup Diffeo(M).

Definition (Matumoto 1971)

A G -space X is a G -CW complex if it is recursively a pushout of⊔
G ×H Dk+1 ←−

⊔
G ×H Sk −→ X (k) with quotient topology.

It is called countable if it has countably many G -cells.

Theorem (Illman 2000)

Let G be a Lie group. Any smooth G -manifold is equivariantly
homeomorphic to a countable G-CW complex. In particular, if the
manifold is compact then there are only finitely many G -cells.
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Definition (Khan 2018)

Let G be a locally compact, Hausdorff, topological group.
A G -space M is a topological G -manifold if, for each closed
subgroup H of G , the H-fixed set is a topological manifold:

MH := {x ∈ M | ∀g ∈ H : gx = x}.

Unlike ‘local linearity’ and ‘homotopically stratified’, popular in the
1980s, there is no assumption here of any neighborhood structure.

Theorem (Khan 2018)

Let G be a compact Lie group. Any topological G -manifold is
equivariantly homotopy equivalent to a countable G -CW complex.
If the manifold is compact then the complex is finite-dimensional.
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Corollary (Khan 2018)

Let Γ be a virtually torsionfree, discrete group. Any topological
Γ-manifold with properly discontinuous action has the equivariant
homotopy type of a Γ-CW complex. If the action is cocompact
then the complex is finite-dimensional.

Example (Bing 1952)

The Alexander horned 2-sphere A is embedded in the 3-sphere.
The 3-cell side has closed complement E , the solid horned sphere.
Bing showed that E ∪A E is homeomorphic to the 3-sphere.
The interchange C2-action on this S3 has the equivariant
homotopy type of a countable, but not finite, C2-CW complex.
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The proof of the compact-Lie theorem relies on these ingredients.

Smith theory — Any compact set in a Z-cohomology manifold
has only finitely many isotropy groups [Bredon–Floyd 1960].

Equivariant controlled topology — Any locally compact,
finite-dimensional, separable G -metric space is a G -ENR iff it
has finitely many orbit types and each H-fixed set is an ANR
[Jaworowski 1976].

Equivariant triangulability of open G -subsets of euclidean
space — from smooth triangulation theorem [Illman 1983]

Equivariant Mather trick — Any G -space G -dominated by a
countable G -CW complex is G -homotopy equivalent to one.
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Definition (Palais 1961)

Let G be a locally compact, Hausdorff, topological group.
A regular Hausdorff G -space X is proper if each x ∈ X has a
neighborhood U, such that any y ∈ X has a neighborhood V with
〈U,V 〉 := {g ∈ G | gU ∩ V 6= ∅} having compact closure in G .

Notice that if G is compact, then any such G -space is proper.

A Lie group is linear if it is a closed subgroup of some GLn(R).

Theorem (Khan 2019)

Let G be a linear Lie group. Any proper topological G-manifold
has the equivariant homotopy type of a countable G -CW complex.
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Definition (Bredon 1972)

Let G be a Lie group. A locally linear G -manifold M is a proper
G -space such that each point x has a G -neighborhood
G -homeomorphic to G ×Gx Rk , for an orthogonal representation
Gx −→ O(k) of its isotropy group Gx := {g ∈ G | gx = x}.

The above G -tube is a manifold, since it fits into a vector bundle
sequence Rk → G ×Gx Rk → G/Gx with base space a manifold.

Remark

Let H be a closed subgroup of G . Let x ∈ MH . Since H ⊂ Gx ,
notice x has a neighborhood in MH homeomorphic to (Rk)H .
Hence any locally linear G -manifold is a topological G -manifold.

Corollary (Elfving 1996 dissertation — under Søren Illman)

Let G be a linear Lie group. Any proper, locally linear G -manifold
has the equivariant homotopy type of a G-CW complex.



Introduction Compact case Linear case References

Definition (Bredon 1972)

Let G be a Lie group. A locally linear G -manifold M is a proper
G -space such that each point x has a G -neighborhood
G -homeomorphic to G ×Gx Rk , for an orthogonal representation
Gx −→ O(k) of its isotropy group Gx := {g ∈ G | gx = x}.

The above G -tube is a manifold, since it fits into a vector bundle
sequence Rk → G ×Gx Rk → G/Gx with base space a manifold.

Remark

Let H be a closed subgroup of G . Let x ∈ MH . Since H ⊂ Gx ,
notice x has a neighborhood in MH homeomorphic to (Rk)H .
Hence any locally linear G -manifold is a topological G -manifold.

Corollary (Elfving 1996 dissertation — under Søren Illman)

Let G be a linear Lie group. Any proper, locally linear G -manifold
has the equivariant homotopy type of a G-CW complex.



Introduction Compact case Linear case References

Definition (Bredon 1972)

Let G be a Lie group. A locally linear G -manifold M is a proper
G -space such that each point x has a G -neighborhood
G -homeomorphic to G ×Gx Rk , for an orthogonal representation
Gx −→ O(k) of its isotropy group Gx := {g ∈ G | gx = x}.

The above G -tube is a manifold, since it fits into a vector bundle
sequence Rk → G ×Gx Rk → G/Gx with base space a manifold.

Remark

Let H be a closed subgroup of G . Let x ∈ MH . Since H ⊂ Gx ,
notice x has a neighborhood in MH homeomorphic to (Rk)H .
Hence any locally linear G -manifold is a topological G -manifold.

Corollary (Elfving 1996 dissertation — under Søren Illman)

Let G be a linear Lie group. Any proper, locally linear G -manifold
has the equivariant homotopy type of a G-CW complex.



Introduction Compact case Linear case References

Definition (Bredon 1972)

Let G be a Lie group. A locally linear G -manifold M is a proper
G -space such that each point x has a G -neighborhood
G -homeomorphic to G ×Gx Rk , for an orthogonal representation
Gx −→ O(k) of its isotropy group Gx := {g ∈ G | gx = x}.

The above G -tube is a manifold, since it fits into a vector bundle
sequence Rk → G ×Gx Rk → G/Gx with base space a manifold.

Remark

Let H be a closed subgroup of G . Let x ∈ MH . Since H ⊂ Gx ,
notice x has a neighborhood in MH homeomorphic to (Rk)H .
Hence any locally linear G -manifold is a topological G -manifold.

Corollary (Elfving 1996 dissertation — under Søren Illman)

Let G be a linear Lie group. Any proper, locally linear G -manifold
has the equivariant homotopy type of a G-CW complex.



Introduction Compact case Linear case References

The proof of the linear-Lie theorem relies on these ingredients.

Smith theory — extension of Bredon–Floyd to noncompact G

Equivariant local-to-global principle — G -version of Hanner’s
1951 criterion that being an ANR is local [Antonyan 2005]

Equivariant simplicial topology — extension of Jaworowski’s
G -ANR criterion from compact to linear G [Antonyan+ 2017]

Equivariant nerves in G -Banach spaces — G -version of
Hanner’s 1951 theorem that any ANR is dominated by a CW
complex [Antonyan–Elfving 2009]

Equivariant triangulability of open G -subsets of euclidean
space — from smooth triangulation theorem [Illman 2000]
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Thank you for your attention!

Countable approximation of topological G -manifolds, I:
compact Lie groups G by Qayum Khan
Topology and its Applications 2018
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